[image: Balisage logo]Balisage: The Markup Conference

Two from Three (in XSLT)
John Lumley
jωL Research

Saxonica

<john@jwlresearch.com>

Balisage: The Markup Conference 2015
August 11 - 14, 2015

Copyright © 2015 jωL Research Ltd. All rights reserved.

How to cite this paper
Lumley, John. "Two from Three (in XSLT)." Presented at: Balisage: The Markup Conference 2015, Washington, DC, August 11 - 14, 2015. In Proceedings of Balisage: The Markup Conference 2015.
 Balisage Series on Markup Technologies vol. 15 (2015). https://doi.org/10.4242/BalisageVol15.Lumley01.

Abstract
This paper discusses automated methods of 'downgrading' XSLT 3.0 programs into XSLT 2.0
 syntax and semantics. The stimulus was running portions of a document processing system,
 that had been upgraded to use more coherent features of XSLT 3.0, in the environment of a
 browser-based standards-compliant XSLT 2.0 implementation (Saxon-CE). The work involves
 detailed knowledge of XSLT and is intended to automate significant sections of the
 'downconversion', leaving other sections to conditional compilation directives. All
 conversion tools are of course written in XSLT and several aspects involve partial
 processing and evaluation of XSLT semantics within XSLT.

Balisage: The Markup Conference

 Two from Three (in XSLT)

 Table of Contents

 	Title Page

 	Why?
 	The XSLT standards

 	XSLT 2.0 to XSLT 3.0

 	Why downgrade?

 	Assumptions

 	Similar work

 	Equivalent constructs
 	XSLT constructs
 	xsl:mode

 	xsl:iterate

 	Text value templates {}

 	xsl:evaluate

 	XPath expressions
 	let

 	map

 	Convenience functions and operators

 	|| (string concatenation)

 	! (simple map)

 	Compile-time modification

 	Transforming the code
 	Converting xsl:mode

 	Converting xsl:iterate

 	Converting text value templates

 	Converting map{}

 	Conditional compilation

 	Expanding XPath Expressions

 	Manipulating mixed XSLT/XPath trees

 	Inclusions

 	Testing

 	Conclusion
 	Can it process itself?

 	Further possibilities

 	Acknowledgements

 	About the Author

 Two from Three (in XSLT)

Why?
For many problems in document engineering, exploiting the meta-syntax standard of XML, and
 the functional and declarative tree-transformational language XSLT, furnishes
 many advantages in both design efficiency, robustness and potential codebase reuse. Over the
 past 14 years the XSLT language has evolved through three major versions from an initial
 simple pattern-matching transformation mechanism to a complete (homoiconic) language with XML
 trees as the principal data type, functional properties and a large suite of suitable
 datatypes and extensive function libraries. Anyone working in document engineering using XML
 over that period would have tracked the changes in XSLT and often modified code to take
 advantage of the evolving functionality.
The author has been researching ideas for an extensible architecture for variable-data
 documents (DDF) over many years (Lumley2005, LumleyPhD, Lumley2013). This architecture was based heavily on
 XML documents containing mixtures of subtrees from several different XML
 dialects – standards, such as XSLT, SVG and parts of XSL-FO, and elements and
 attributive properties describing specialist layout and document-structure aspects.
Almost all the processing machinery for these documents was constructed in XSLT, in two
 principal areas. Firstly the effect of interpolation of variable data through sections of the
 document structure was processed according to XSLT semantics (much as the first phase of
 XSL-FO) by a compilation and execution mechanism. Secondly the layout interdependencies
 (flows, constraints, text-layout etc.) were resolved by a top-down recursive process,
 satisfying declared parent-children geometric constraints, along with a system
 of single-assignment presentational variables.
The main implementation toolset to support this architecture was a set of about 45 XSLT
 files containing definitions for some 700 templates and functions[1]. The toolset was used mainly for a publication step, binding a document to some
 data, evaluating it and then generating a PDF snapshot of the SVG sections of the result for
 printing.
Until 2011 this toolset was written entirely in XSLT 2.0, but thereafter some sections
 were converted to use features from XSLT 3.0, generally to increase the coherence, and the
 declarative nature of the code. Specific examples include:
	Using xsl:iterate to define the operation of a large pagination
 processor, rather than use of a small set of mutally recursive templates. (This will not
 be described in detail in this paper, but involves some 15+ choices to be made for each
 component to be allocated, and a couple of accumulated variables, such as
 next-y position and current floating and kept components.)

	Describing the set of currently active presentational variables
 (already layed-out sections of content that can be reused in a similar fashion to XSLT
 variables) as a map{} rather than a pair of stack-frame
 tunnelled variables.

	Making some of the processing code sections more generic by passing some of the
 functionality (e.g. sibling-relative geometric constraint solving) as a function item to a
 higher-order processing template, rather than having a larger set of similarly structured
 routines, each implementing the specific constraint solution for each case.

This paper is about reversing automatically some of these syntactic and
 semantic changes to accomodate running code that has migrated to XSLT 3.0 on a 2.0 platform,
 for which the original target was a browser-based Saxon-CE SaxonCE
 implementation. The conversion processor is itself written totally in XSLT. Many parts of it
 of course involve a degree of emulation and partial evaluation of XSLT within an XSLT program
 itself, as well as processing some actions that might normally be found within the workings of
 an XSLT processor – a fun time for those who relish quoting, self-reference, meta-abstraction
 and multi-level recursion!
The XSLT standards
Since its inception in the mid 90s, the world of XML has been governed by standards.
 Originally attempting to regularise the extension of web pages, XML was developed as a
 meta-syntax for markup, aimed at using a strict tree-based representation of propertied
 element nodes containing sub-trees or text nodes. Very soon work started on developing XSL
 as a formatted and paginated alternative to HTML for documents with professional appearance.
 As we’re all well aware, the two aspects of XSL, formatting and variable document
 generation, split into two orthogonal standards – XSL-FO and XSLT. The latter developed,
 with XPath (and associated XQuery), into a full declarative XML-transformational language.
 In most recent versions XSLT/XPath/XQuery have become full functional programming languages,
 with XML trees as central data type.
Significant work under the auspices of W3C has developed and finalised these standards
 for XSLT/XPath/XQuery[2] through three major versions over the past 15 years. In each case a very
 comprehensive specification has been developed, reviewed, criticised and modified in cycles
 that are typically 3 years long and involve a few dozen contributors. Examples, test cases
 and experimental/operational implementations are all used to develop and finalise the
 specification, which is often followed by a further 3 years of polishing.
Once a standard (version) has been finalised, a degree of stability should then
 encourage developers of both implementations and applications to build and support software,
 without the language’s syntax or semantics altering. Of course it is exactly such full-scale
 use of a language that could expose shortcomings or new features that are needed to increase
 utility. The art of developing standards is to anticipate as much as is needed to get a
 useful and robust set of features that i) is adequate for significant application use but
 ii) not too complex for implementation or application.

XSLT 2.0 to XSLT 3.0
The major changes in XSLT (and XPath) between version 2.0 (2007) and version 3.0 (2014)
 are:
	Support for streamed processing of large documents. This added a number of features
 to mitigate the need for backtracking through the source document in
 common design problems. Some of those were defined at the XSLT instruction level, such
 as xsl:stream , xsl:iterate and xsl:accumlator;
 others were declarations associated with streaming-related properties, such as
 xsl:mode; yet others were added to the XPath repertoire, such as
 map{}, and others to the function library (e.g.
 snapshot()).

	Definitions for packaging of XSLT material to support non-source level delivery of
 resources, including mechanisms for visibility and overriding of within-package
 components and version-based selection.

	Templates can match atomic items (including function types), rather than just
 nodes.

	Dynamic error trapping and recovery mechanisms
 (xsl:try/xsl:catch)

	Dynamic evaluation of XPath expressions (xsl:evaluate).

	Support for higher-order functions and function-typed items in XPath.

	Local variable bindings within XPath (let $x := value return
 ).

	More support for compile-time, i.e. static, evaluation of
 stylesheets, such as shadow attributes and static declarations.

	Convenience additions to syntax and the core functional library, such as
 '||' being a string concatentation operator.

Why downgrade?
Two serious questions immediately arise:
	If you have an operational program written in XSLT 3.0, why would you want to
 downgrade it to 2.0?

	If you are designing to run on an XSLT 2.0 why would you want to write code in XSLT
 3.0 ?

The first point is the main instigator for this work and is described below. As far as
 the second point is concerned, code written in 3.0 can be more coherent than the 2.0
 equivalents. Indeed in the description of xsl:iterate
 in the standard, it is noted that:
"There are two main reasons for providing the xsl:iterate instruction. One is that many XSLT users find writing
 recursive functions to be a difficult skill, and this construct promises to be easier to
 learn."

Moreover, the existence of a reasonable semi-automatic transformer can
 act as a stimulus to both developers and implementors, providing a means to write test and
 exemplar programs within 3.0 that themselves can be tested before full XSLT 3.0 processor
 ipeentations are available.
 Implementation code for parts of the variable document architecture mentioned earlier
 had been upgraded to XSLT 3.0, to take advantage of the new features in increasing
 coherence, robustness and re-usability of the code. (For example many new
 parent-children layouts, such as all-children-in-a-circle ,
 could be added merely by defining the XPath function required to work out the positions and
 place each component of a sequence – all encapsulation and child-recursive evaluation was
 handled in common. Similarly the addition of maps simplified a stack-frame implementation of
 single-assigment presentational variables.) As mentioned earlier, the author's variable
 document architecture was used principally to publish a set of instances of a variable data
 document bound to a sequence of data instances. As such it can be considered to be a
 server-side operation. In 2013 the release of Saxon-CE as a fully-compliant
 browser-based XSLT 2.0 implementation opened the possibility of
 looking at client-side and potentially interactive operation of the
 document architecture. However, by this point some significant sections of the
 implementation had migrated to XSLT 3.0, as well as altering or extending the semantics of
 some of the operations.
We now have the problem of two branches – the old 2.0 version, (which had not of course
 been updated to reflect changing semantics) and the now master 3.0 version. We could
 retrofit (and then develop both branches in parallel) but another option was worth exploring
 – could sections of the 3.0 code be converted to an operationally equivalent 2.0 code
 automatically? The answer is of course yes.

Assumptions
All this work reported here is based on the following assumptions:
	The practitioner is (highly) skilled in XSLT2.0/3.0 ! (This is vital – when errors
 occur, and they will, tracking them down across a 2.0/3.0 mixture can be entertaining
 and require considerable expertise.)

	The practitioner can act as an oracle as far as the source code
 is concerned. As an example, if string literals in XPath expressions can be guaranteed
 not to contain substrings that might be mistaken for some elements of XPath syntax (e.g.
 a variable interpolation such as $some.var), then various transformations
 can be performed using regular expression substitution, avoiding the need to carry out
 complete XPath expression parsing and modification of parse trees – a relatively
 expensive operation in a complete XSLT system.

	We are not attempting complete back-conversion. It is assumed
 that some heavily-used 3.0 features can be left to automated process, but others may
 require conditional code development by the programmer. Some features may require
 parallel development of 2.0 and 3.0 versions. Using @xsl:use-when() with
 version conditions can be exceptionally helpful to accomodate such changes. (For example
 the use of a higher-order architecture for layout processing described earlier, was
 conditionally retained for true 3.0 conditions, leaving 2.0 parallel code for the 2.0
 case.)

	Some (optional) aspects of XSLT (3.0) have been ignored completely. These include
 schema-awareness and validation, any aspect of streaming, function-type items,
 higher-order functions, templates matching atomic items, dynamic error trapping
 (xsl:try), multi-thread declaration (xsl:fork,
 xsl:merge), detailed serialization control, and so forth.

	Any support for packaging will be confined to flattening packages
 into resultant non-packaged stylesheets.

	Error tracking and trapping isn't of highest priority in the final runtime
 environment. For example there will be no equivalent of xsl:try/catch and
 compile/run source line numbers will likely be highly errant.

	Other aspects outside the stylesheet, such as unusual entry
 invocations (initial-function, initial-context-item) are
 ignored.

	Some aspects may differ in slight degree. For example preserving correct whitespace
 treatment may be difficult.

Note
Some of the examples shown, especially XPath expressions, are particularly simple,
 possibly redundant or just plain daft, and may well have other shorter equivalent forms
 that would be perfectly legal in XSLT2.0. However they are short enough to comprehend and
 their complete treatment can hopefully be followed completely by hand, by
 the reader.

Similar work
There has been a small amount of previous investigation of adding XSLT features through
 transforming XSLT. Of closest relevance is the work of Oliver Becker Becker2000, more than a decade ago, on an XSLT loop compiler. Additional
 instructions in a separate namespace (loop:for, loop:while,
 loop:do, loop:last
 loop:update) can be added to an XSLT stylesheet to define iterative constructs,
 which are then compiled by an XSLT transform (some 500 lines, of which about
 half is concerned with validation) into an equivalent using recursive named templates and
 parameters. As an example this re-working of a number-summing example from Michael Kay's XSLT
 Programmer's Reference:
<xsl:template match="/">
 <xsl:variable name="list" select="normalize-space(.)"/>
 <xsl:variable name="total" select="0" />
 <loop:while test="contains($list,' ')">
 <loop:last>
 <xsl:value-of select="number($total) + number($list)" />
 </loop:last>
 <loop:update name="list"
 select="substring-after($list, ' ')" />
 <loop:update name="total"
 select="number($total) +
 number(substring-before($list, ' '))" />
 </loop:while>
</xsl:template>
is transformed into the following XSLT:
<xsl:template match="/">
 <xsl:variable name="list" select="normalize-space(.)"/>
 <xsl:variable name="total" select="0"/>
 <xsl:call-template name="while-loop-d1e12">
 <xsl:with-param name="list" select="$list"/>
 <xsl:with-param name="total" select="$total"/>
 </xsl:call-template>
</xsl:template>

<xsl:template name="while-loop-d1e12">
 <xsl:param name="list"/>
 <xsl:param name="total"/>
 <xsl:choose>
 <xsl:when test="contains($list,' ')">
 <xsl:call-template name="while-loop-d1e12">
 <xsl:with-param name="list" select="substring-after($list, ' ')"/>
 <xsl:with-param name="total"
 select="number($total) + number(substring-before($list, ' '))"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="number($total) + number($list)"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
David Carlisle in 2006 (Carlisle2006) published a series of XSLT2
 stylesheets that supported the manipulation of XQuery expressions, converting them into other
 syntaxes, including XSLT. This work employed an adjunct (Java-based) parser for XQuery
 expressions to produce an XML parse tree which was then processed by XSLT (a stylesheet of
 ~2000 lines) into appropriate mixtures of XSLT instructions and XPath expressions. For
 example, the XQuery:
declare variable $x := <a> zzz ;
$x/b
is transformed into the stylesheet:
<xsl:stylesheet>
 <xsl:param name="input" as="item()" select="1"/>
 <xsl:output indent="yes"/>
 <xsl:variable name="x" as="item()*">
 <xsl:for-each select="$input">
	<xsl:element name="a">
	 <xsl:element name="b">
	 <xsl:text>zzz</xsl:text>
	 </xsl:element>
	</xsl:element>
 </xsl:for-each>
 </xsl:variable>
 <xsl:template name="main">
 <xsl:for-each select="$input">
	<xsl:sequence select="$x/ b "/>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>
Embedded XML content in the XQuery expressions are mapped to function invocations that
 produce the appropriate sequence values.
With the introduction of XSLT 2.0, Dimitre Novatchev showed that it was possible to
 implement higher-order functions (Novatchev2006) by exploiting uniquely
 named elements to act as template references to function items. Each
 function() item is represented by two XSLT-defined functions (a zero-arity to
 return the identifying element and the true-arity version to do the work) and a template that
 matches the unique template reference element and invokes the working function.
 Higher-order functions (e.g foldl()) are written to use this
 route-via-template technique, and a complete set of higher-order features has
 been implemented. Note that this approach requires all function items to be created in XSLT
 space – XPath local functions (function($args) {....}) are not supportable
 directly. The library developed during the work, FXSL, is very extensive.

Equivalent constructs
Whilst both XSLT 2.0 and 3.0 operate generally on the same basic data types, there are
 subtle differences in areas such as their environment interface (serialization,
 unparsed-text(), etc.) and the additional function types in
 XSLT3.0. This means that in general it will not be possible to write an
 equivalent XSLT 2.0 program that behaves externally exactly as a defined 3.0 one. But for many
 practical cases there should be many sections of code that can. In this section we discuss the
 type of code transformations that seem reasonably susceptible. Most are in XSLT, though a few
 are in XPath, and others involve compile-time evaluation.
XSLT constructs
Many of the additional XSLT instructions were targetted to support streaming but have
 other more general utility and may be susceptible to reversal in certain
 conditions. Those I have attempted so to engineer include:
xsl:mode
The mode declaration was added to support declaration of a mode as
 streamable, but also gave a very useful means to declare the default
 behaviour of that mode, i.e. what should happen in the absence of any other template
 matching a given node in push mode. (The default behaviour of text-only was
 too restrictive and many coding errors arose because of missing identity
 transforms for a named mode.)[3] The declaration is of the following form:
<xsl:mode name="fred" on-no-match="shallow-copy" .../>
where default behaviours can be shallow or deep copy or skip, text-only-copy or
 failure. These declarations can be replaced with a small number of template rules, along
 the lines of those shown in XSLT3.0 Built-in Template Rules :
 <xsl:template
 match="@*|node()"
 mode="fred" priority="-1000">
 <xsl:copy>
 <xsl:apply-templates select="@*" mode="#current"/>
 <xsl:apply-templates select="node()" mode="#current"/>
 </xsl:copy>
 </xsl:template>
The priority is highly negative to ensure these have priority lower than any true
 templates, but higher than the built-in rules (text-only-copy) of XSLT 2.0.
 In practice with stylesheet importation this substitution needs to be placed below the
 lowest level of importation precedence as well, which suggests a specialist stylesheet,
 containing all the mode declaration expansions, should be added to
 the importation tree at suitable low level. Use of xsl:apply-imports (rare in
 my experience) would complicate matters further. (Supporting the
 @on-multiple-match property is probably less useful and more dependent upon
 the XSLT implementation being employed.)

xsl:iterate
The iteration instruction was added to support a 'move-forward' processing model for
 streaming with some forward transmission of accumulated and computed data. A very simple
 example, which adds chapter number attributes, might be:
 <xsl:template match="/">
 <xsl:variable name="today" select="current-date()"/>
 <xsl:iterate select="//chapter">
 <xsl:param name="no" select="1"/>
 <xsl:copy>
 <xsl:attribute name="no" select="$no"/>
 <xsl:attribute name="date" select="$today"/>
 <xsl:sequence select="@*|*"/>
 </xsl:copy>
 <xsl:next-iteration>
 <xsl:with-param name="no" select="$no + 1"/>
 </xsl:next-iteration>
 </xsl:iterate>
 </xsl:template>
The iteration processes each item in the selected sequence in turn, returning the
 evaluation of the sequence constructor for this item as context and potentially modifying
 values of parameters for the processing of the next and subsequent members. Children
 xsl:next-iteration, xsl:break and
 xsl:on-completion provide means to invoke controlled continuation, early
 exit and completion postlude and tidying.[4] .(Of course there are many extant mechanisms to do this particular example in
 XSLT 2.0 or even XSLT 1.0, not least xsl:number, but a simple example helps
 to explain the equivalence.)
For most cases an equivalent structure for XSLT 2.0 involves use of a recursive named
 template, which for the previous example could look like:
 <xsl:template name="d3e14.iterate-0">
 <xsl:param name="iterate.sequence"/>
 <xsl:param name="no"/>
 <xsl:param name="today" tunnel="yes"/>
 <xsl:variable name="head" select="$iterate.sequence[1]"/>
 <xsl:variable name="tail" select="subsequence($iterate.sequence,2)"/>
 <xsl:for-each select="$head">
 <xsl:copy>
 <xsl:attribute name="no" select="$no"/>
 <xsl:attribute name="date" select="$today"/>
 <xsl:sequence select="@*|*"/>
 </xsl:copy>
 <xsl:call-template name="d3e14.iterate-0">
 <xsl:with-param name="iterate.sequence" select="$tail"/>
 <xsl:with-param name="no" select="$no + 1"/>
 </xsl:call-template>
 </xsl:for-each>
 </xsl:template>

 <xsl:template match="/">
 <xsl:variable name="today" select="current-date()"/>
 <xsl:call-template name="d3e14.iterate-0">
 <xsl:with-param name="iterate.sequence" select="//chapter"/>
 <xsl:with-param name="no" select="1"/>
 <xsl:with-param name="today" select="$today" tunnel="yes"/>
 </xsl:call-template>
 </xsl:template>

Text value templates {}
Text value templates are a syntactic convenience to interpolate XPath expressions
 within result tree text nodes. For example if this element has its closest
 ancestor::*[@expand-text] defining the tag to a true value
 (yes|1|true):<weekday>Today is {format-date(current-date(),'Fn')}</weekday>
then
 it could could be replaced by an equivalent construct:<weekday>
 <xsl:value-of>
 <xsl:text>Today is </xsl:text>
 <xsl:value-of select="format-date(current-date(),'Fn')"/>
 </xsl:value-of>
</weekday>

xsl:evaluate
Various vendor extensions to support dynamic XPath resolution have been standardised
 in XSLT3.0 with the xsl:evaluate instruction that takes a string defining an
 XPath expression, a possible context item, a set of possible parameters that can referred
 to within the expression and some optional contextual information such as namespace
 bindings. The error-free result is a sequence of items resulting from evaluating that
 given expression on the context.
Whilst it is highly unlikely that this instruction can be emulated to full
 specification, there are two possible routes. The most effective, if the chosen target
 XSLT implementation supports one, is to map into one of these vendor extension functions.
 For example saxon:evaluate() can support much of the functionality, with
 suitable mappings for parameters and minor modifcations of the presented XPath expression string[5].
A last-ditch possibility is to implement an XPath interpreter in XSLT
 2.0. Using a full XPath parser, implemented in XPath 2.0 (see
 later) we can generate a full parse tree. A simple recursive interpreter matching
 the XPath grammar productions can generate a sequence of result items by working its way
 through the tree. Requests for built-in functions (e.g. FunctionCall
 name="sum") are mapped to calls to the appropriate built-in, having pre-evaluated
 the argument subtrees. This mechanism can work, but is unsuprisingly very very
 slow.

XPath expressions
Whilst most focus has been on XSLT instructions, some XPath 3.0 expressions might also
 be susceptible to reversal in certain cases. In the most general case substitution will
 involve accurate and full parsing of an XPath expression to its parse tree. In restricted
 cases (that the developer could indicate), regular-expression substitution on the XPath
 expression strings might be sufficient. Here are some possibilities:
let
Local variable bindings in XPath expressions are supported through let $var :=
 expr0 return expr1 where
 $var is now in-scope in expr1. (The
 for directive will be similar for singleton sequences, but let
 preserves sequence values.). In simple cases, where the lets are nested from
 the outside, it may be possible to convert to an equivalent set of XSLT variables. For example:<xsl:value-of select="let $i := (1 to 6),
 $avg := avg($i) return $i[. gt $avg]"/>
 could be replaced by:<xsl:value-of>
 <xsl:variable name="i" select="1 to 6"/>
 <xsl:variable name="avg" select="avg($i)"/>
 <xsl:sequence select="$i[. gt $avg]"/>
</xsl:value-of>

where we've effectively pulled the let tree into a series of local
 bindings in the XSLT space. When we can place these variable bindings within an entirely
 local context (i.e. the sequence constructor of the xsl:value-of) then we
 will not risk name clashes. When the let is buried below other constructs
 (e.g. a for) then we cannot use this technique, as XSLT instructions cannot
 appear within XPath expressions, and we must look to further expansion of the XPath tree
 into the XSLT space. This is described further in section “Manipulating mixed XSLT/XPath trees”.

map
Maps were again added to support dynamic collection and storage of data through a
 streamed processing operation. A common use of map{} is to associate a series
 of keys to values that are sequences of items (i.e. item()*). For example in
 the author's work on document layout a tunnelled variable $lay:variables as
 map(xs:string,item()*) contained bindings to named sections of layed-out
 components, that could be reused or examined (e.g.
 $lay:variables('background') might give all the items in the page
 background).
There are a number of possibilities for representing maps in certain (limited)
 circumstances. In the case where maps are isolated, i.e. attached to
 variables and not mixed with other items in a general sequence[6], then a possible scheme is to emulate the map with a key-and-value stack of
 the following general form:
Figure 1: A map and its update
[image:]

where the <binding/> elements are reserved forms and clearly
 distinguishable from normal content. On the left foo
 binds to a sequence of length 3, bar to one of length 2 and
 charlie to an empty sequence. After some update (i.e. an addition
 to the map in some more local context) shown on the right, foo now
 binds to a doubleton sequence, in this case result tree nodes that were bound to the
 variable $elements.
By searching for the last binding for a given key we can
 simulate map member updating, whilst still preserving locality of scope.
 (As all variable bindings in XSLT/XPath are single-assignment with variable name
 overriding strictly constrained to following-sibling::*/descendant-or-self::*
 situations, any local addition to a map is effectively copy-and-add which
 only has effect in the local scope.) The length attached to the
 binding is used to extract the appropriate number of values.[7].
To implement map lookup for this scheme we substitute the interpolation
 $some.name(name) by a call to the
 (stylesheet-defined) function
 map:get($some-name,name)[8] which looks up the last binding entry in $some-name for the given
 name (hence preserving locality of scope) and then returns the appropriate subsequence of
 the stack from immediately behind the binding element[9].
This approach has some limitations that may be important depending upon the
 application. Most derive from the fact that the representation is not a single item (which
 a map(*) is) but a sequence. This means it cannot be treated as an
 item by some other manipulation – it will produce incorrect results for
 functions and operators that do inspect items, such as count(),
 is and instance of[10]. The function empty() will be unable to distinguish between an
 empty map and no map (i.e. exists($map) and map:size($map) = 0 would be
 indistinguishable from empty($map)). Equally well this scheme cannot
 represent a sequence of maps. In the author's limited experience most
 conventional use of maps rarely involves such existential manipulation of
 arbitrary maps. Perhaps mostly simply, this scheme only works for interpolations of
 keyed-values from maps.
An alternative method, which separates the stack from the keys, requires binding to
 two separate XSLT variables[11] e.g. xsl:variable name="name"
 as="map(*) → xsl:variable
 name="name.stack" as="item()*,
 xsl:variable name="name.keys"
 as="element(map:binding)*. Now the bindings contain an offset and length into the
 stack. This approach can be more efficient in lookup, but is significantly more restricted
 in the situations in which it can be deployed.
Maps in XSLT 3.0 can be created through three possible mechanisms: XPath syntax
 (map{ key : value,...})[12], XPath constructor functions (map:entry(), map:merge()) or XSLT
 instructions (xsl:map, xsl:map-entry). How and to what extent,
 these features might be simulated in 2.0 is discussed
 later.
Arrays, being introduced in XPath3.1, which can store mixed arrays of items (including
 sequences of items), could be emulated in a similar manner, using a reserved marker
 element between array members, and defining emulations of the constructor and accessor
 functions (array:get() etc.). Restrictions on existential
 manipulation of these emulations are similar to those for map().

Convenience functions and operators
XPath 3.0 has added a number of convenience functions and operators (XPath.FO), again often to support streaming, but which are of more general
 utility and can increase the coherence of code. Some of them include:
	head() and tail() – reducing a sequence. This can of course be replaced by
 a number of equivalent XPath forms, but the most coherent is to use equivalent
 XSLT-defined functions:
<xsl:function name="f:head" as="item()?">
 <xsl:param name="seq" as="item()*"/>
 <xsl:sequence select="$seq[1]"/>
</xsl:function>
<xsl:function name="f:tail" as="item()*">
 <xsl:param name="seq" as="item()*"/>
 <xsl:sequence select="subsequence($seq,2)"/>
</xsl:function>
where f: is bound to some reserved namespace.

	innermost() and outermost() – producing lowest and highest ancestry nodes.
 Again these are most simple supported with equivalent XSLT-defined functions:
<xsl:function name="f:innermost" as="node()*">
 <xsl:param name="nodes" as="node()*"/>
 <xsl:sequence select="$nodes except $nodes/ancestor::node()"/>
</xsl:function>
<xsl:function name="f:outermost" as="node()*">
 <xsl:param name="nodes" as="node()*"/>
 <xsl:sequence select="$nodes[not(ancestor::node() intersect $nodes)]/."/>
</xsl:function>

	A number of exisiting 2.0 functions have reduced argument forms added, such as
 string-join($seq) which defaults the second (joiner) argument to a
 zero-length string. Again such invocations (if detected) can be linked to a simple
 currying function:
<xsl:function name="f:string-join" as="xs:string">
 <xsl:param name="arg1" as="xs:string*"/>
 <xsl:sequence select="fn:string-join($arg1,'')"/>
</xsl:function>
where fn: is bound to the normal XPath function namespace.

|| (string concatenation)
This is defined as a binary operator such that $a || $b is equivalent to
 fn:concat($a,$b). Thus if the associativity can be analysed such operations
 can be replaced by calls to concat().

! (simple map)
This permits sequences of general items to be processed in an analgous manner to
 / with sequences of nodes. Thus (1 to 5)! (. + 10) is almost
 equivalent to for $i in (1 to 5) return ($i + 10), though technically the
 context focus for the right hand operand of ! is set to each of the left in
 turn; this would have effect on context-defaulting functions such as
 name() which would need to have default arguments added.

Compile-time modification
Some features are aimed at evaluating or modifying the XSLT statically at compile time,
 with a @static property being supported on global variables and parameters. For
 many of the situations envisaged, the 2.0 program will be projected from the master 3.0
 version under conditions which are effectively static. Thus many of
 these components may be pre-evaluated. In some cases, where the static variables are used to
 control conditional code use, this might be essential.
As an example default push-mode behaviour for a given mode might be selected statically
 through a toggle and a mutually exclusive pair of declarations:
<xsl:variable name="process-all" select="false()" static="yes"/>
<xsl:mode name="process" on-no-match="shallow-copy" use-when="$process-all"/>
<xsl:mode name="process" on-no-match="deep-copy" use-when="not($process-all)"/>
Clearly, provided XPath expressions can be parsed and evaluated statically, this choice
 can be predetermined. (In fact it has to, otherwise conflicting templates at the same
 priority will be placed in the resulting stylesheet.) In a similar manner, XSLT provides
 shadow attributes whose values can be computed statically. In this
 way the choice above could be rephrased as:
<xsl:variable name="process-all" select="false()" static="yes"/>
<xsl:mode name="process2" _on-no-match="{if($process-all) then 'deep' else 'shallow'}-copy"/>
which is similarly capable of being evaluated during the program transformation.
Obviously to perform this evaluation we need to be able to evaluate XPath expressions
 with associated variable bindings dynamically. Within XSLT3.0 this
 can be acheived through the xsl:evaluate instruction and is discussed further
 in section “Conditional compilation”.

Transforming the code
The previous section has described some of the possible 3.0 constructs that might be
 reverse-engineered to 2.0 equivalents and what those forms might look like. In this section we
 describe how such alterations might be performed, i.e. what code would be needed to convert a
 candidate XSLT 3.0 stylesheet into a 2.0 version.
One great advantage with XSLT is that it is homoiconic, that is
 programs are written in a syntax that is (one of) its main data types, XML[13]. Hence reading and generating XSLT from XSLT is comparatively easy, though
 abstraction levels and quoting problems can be tricky. However, a significant
 proportion of an XSLT program's functionality is described in XPath expressions, which at the
 XML syntax levels are merely string values of attributes. For some simple cases some
 dependencies can be analysed through clever use of regular expressions, an example being
 finding names of normal variable references when they don't appear within string literals.
 However in general a parse tree for XPath expressions is needed. That requires an extension
 library, but such things are possible, especially with tools such as Gunther Rademacher's REx
 REx.Note
The methods described in this paper assume that the source XSLT is syntactically and
 semantically valid. Addition of full error checking would complicate the code
 significantly and it is anticipated that correct operation of the 3.0 code would be tested
 before such conversions implied here.

The basic method of course is to employ push-mode template matching. I'll describe the
 approach for two XSLT instructions (xsl:mode and xsl:iteration),
 text value templates, an XPath construct (map{}) and static evaluation and
 conditional compilation of the XSLT program.
Converting xsl:mode
Transforming the xsl:mode instruction is relatively straightforward. A
 template matching an xsl:mode defining no-match behaviour has conditional
 choices of content, derived effectively from XSLT3.0 Built-in Template
 Rules, chosen dependent upon the @on-no-match attribute value:
<xsl:template match="xsl:mode[@on-no-match]"
 <xsl:param name="priority" select="-1000"/>
 <xsl:variable name="node.patt">*|text()|comment()|processing-instruction()</xsl:variable>
 <xsl:choose>
 <xsl:when test="@on-no-match='text-only-copy'"/>
 <xsl:otherwise>
 <xsl:choose>
 <xsl:when test="@on-no-match='shallow-copy'">
 <X:template match="@*|{$node.patt}|document-node()" mode="{@name}" priority="{$priority}">
 <X:copy>
 <X:apply-templates select="@*" mode="#current"/>
 <X:apply-templates select="node()" mode="#current"/>
 </X:copy>
 </X:template>
 </xsl:when>
 <xsl:when test="@on-no-match='deep-copy'">
 <X:template match="@*|{$node.patt}|document-node()" mode="{@name}" priority="{$priority}">
 <X:copy-of select="."/>
 </X:template>
 </xsl:when>

 </xsl:choose>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
The prefix X: is bound to an aliased namespace that will become
 xsl: in the output. The priority is chosen, as remarked earlier, to be lower
 than any priority found for that mode within the entire expanded stylesheet, but higher than
 the (text-only-copy) default rules. (It should be possible to find a reasonable minimum
 priority through min(xsl:template/@priority) - 1.) Text-only-copy behaviour is
 the built-in default, so a request for that requires no substituted templates. (More
 strictly, these defaults should be placed in the lowest precedence
 position, which means in a separate stylesheet itself imported at lowest precedence, i.e. as
 the first import of the toplevel stylesheet.)

Converting xsl:iterate
Processing the xsl:iterate instruction into the recursive template
 declaration and xsl:call-template instruction pair shown earlier is rather more
 complex and needs to be a recursive process as of course the bodies of iterations can
 themselves contain further iterations.
Luckily using push-template programming supports such recursion naturally. The process
 has two parts: formation of the templates (as top-level declarations in the result
 stylesheet) for each of the iterate instructions found, and generation
 of the specific call.
There are several specific aspects of the xsl:iterate instruction that must
 be considered. Firstly, the only result(s) of the instruction arise from the evaluation of
 the sequence constructors contained within. Consequently these sequence
 constructors need to be preserved in the resulting code. Secondly, the iterative nature of
 the instruction is performed by xsl:next-iteration directives which potentially
 modify transmitted (state) information through parameters – these will be converted into
 suitably parameterised xsl:call-template instructions. Thirdly, extraordinary
 exit and postlude processing needs to be supported. Finally, the whole
 xsl:iterate instruction operates within a local scope within which variables
 can exist and whose values can be interpolated. Any solution must preserve such bindings,
 including local bindings within nested iteration constructs.
The transformation process involves the following stages:
	Find each top level stylesheet declaration (template, function or variable) that
 contains an xsl:iterate. For each of these generate a uniquely named
 template corresponding to each found iteration (which may be nested) as an additional
 top-level declaration.

	For each of these iteration instructions determine the in-scope XSLT variables and
 parameters, using using an XPath
 ancestor-or-self::*/preceding-sibling::(xsl:variable|xsl:param) (Global
 variables can be determined separately and allocated to $global.variables).
 Then determine which variables are actually used in the parameter lists and body of the
 iteration. As all references can only be through XPath expressions, these will
 only occur in a small number of attributes within the body -
 principally @select or @test or attibute and text value
 templates ({...}). These attributes and value templates can be found with a
 suitable XPath lookup.

	If it can be guaranteed that string literals within these XPath expressions do not
 contain sequences that could be read as variable references (i.e. of the form
 '$Qname...') then we can find the names of referenced variables through
 regular expressions: \$(\i\c*). We can then reduce the set of in-scope
 variables to just those needed and use this set to both generate the list of parameters
 to be added to the named template, and the parameter bindings to be set on the call[14]. Similar issues apply to scope for on-completion. The parameters are
 designated tunnelled to support pass-through access during
 recursion.
When this restriction on string literals within the XPath expressions cannot be
 guaranteed, then full XPath parsing will be required. This is discussed in section “Expanding XPath Expressions”

	The sequence to be iterated over is bound to a reserved parameter
 ($iterate.sequence)[15]. The body of the named template is then effectively:
<xsl:variable name="head" select="$iterate.sequence[1]"/>
<xsl:variable name="tail" select="subsequence($iterate.sequence,2)"/>
<xsl:choose>
 <xsl:when test="empty($head)">
 on-completion sequence constructor
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="$head">
 body sequence constructor
 </xsl:for-each>

The body sequence constructor usually contains one or more
 xsl:next-iteration instructions which will have been transformed to
 :
<xsl:call-template name="iteration.name">
 <xsl:with-param name="iterate.sequence" select="$tail"/>
 <xsl:param/>
</xsl:call-template>
which invokes the processing of the rest of the sequence with potentially modified
 parameter bindings. In the absence of a next-iteration directive[16], a simple tail call is added to the end of the xsl:for-each to
 support the default behaviour. In the absence of an on-completion
 instruction, the choose can of course be replaced just by the for-each.
xsl:break instructions terminate the closest surrounding iteration
 leaving a possible completion component. In this case the break is replaced by either
 its sequence constructor or an interpolation of its @select
 expression.

Converting text value templates
Interpolation of text value templates is controlled by @[xsl:]expand-text
 attributes attached to ancestor elements. Processing these is straightforward, with a
 pre-emptive template setting a boolean state, and text nodes which contain such text value
 templates being processed by regular expression analysis:
<xsl:template match="*[@xsl:expand-text]|xsl:*[@expand-text]" priority="6">
 <xsl:next-match>
 <xsl:with-param name="expand-text" as="xs:boolean" tunnel="yes"
 select="(@expand-text|@xsl:expand-text) = ('yes','true')"/>
 </xsl:next-match>
</xsl:template>
<xsl:template match="*/@xsl:expand-text|xsl:*/@expand-text" priority="6"/>
<xsl:template match="text()[contains(.,'{')]">
 <xsl:param name="expand-text" as="xs:boolean" select="false()" tunnel="yes"/>
 <xsl:choose>
 <xsl:when test="$expand-text">
 <X:value-of>
 <xsl:analyze-string select="." regex="{$reg.AVT}" expand-text="yes">
 <xsl:matching-substring>
 <X:value-of select="{regex-group(1)}"/>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <X:text>{.}</X:text>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </X:value-of>
 </xsl:when>
 <xsl:otherwise>
 <xsl:next-match/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

Converting map{}
The major issue is whether a full XPath expression parsing is required. As hinted
 previously, with some (oracle-provided) guarantees on the content of string literals (or
 more accurately the absence of certain forms in such strings), simpler mechanisms using
 regular expressions may suffice. The most important is that the regular expression
 \$\i\c*\((\i\c*\)) can recognise such map interpolations.
The model for map equivalents suggested earlier, using a stackframe, requires two
 different actions: interpolation from the map stack and adding values to the stack. As
 described earlier a map interpolation can be replaced with a function call referencing the
 stack frame: $some-name(name) →
 map:get($some-name,name). One implication
 of this approach is that a map cannot be a value in another map, i.e. we
 cannot support anonymous maps – they must all have (variable) names within XSLT/XPath
 scope.
How do we build the map construction features? The main technique is to try to convert
 other constructors to a call on emulations of the map construction
 functions, such as
 map:entry($key,$value),
 map:merge($maps) and so forth.
When the value of the map is defined by XSLT instructions such as:
<xsl:variable name="map1" as="map(*)">
 <xsl:map>
 <xsl:map-entry key="'one'" select="'First'"/>
 <xsl:map-entry key="'rest'" select="'Second','Third','Fourth'"/>
 </xsl:map>
</xsl:variable>
<xsl:sequence select="'1:',$map1('one')"/>
<xsl:variable name="map1" as="map(*)">
 <xsl:map>
 <xsl:sequence select="$map1"/>
 <xsl:map-entry key="'foo'" select="1,2,3,4,5"/>
 <xsl:map-entry key="'one'" select="'Primus','inter','pares'"/>
 </xsl:map>
</xsl:variable>
<xsl:sequence select="'2:',$map1('one')"/>
then a push-template implementation along the following lines:
<xsl:template match="xsl:variable[@as='map(*)'][*]">
 <xsl:copy>
 <xsl:sequence select="@name"/>
 <xsl:attribute name="as">item()*</xsl:attribute>
 <xsl:apply-templates select="xsl:map" mode="#current"/>
 </xsl:copy>
</xsl:template>
<xsl:template match="xsl:map">
 <xsl:apply-templates select="*" mode="#current"/>
</xsl:template>
<xsl:template match="xsl:map-entry[@select]">
 <X:sequence select="map:entry(({@key}),({@select}))"/>
</xsl:template>
produces a working form with suitable constructs:
<xsl:variable name="map1" as="item()*">
 <xsl:sequence select="map:entry(('one'),('First'))"/>
 <xsl:sequence select="map:entry(('rest'),('Second','Third','Fourth'))"/>
</xsl:variable>
<xsl:sequence select="'1:',map:get($map1,'one')"/> → 1: First
<xsl:variable name="map1" as="item()*">
 <xsl:sequence select="$map1"/>
 <xsl:sequence select="map:entry(('foo'),(1,2,3,4,5))"/>
 <xsl:sequence select="map:entry(('one'),('Primus','inter','pares'))"/>
</xsl:variable>
<xsl:sequence select="'2:',map:get($map1,'one')"/> → 2: Primus inter pares
When maps are built with calls to the map constructor functions (e.g.
 map:entry()) then by providing suitable emulation functions in a
 stylesheet-defined library, XPath expressions need not be touched. Some of the emulation
 functions are as follows:
<xsl:function name="map:entry" as="item()+">
 <xsl:param name="key" as="xs:anyAtomicType"/>
 <xsl:param name="value" as="item()*"/>
 <xsl:sequence select="$value"/>
 <binding name="{$key}" length="{count($value)}"/>
</xsl:function>

<xsl:function name="map:merge" as="item()*">
 <xsl:param name="maps" as="item()*"/>
 <xsl:sequence select="$maps"/>
</xsl:function>

<xsl:function name="map:keys" as="xs:anyAtomicType*">
 <xsl:param name="maps" as="item()*"/>
 <xsl:sequence select="distinct-values($maps[self::binding]/@key)"/>
</xsl:function>
(Since our map emulation is merely a sequence, a sequence of such maps is already a map,
 so map:merge() just passes through). Using these functions as interfaces
 decouples the exact details of the representation from the actual use of maps.
When maps are defined in XPath map syntax map{ }, we
 need to modify the XPath parse tree. Ignoring tokens, the tree for map{ 1 :=
 ('fred',3+4), 2 := 'bert'} is shown on the left:
Table I
Modifying map{} constructors

		
	
 <MapExpr>
 <Literal type="xs:integer" value="1"/>
 <Expr>
 <Literal type="xs:string" value="'fred'"/>
 <AdditiveExpr op="+">
 <Literal type="xs:integer" value="3"/>
 <Literal type="xs:integer" value="4"/>
 </AdditiveExpr>
 </Expr>
 <Literal type="xs:integer" value="2"/>
 <Literal type="xs:string" value="'bert'"/>
</MapExpr>

 	
 <Expr>
 <FunctionCall name="map:entry">
 <Literal type="xs:integer" value="1"/>
 <Expr>
 <Literal type="xs:string" value="'fred'"/>
 <AdditiveExpr op="+">
 <Literal type="xs:integer" value="3"/>
 <Literal type="xs:integer" value="4"/>
 </AdditiveExpr>
 </Expr>
 </FunctionCall>
 <FunctionCall name="map:entry">
 <Literal type="xs:integer" value="2"/>
 <Literal type="xs:string" value="'bert'"/>
 </FunctionCall>
</Expr>

 so if we surround each pair of children with a function call to
 map:entry() and replace the MapExpr element with
 Expr, we get the tree on the right that would have been parsed from
 (map:entry(1,('fred',3+4)), map:entry(2,'bert')), which is the desired
 representation for the initialised map. Back-conversion of the parse tree into text
 correctly modifies the XPath expression. (If the representation of the map is something
 other than a sequence of map:entry() results, such as using
 map-start...map-end markers, then surrounding this construct with a
 function call to map:merge() will be adequate.)

Conditional compilation
To support conditional compilation (either through the @use-when directive
 or within shadow attributes), we need two activities: firstly to collect and detemine the
 values of all the (global) static variables and secondly to evaluate the XPath expression of
 the @use-when or attribute value templates within shadow attributes, using
 those bindings. It is possible for the values of static variables to be interpolated within
 @use-when directives (which may be attached to static variable declarations)
 or shadow attributes, so these two processes must be handled concurrently.
For both cases the most complex is to determine the values of the static variables.
 Luckily they are defined to have their values determined only by
 @select attributes (i.e. XPath expressions, no XSLT instructions can
 influence) and reference between static variables (which must all be top-level children of
 stylesheets and have unique names) is only permitted in a reverse direction. Hence an
 iteration across the top-level children of a stylesheet, evaluating any static variables
 with possible variable bindings already accumulated into a map, evaluating the effect of
 static variables on the top-level trees and determining @use-when effects, will
 produce the statically evaluated top-level stylesheet children:
<xsl:template match="xsl:stylesheet|xsl:transform" mode="X:static" as="element()">
 <xsl:copy>
 <xsl:sequence select="@*"/>
 <xsl:iterate select="*">
 <xsl:param name="vars" as="map(*)" select="map{}"/>
 <xsl:variable name="conditional" as="element()?">
 <xsl:apply-templates select="." mode="#current">
 <xsl:with-param name="static.var.values" select="$vars" tunnel="yes"/>
 </xsl:apply-templates>
 </xsl:variable>
 <xsl:choose>
 <xsl:when test="$conditional/self::xsl:variable[@static='yes']">
 <xsl:variable name="value" as="item()*">
 <xsl:evaluate xpath="@select" with-params="$vars"/>
 </xsl:variable>
 <xsl:copy>
 <xsl:sequence select="@* except (@static|@use-when)"/>
 <xsl:attribute name="select" select="X:select($value)"/>
 </xsl:copy>
 <xsl:next-iteration>
 <xsl:with-param name="vars" select="map:merge(($vars,map{@name := $value}))"/>
 </xsl:next-iteration>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="$conditional"/>
 <xsl:next-iteration/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:iterate>
 </xsl:copy>
</xsl:template>
(The function X:select() converts atomic items into suitable XPath
 expression values, such as surrounding xs:string with quotes.) Toplevel
 children are processed with matching templates for @use-when and shadow attributes[17]:<xsl:template match="xsl:*[@use-when] | *[@xsl:use-when]" mode="X:static" priority="5">
 <xsl:param name="static.var.values" tunnel="yes"/>
 <xsl:variable name="use-when" as="xs:boolean">
 <xsl:evaluate xpath="@use-when|@xsl:use-when" with-params="$static.var.values"/>
 </xsl:variable>
 <xsl:if test="$use-when">
 <xsl:next-match/>
 </xsl:if>
</xsl:template>
Shadow attributes (which can appear only on XSLT elements) can
 be detected with xsl:*/@*[starts-with(name(.),'_')] and any value templates
 processed using string analysis – a properly named attribute with value is then substituted.
 All these actions can take place in an early 'static processing' phase (which is still
 effectively in the 3.0 space) before subsequent code substitutions are made.
During this phase it is also possible to project the consequences of
 static information that will be true in the execution context of the
 transformed stylesheet. For example the built-in function
 system-property(property-name) can yield
 information about the implementation, such as the version of XSLT supported. This is often
 used within conditional code, such as use-when="system-property('xsl:version') =
 '3.0'". In this case we anticipate that the transformed stylesheet will operate
 under a regime where system-property('xsl:version') has the value
 '2.0', so if we replace such a function call with its expected value, the
 conditionality can be projected during the transformation.

Expanding XPath Expressions
In the work reported so far we've mostly managed to short-cut determining XPath expression
 properties by using regular expressions on the XPath string representations. (This is one of
 the reasons programmer oracle powers are useful.) In the more general and
 robust cases XPath expressions must be parsed fully to recover necessary information or
 generate correctly modified expressions.
Luckily Gunther Rademacher's REx parser-generator can produce
 an effective parser for XPath 3.0 implemented entirely in XSLT (2.0). This can be set to
 generate an XML tree of the complete expression parse, whose element names correspond to the
 left-hand sides of the XPath EBNF productions. This tree can then be subjected to some
 post-processing (namespace remapping, collapsing of singleton leaf sub-trees, attaching
 operators to suitable binary nodes, etc...) before returning the completed parse-tree for
 conversion[18].
The compact parse tree can then be modified as required, most readily through a specialist
 push-template mode. For example, in the conversion of XPath syntax map constructors
 (map{}) as described earlier, the following
 template is sufficient:
<xsl:template match="MapExpr" mode="XPath.3to2">
 <xsl:variable name="real" as="item()*">
 <xsl:apply-templates select="*" mode="#current"/>
 </xsl:variable>
 <Expr>
 <xsl:for-each select="1 to (count($real) idiv 2)">
 <FunctionCall name="map:entry">
 <xsl:sequence select="subsequence($real,. * 2 - 1,2)"/>
 </FunctionCall>
 </xsl:for-each>
 </Expr>
</template>
Other simple cases using this technique include string concatenation (||)
 where StringConcatExpr → FunctionCall name="concat".
In cases where XSLT instructions need to be introduced, as with let at an
 outermost level , we permit adding those XSLT instructions into the parse tree, in this case
 placing variable bindings as the sequence constructor of a suitably named XSLT
 variable:
<xsl:template match="LetExpr" mode="XPath.3to2">
 <xsl:apply-templates select="SimpleLetBinding" mode="#current"/>
 <X:sequence>
 <xsl:apply-templates select="* except SimpleLetBinding" mode="#current"/>
 </X:sequence>
</xsl:template>
<xsl:template match="SimpleLetBinding" mode="XPath.3to2">
 <X:variable name="{@var}">
 <xsl:sequence select="@as"/>
 <xsl:apply-templates select="*" mode="#current"/>
 </X:variable>
</xsl:template>
After modifications are completed, the parse tree can be projected. XPath elements will be
 flattened to equivalent XPath expression strings, XSLT instructions will remain. In the
 absence of any XSLT instructions the string will usually be placed in the XPath-holding
 attribute (e.g. @select). When XSLT instructions are present the result will be a
 mixed sequence, placed as the sequence constructor of the enclosing element, within which
 string items (representing XPath expressions) will be placed in the @select
 attributes of xsl:sequence instructions, and the XSLT instructions will stand in place[19].

Manipulating mixed XSLT/XPath trees
In the previous section I've discussed some initial manipulation of a parse tree which is
 principally XPath, but is transformed into a mixture of XSLT and XPath. Along similar lines to
 that used in Lumley2014 this can be generalised to manipulating a tree that
 contains arbitrary mixtures from both languages. For example consider the fragment:
<xsl:for-each select="
 let $avg := avg(books/@pages)
 return books[number(@pages) gt $avg]">
 <too-big>
 <xsl:value-of select="@title"/>
 </too-big>
</xsl:for-each>
where the presence of the let in the for-each selection means that the
 variable assignment must be performed within the XSLT space in 2.0, whereas of course in 3.0
 it is defined in XPath context. Figure 2 shows the type of process that
 will be required. The first tree shows the parse of the XSLT instruction and its constituent
 XPath trees, placed as immediate children of their carrying instructions. The left-hand
 let performs the select role for the for-each; the
 right-hand tree (a too-big element) will be evaluated for each selected item
 collectively yielding the sequence value of the for-each construct.
Figure 2: Lifting XSLT instructions from XPath contexts.
[image:]

At stage 2 we have started replacing the let with a sequence of an XSLT
 binding of the local variable (avg), followed by a interpolation of that value
 within the predicate. As this is encapsulated in a sequence constructor, name locality is
 preserved. But of course this is not correctly executing XSLT - this new item should behave in
 the select role for the for-each. In the third tree we have
 lifted this above the for-each, binding its value to a unique XSLT variable
 (which is typed item()*) and interpolating its value in the for-each
 selector. Now what we have is legal – there is no XSLT embedded within XPath. Thus flattening
 the XPath trees back into carrying attributes (@select, @test) will
 yield a correct XSLT2.0 construction.
Similar methods may be needed for xsl:apply-templates,
 xsl:choose/xsl:when, xsl:if and attribute value templates. The
 main test is the presence of a buried xsl:variable within an XPath expression
 tree after first stage modification.
In a similar manner sometimes XPath constructs need to be lifted to XSLT space because of
 descendant variable bindings. Figure 3 shows the process for<xsl:template match="/">
 <xsl:for-each select="
 for $b in books return
 let $hasAppendix := exists($b/appendix) return
 if($hasAppendix) then $b else ()">
 <appendix>
 <xsl:value-of select="@title"/>
 </appendix>
</xsl:for-each>
where a let is buried within an XPath
 for expression effectively in the sequence constructor
 role. Following the let replacement as shown before, it is replaced by a sequence of an XSLT
 variable binding and an interpolative use within an if test as shown at stage 2
 of Figure 3. But it is still under an XPath construct (the
 ForExpr) which is acting in the select role for the
 xsl:for-each.
Figure 3: Modifying XPath due to embedded XSLT instructions.
[image:]

Migrating upwards, whilst still preserving the for loop behaviour, can be achieved by
 converting the ForExpr from XPath to XSLT space, and as before binding it into a
 unique variable, whose declaration is promoted in front of the surrounding use. The resulting
 final XSLT is:<xsl:template match="/">
 <xsl:variable name="ForExpr.d274e8" as="item()*">
 <xsl:for-each select="books">
 <xsl:variable name="b" as="item()" select="."/>
 <xsl:variable name="hasAppendix" select="exists($b/appendix)"/>
 <xsl:sequence select="(if($hasAppendix) then $b else ())"/>
 </xsl:for-each>
 </xsl:variable>
 <xsl:for-each select="$ForExpr.d274e8">
 <appendix>
 <xsl:value-of select="@title"/>
 </appendix>
 </xsl:for-each>
</xsl:template>

Inclusions
Stylesheets often include resources from other stylesheets, using xsl:include
 and xsl:import redirection instructions. For most of this work, these are
 not flattened, but used as links to discover the programmatic reach of
 the top-level stylesheet. An equivalent 2.0 tree of files is generated with the same relative
 naming structures retained. This is essential to preserve import precedences.

Testing
It is helpful to know whether this program transformation technique works. One might
 consider using one of the extensive test suites developed for XSLT 3.0, but these tend to be very small stylesheets
 focussed on one particular aspect of XSLT semantics. Better is to compare the outputs of an
 XSLT3.0 stylesheet operating on a given input with the result from the transformed program,
 expecting of course deep-equality in the resulting XML. A more extreme test possibility is
 discussed in the conclusion.
Since the converter is supposed to convert 3.0 features into 2.0, then perfectly legal 2.0
 facilities should remain untouched. In practice, since a 2.0 stylesheet is assumed to be
 legal XSLT 2.0, then the bodies of such stylesheets are not processed, but
 passed through unchanged.
The original stimulus for this work was to convert a 3.0-based document layout system into
 one that would run on the 2.0 environment of browser-based Saxon-CE. Indeed, this was
 successful, enabling admittedly simple documents to be processed in both a server-side (3.0)
 context and a browser-based (2.0) one.
To illustrate this more directly, Figure 4 and Figure 5 show runs of the same document source code using the original XSLT 3.0
 version of the layout library (comprising some 30 different files), and its 2.0 modified
 version. The document not only shows various forms of layout, for which their original support
 code requires both XSLT 3.0 (xsl:iterate, xsl:evaluate) and XPath
 3.0 (map{}...) facilities, but also self-examines the library and reports on XSLT
 versions and features found.
Figure 4: XSLT3.0 version of a document layout
[image:]

Here we can see that the vast majority of the layout library stylesheets are defined in
 XSLT3.0 and there is use of both XSLT 3.0 instructions and XPath 3.0 operators. (Figures for
 the XPath operators are the number of attributes (@select etc.) which contain one
 or more of that type of operator.) Having processed the layout library through the XSLT 3 to
 2 converter, we can again process the source document using the modified (XSLT2.0) library and
 get the following output.
Figure 5: XSLT2.0 version of the same document layout
[image:]

The document reports that it was processed in XSLT2.0 mode, by the Saxon HE processor
 (which supports no XSLT3.0 features). The layout sections to the left produce the same result
 as in the 3.0 evaluation. The inspection element reports that all stylesheets
 used were declared to be in XSLT2.0 and that no XSLT3.0 features were found in that set. The
 extra five stylesheets are accounted for by the support library, added by the
 converter, which provide various emulation functions and XPath parsing and evaluation support.
Support for the dynamic XPath evaluation used within the left hand traffic
 lights layout is very expensive indeed here, involving full parsing and emulation of
 document-borne XPath expressions entirely by XSLT2.0 code. (If a built-in evaluator is
 available, such as saxon:evaluate(), almost two orders of magnitude improvement
 in speed can be expected.)

Conclusion
I've shown that it is possible to convert some aspects of XSLT 3.0 syntax and semantics
 into equivalent XSLT 2.0 code, using only XSLT stylesheets as the conversion mechanism. In the
 hands of experienced XSLT programmers, who can provide oracle control
 information, these tools can be used to automate considerable sections of such conversion. The
 remainder can be accomodated by alternative conditional code sections controlled by
 @use-when directives, which can be retained or removed by the converters during
 static evaluation. (Recall that the converter knows that the target
 xsl:version will be 2.0, so it can evaluate accordingly during
 conversion.)
Some specific lessons learned include:
	With a full XPath parser, it's often actually a great deal easier programmatically,
 using a small sequence of templates, and certainly much more robust, to carry out
 alterations to XPath expression strings on the parse trees themselves, rather than
 employing regular expression modifications discussed earlier.

	Relativity between imported and included stylesheets that are modified during
 conversion needs to be managed very carefully, to retain correct precedence semantics.
 This has proven to be especially the case in the self-processing example
 discussed below.

	Namespace management also needs much care, to ensure that namespace references within
 attribute values are retained. Again that became critical in the converter
 self-processing, where innocuous exclude-result-prefixes="xs
 math" declarations raised many problems.

	Processing XSLT with XSLT is such fun.

Can it process itself?
I stated earlier that the converter code was written in XSLT 3.0. This of course begs
 the question whether it can generate a 2.0 version of itself. Obviously this depends upon
 the complexity of the code written. At the time of writing, the some 1500 lines appear to
 use only the following 3.0 features:
	The string concatenation operator (||) reasonably heavily, mainly to
 reduce clutter in forming expressions.

	Text value templates ({...}) to reduce code size.

	map{} to hold bindings of static variables to support processing of
 static features such as @use-when.

	xsl:mode for every one of the half-dozen modes employed.

	xsl:iterate to handle and track variable bindings, mostly for static
 resolution and condiitonal compilation. (Interestingly, conversion of
 xsl:iterate itself does not at present involve use of iteration, though
 perhaps the view of variable scoping is over-generous).

	xsl:evaluate to evaluate static variables for substitution and
 processing of @use-when directives.

Of these features, string concatenation would require full XPath parsing, as it uses
 operator associativity extensively and is thus very unsuitable for regular expression
 handling. (A refactoring to use concat() is probably overdue – actually they
 aren't used in very complex situations.) The use of map{} is comparatively
 simple, but does involve functional constructors. The most thorny issue is use of
 xsl:evaluate. In (commercial) Saxon 2.0 implementations there is a
 saxon:evaluate() function that can be be exploited, with suitable variable
 bindings as discussed earlier. Unfortunately this isn't a option in the current open-source Saxon-CE[20].
Any system involving program generating program inevitably encounters quoting problems -
 how to distinguish real program from program to be written. In XSLT the
 xsl:namespace-alias declaration helps solve this issue, in this case by
 declaring the X: prefixed namespace to map into the XSLT namespace in the final
 result. However if the compiler is processing itself, then input elements marked with that
 prefix need to be preserved. This requires a remapping and
 re-alisassing.
Full XPath parsing was added to the repertoire and the the system tuned by examining it
 operating on itself. The first goal was of course to generate a result that will compile
 successfully. Having reached that point, further tuning was required to get successful
 operation of the generated compiler on small tests, whose runs could be compared against
 benchmarks.
If this transformation is successful then of course the resulting 2.0 version of the
 converter should again be capable of converting its 3.0 master copy into 2.0,
 producing an identical copy of the converting stylesheet. Thus if
 Convert3 is the converting stylesheet, then
let Convert2 := Convert3(Convert3);
 Convert2(Convert3) == Convert2
should yield the given equality.The author can report that this is now indeed the case[21]. Stability and idempotency has been tested successfully through checking
 that

 Convert2(Convert3) = (Convert2(Convert3))(Convert3)

Alternatively this is best shown through the following diagram, where the final two
 generated versions of the converter are found to be identical:
Figure 6: Conversion of the XSLT3to2 converter to XSLT2.0
[image:]

Further possibilities
The list of assumptions (section “Assumptions”) excluded a number of areas that
 might be interesting to explore. Streaming could be treated as a transparent operation, but
 of course there would be no performance guarantees and unless full streamability analysis
 was undertaken, programs that would ordinarily be deemed unstreamable would
 still operate. Simple packaging based on static analysis, flattening, visibility projection
 and overriding replacement is a distinct possibility: provided all stylesheet packages are
 available, the package processing is effectively a static operation [22] .
The most intriguing would be to investigate what sort of function-valued item behaviour
 could be supported, by attempting to attach to Dimitre Novatchev's FXSL framework (Novatchev2006). Most of the standard higher-order functions
 have implementations within the library, and static definitions of function items can be
 determined from XPath parses, so the issue is whether these can be converted to appropriate
 template-reference elements and associated template and function
 trios. Whilst this paper has described a useful model for maps in some circumstances, a
 system that could accomodate dynamic functions may support maps more accurately, as
 essentially they are functions over a finite discrete domain of key values.

Acknowledgements
Most of the impetus for this work came from the work of Michael Kay, Philip Fearon and
 O'Neil Delpratt when they released SaxonCE in 2011. Offering a possibility of trying my
 document system directly in a browser environment acted as the stimulus to looking at
 detailed program transformation of the by-then-extensive codebase. Little did I realise that
 a few years later I'd be working with them.

References
[Becker2000] Becker, Oliver. The XSLT Loop
 Compiler. [online] http://www2.informatik.hu-berlin.de/~obecker/XSLT/loop-compiler/

[Carlisle2006] Carlisle, David. XQ2XML: XML
 syntaxes for XQuery. [online] http://monet.nag.co.uk/xq2xml/

[SaxonCE] Delpratt, O'Neil and Kay, Michael.
 Multi-user interaction using client-side XSLT. [online] XML Prague 2013
 proceedings, pp1–22.
 http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf

[Lumley2005] Lumley, John, Gimson, Roger and Rees,
 Owen. A Framework for Structure, Layout & Function in Documents. Proceedings
 of the 2005 ACM symposium on Document engineering. doi:https://doi.org/10.1145/1096601.1096615.
 [online] http://www.hpl.hp.com/techreports/2005/HPL-2005-95R1.pdf

[Lumley2013] Lumley, John. Functional,
 Extensible, SVG-based variable documents. Proceedings of the 2013 ACM symposium on
 Document engineering, pp 131-140. doi:https://doi.org/10.1145/2494266.2494274.
 [online] http://dl.acm.org/citation.cfm?doid=2494266.2494274

[Lumley2014] Lumley, John. Analysing XSLT
 Streamability.
 doi:https://doi.org/10.4242/BalisageVol13.Lumley01. August
 2014. [online] http://www.balisage.net/Proceedings/vol13/html/Lumley01/BalisageVol13-Lumley01.html

[LumleyPhD] Lumley, John. Documents as
 Functions. University of Nottingham, PhD Thesis. June 2012.
 [online] http://etheses.nottingham.ac.uk/2631/

[Novatchev2006] Novatchev, Dimitre.
 Higher-Order Functional Programming with XSLT 2.0 and FXSL. Proceedings of
 Extreme Markup Languages, Montreal 2006.
 [online] http://conferences.idealliance.org/extreme/html/2006/Novatchev01/EML2006Novatchev01.html

[REx] Rademacher, Gunther. REx Parser
 Generator. [online] http://www.bottlecaps.de/rex/

[XPath3.0] Robie, Jonathan, Chamberlin, Don, Dyck,
 Michael and Snelson, John, Editors. XML Path Language (XPath) 3.0. World Wide
 Web Consortium, 08 April 2014. [online] http://www.w3.org/TR/xpath-30/

[XPath.FO] Kay, Michael, Editor. XQuery and
 XPath Functions and Operators 3.0. World Wide Web Consortium, 08 April 2014.
 [online] http://www.w3.org/TR/xpath-functions-30/

[XSLT2.0] Kay, Michael, Editor. XSL
 Transformations (XSLT) Version 2.0 (Second Edition). World Wide Web Consortium, 23
 January 2007. [online] http://www.w3.org/TR/xslt20/

[XSLT3.0] Kay, Michael, Editor. XSL
 Transformations (XSLT) Version 3.0. World Wide Web Consortium, 2 October 2014.
 [online] http://www.w3.org/TR/xslt-30/

[1] There were some dozen additional Java classes for handling encapsulated operations and
 functions such as within-paragraph text layout, or image size lookup, but
 these aren't germane to this paper – all main layout was processed through XSLT
 code.
[2] Whilst there are differences, for the rest of this paper, unless stated otherwise,
 the term XSLT or XPath is used to refer to any of the three.
[3] There have also been suggestions for this construct being used to declare default
 typing for a mode, or even acting as a wrapper around a whole suite of templates....

[4] An xsl:iterate with none of these directives behaves as
 xsl:for-each, save that the latter could execute for all selected nodes
 in parallel.
[5] Whilst in later versions of Saxon this is only supported in the commercial
 editions, which support XSLT 3.0 anyway, in the earlier (free) Saxon-B product, which
 supports XSLT 2.0 extensively, this extension function is
 available.
[6] Ironically, in the author's XSLT streamability analysis tool (Lumley2014), just such mixed sequences were used to return both XML
 trees and property information, the maps being filtered out for separate processing at
 a later stage.
[7] With the addition of map ids to the keys and a map-end marker, it
 might be possible to represent singleton values of map(*) type within
 such maps.
[8] It has the same arity as, but a different signature
 (item()*,xs:anyAtomicType) from, the standard
 map:get(map(*),xs:anyAtomicType) and shamelessly exploits the fact that
 in XSLT2.0 the namespace associated with maps is not
 reserved.
[9] The @length property of the binding may appear redundant (search to
 the next binding...) but the length of the sequence is known when the entry is created
 and it makes retrieval of the key's associated value more efficient.
[10] Is is possible to write specialist filter functions such as
 isMapItem() which can differentiate between map entries and non-map
 entries in such sequences. This is used in some of the processing of presentational
 variables described in Lumley2013, but they are used in very
 specific circumstances.
[11] The reader won't be surprised that this was the system used in the original 2.0
 version of the layout processor, which became more coherent by using maps in
 3.0
[12] At the time of writing, the map key/value association operator is being changed
 from its initial draft string of
 :=
 to
 :
 .
[13] Other examples of homoiconic languages include of course LISP, Prolog, Mathematica and
 Tcl, not forgetting lowest-level machine code.
[14] We make the assumption the original XSLT 3.0 is valid. If so, we should be able
 to just look at the references to get the required variables. By filtering the
 in-scope variable definitions by reference needs we can retain any type information
 (@as) on the generated parameters, which increases robustness and
 possible performance.
[15] Placing these variables in a reserved namespace reduces risk of name
 conflict
[16] Technically if any tail position
 lacks a next-iteration directive then it behaves as if one exists, albeit with no
 modification of parameters.
[17] Strictly this analysis should be carried out on the expanded
 stylesheet importation/inclusion tree, but the situation for a single stylesheet is
 described for simplicity.
[18] This parser was used extensively as the basis of the author's XSLT streamability
 analysis tool Lumley2014.
[19] This mixed-sequence approach is only possible for XSLT elements which require exactly
 one of @select or a child sequence constructor, such as
 xsl:variable or xsl:sort. Other situations involving XPath
 expressions such as xsl:if
 test="expr", where any element
 sequence constructors carry result trees, would require closely-preceding temporary
 variables to be set to an appropriate value and referenced from the test.
[20] It is possible to produce modified versions of the open-source
 Saxon-CE with an extension function that can support an equivalent of
 saxon:evaluate().
[21] Hard pounding this, gentlemen. This activity exercises problems of
 quoting, namespace preservation and URI relativity more acutely than most other XSLT
 work.
[22] The XPath parsing code, wrapping around Gunther Rademacher's generated parser, is
 written in XLST3.0 package format and flattened to use in current non-packaged
 implementations.

Balisage: The Markup Conference

Two from Three (in XSLT)
John Lumley
jωL Research

Saxonica

<john@jwlresearch.com>
A Cambridge engineer by background, John Lumley created the AI group at Cambridge
 Consultants in the early 1980s and then joined HPLabs Bristol as one of its founding
 members. He worked there for 25 years, managing and contributing in a variety of
 software/systems fields, latterly specialising in XSLT-based document engineering, in
 which he subsequently gained a PhD. He is currently helping develop the Saxon XSLT
 processor for Saxonica.

Balisage: The Markup Conference

content/images/Lumley01-002.svg

 1

 xsl:template

 xsl:for-each

 xp:LetExpr

 xp:SimpleLetBinding

 xp:FunctionCall

 xp:RelativePathExpr

 xp:AxisStep

 xp:AxisStep

 xp:AxisStep

 xp:PredicateList

 xp:Predicate

 xp:ComparisonExpr

 xp:FunctionCall

 xp:AxisStep

 xp:VarRef

 too-big

 xsl:value-of

 xp:AxisStep

 2

 xsl:template

 xsl:for-each

 xsl:sequence

 avg :=

 xp:FunctionCall

 xp:RelativePathExpr

 xp:AxisStep

 xp:AxisStep

 xsl:sequence

 xp:AxisStep

 xp:PredicateList

 xp:Predicate

 xp:ComparisonExpr

 xp:FunctionCall

 xp:AxisStep

 xp:VarRef

 too-big

 xsl:value-of

 xp:AxisStep

 3

 xsl:template

 select.d538e5 :=

 avg :=

 xp:FunctionCall

 xp:RelativePathExpr

 xp:AxisStep

 xp:AxisStep

 xsl:sequence

 xp:AxisStep

 xp:PredicateList

 xp:Predicate

 xp:ComparisonExpr

 xp:FunctionCall

 xp:AxisStep

 xp:VarRef

 xsl:for-each

 xp:VarRef

 too-big

 xsl:value-of

 xp:AxisStep

 4

 xsl:template

 select.d538e5 :=

 avg := avg(books/@pages)

 books[number(@pages) gt $avg]

 xsl:for-each $select.d538e5

 too-big

 xsl:value-of @title

content/images/Lumley01-003.svg

 1

 xsl:template

 xsl:for-each

 xp:ForExpr

 xp:SimpleForBinding

 xp:AxisStep

 xp:LetExpr

 xp:SimpleLetBinding

 xp:FunctionCall

 xp:RelativePathExpr

 xp:VarRef

 xp:AxisStep

 xp:IfExpr

 xp:VarRef

 xp:VarRef

 xp:ParenthesizedExpr

 appendix

 xsl:value-of

 xp:AxisStep

 2

 xsl:template

 xsl:for-each

 xp:ForExpr

 xp:SimpleForBinding

 xp:AxisStep

 xsl:sequence

 hasAppendix :=

 xp:FunctionCall

 xp:RelativePathExpr

 xp:VarRef

 xp:AxisStep

 xsl:sequence

 xp:IfExpr

 xp:VarRef

 xp:VarRef

 xp:ParenthesizedExpr

 appendix

 xsl:value-of

 xp:AxisStep

 3

 xsl:template

 ForExpr.d277e5 :=

 xsl:for-each

 xp:AxisStep

 b :=

 xp:ContextItemExpr

 xsl:sequence

 hasAppendix :=

 xp:FunctionCall

 xp:RelativePathExpr

 xp:VarRef

 xp:AxisStep

 xsl:sequence

 xp:IfExpr

 xp:VarRef

 xp:VarRef

 xp:ParenthesizedExpr

 xsl:for-each

 xp:VarRef

 appendix

 xsl:value-of

 xp:AxisStep

 4

 xsl:template

 ForExpr.d277e5 :=

 xsl:for-each books

 b := .

 hasAppendix := exists($b/appendix)

 (if($hasAppendix) then $b else ())

 xsl:for-each $ForExpr.d277e5

 appendix

 xsl:value-of @title

content/images/Lumley01-004.svg

 03July@9:26:13

 XSLT 3.0 Processor: SAXON PE 9.5.1.8

 Root:t3.xsl XSLT3.0

 xsl:import:../layout/layout.xsl XSLT3.0

 This is a geometric flow, which is
 resolved using xsl:iterate

 The positions of these side-
 labels are calculated using a
 presentational variable, involving

 dynamic XPath evaluation and

 map{} variables

 This is the orange light

 This is the green light

 XSLT2.0

 5 stylesheets

 xsl:mode: 0

 xsl:iterate: 0

 xsl:evaluate: 0

 map: 0

 let: 0

 ||: 0

 XSLT3.0

 26 stylesheets

 xsl:mode: 15

 xsl:iterate: 9

 xsl:evaluate: 8

 map: 26

 let: 4

 ||: 4

content/images/Lumley01-005.svg

 03July@9:26:35

 XSLT 2.0 Processor: SAXON HE 9.5.1.8

 Root:t2.xsl XSLT2.0

 xsl:import:../V1/layout.v2.xsl XSLT2.0

 This is a geometric flow, which is
 resolved using xsl:iterate

 The positions of these side-
 labels are calculated using a
 presentational variable, involving

 dynamic XPath evaluation and

 map{} variables

 This is the orange light

 This is the green light

 XSLT2.0

 36 stylesheets

 xsl:mode: 0

 xsl:iterate: 0

 xsl:evaluate: 0

 map: 0

 let: 0

 ||: 0

content/images/Lumley01-001.png
'foo! (1,2,3),
'bar' : ('one','two'),
'charlie' : ()}
$map:
1
2
3
<binding key="foo"
length="3"/>
'one'
'two'

<binding key="bar"
length="2"/>

<binding key="charlie"
length="0"/>

$elements :=

" d

$map := map:merge ((
$map,
map{'foo’
))
$map:
1
2
3
<binding ke!
length="3"/>
'one'
'two'
<binding key="bar"
length="2"/>
<binding key="charlie"
length="0"/>
O

iy

<binding key="foo"
length="2"/>

$elements

content/images/Lumley01-006.png
src

OifDiscore:

xsl

src

Fie Compare Oiors tilp

[rErr=n
W ais o5 w01

NADI062: L.
r—

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

