[image: Balisage logo]Balisage: The Markup Conference

XML Solutions for Swedish Farmers
A Case Study
Ari Nordström

Balisage: The Markup Conference 2015
August 11 - 14, 2015

Copyright © Ari Nordström 2015

How to cite this paper
Nordström, Ari. "XML Solutions for Swedish Farmers." Presented at: Balisage: The Markup Conference 2015, Washington, DC, August 11 - 14, 2015. In Proceedings of Balisage: The Markup Conference 2015.
 Balisage Series on Markup Technologies vol. 15 (2015). https://doi.org/10.4242/BalisageVol15.Nordstrom01.

Abstract

 The Federation of Swedish Farmers – LRF - provides its 170,000
 members with a web-based service to check compliance with existing state and EU
 farming regulations. These checklists are also made available as a nightly produced
 generic checklist document with more than 130 pages, and individualised checklists
 for registered members.
This paper is a case study describing
 the XML-based system used to author, manage and publish content. The system consists
 of the eXist-DB, coupled with oXygen Author, used for edit, store and process the
 contents of the checklists and their related contents, including publishing them as
 PDFs and exporting them to a SQL database in charge of member registration, feeding
 the website, and various other tasks. The solution includes step-by-step processing
 of the various types of information in eXist, based on XQuery and XSLT. The system
 also uses XInclude modularisation, an extended XLink linkbase, as well as other
 markup technologies. The system currently handles a yearly volume of more than
 40,000 PDF documents and many more than that in the web-based forms.

Balisage: The Markup Conference

 XML Solutions for Swedish Farmers

 A Case Study

 Table of Contents

 	Title Page

 	Introduction
 	The Swedish Federation of Farmers

 	Checklists

 	System Overview

 	A Brief History

 	The System
 	eXist Layout

 	The Publishing Chain

 	Node IDs and the Linkbase
 	Node IDs

 	Linkbase

 	Work
 	Writing Checklists and Facts

 	Finding Matching Resources

 	Checklist Publishing

 	Writing Standard Texts

 	Users, Selections and Profiling

 	System Collection Layout

 	Schemas
 	LRF-Pub

 	LRFBook

 	Exports, Imports and Publishing
 	Versioning and Rollbacks

 	End Notes

 	About the Author

 XML Solutions for Swedish Farmers
A Case Study

Introduction
Note
While some of the images and examples in this paper include content in Swedish,
 understanding the language is not a prerequisite. It might, however, be
 interesting.

The Swedish Federation of Farmers
Quoted from the LRF website at www.lrf.se (also see
 [id-lrf-presentation]):
The Federation of Swedish Farmers – LRF – is an interest and business
 organisation for the green industry with approximately 170 000 individual
 members. Together they represent some 90 000 enterprises, which makes LRF the
 largest organisation for small enterprises in Sweden.

The members' operations range from
 small-scale farming to large operations handling crop, livestock, and more. They
 frequently rely on state and EU funding to subsidise their operations; however, to
 receive funding, they need to comply with any relevant regulations, requiring
 inspection both by themselves and by appointed officials.

Checklists
To ease the compliance-related tasks
 for its members, LRF provides a website ([id-miljohusesyn-nu]) with
 regulatory audit schemes, checklists with questions intended to
 highlight every relevant regulation, each of them accompanied by help texts that
 offer more detail. Today, around 11,000 LRF members have registered on the website
 to use the services. Their registration data is used to filter the checklists and
 the associated facts to only include the relevant contents; for example, a dairy
 farmer should not have to answer questions about beekeeping.
Both the checklists and their
 associated facts are output in PDF files that are either filtered for the individual
 member, excluding irrelevant questions and facts, or output as a total checklist
 document, a 130+ page monster that includes everything.
Figure 1: Checklist Questions in the PDF...
[image:]

For every checklist question, there are
 three possible answers: Yes and N/A indicate
 compliance and non-applicability, respectively, while no identify
 areas where actions are required before approval. For these, members can add
 comments, notes, expected completion dates and other information.
The questions always include help texts
 to aid the members in completing the checklists. These help texts, called
 facts in LRF parlance, appear on the web as pop-ups, and in
 the PDF as separate sections.
Figure 2: ...And Their Matching Help Texts
[image:]

Note
Why is the main output PDF rather than a personalised online form? Very
 simple: the end users are farmers who spend most of their time far away from
 computers and like it that way. They are not computer-savvy, not comfortable
 with online formats, and a majority of them prefer PDFs as the main output[1].

System Overview
The web checklist answers, including
 the member partial or complete checklists and their personal and company
 information, are handled by and stored in an SQL database. The checklists
 themselves, as well as their associated facts and other auxiliary information
 appearing in both the web and the PDFs, are fed from an eXist-DB XML database that
 converts XML contents to the required output formats and supplies links to these
 using an extended XLink linkbase when getting a request from the SQL database.
Figure 3: System Overview
[image:]

The XML, split into roughly a thousand
 modules, is written in a DocBook-based authoring environment in oXygen Author and
 stored in a work area in the eXist database. Once new texts are ready, they are
 copied to a publishing chain area in eXist, where they become part of
 the content output to the web and to the PDFs.
The website also includes a large bank of reference information ranging from legal
 texts to links, help texts for the site, news and more, all of which is related in
 some way to the compliance process driving the checklists but that is not included
 in the published checklists. This information is written in and fed by a Wordpress
 CMS that seamlessly coexists with the SQL-DB and eXist DB feeds.

A Brief History
Originally, the checklists were a strictly paper-based publication, compiled and
 edited in InDesign from a variety of sources about once a year and then published in
 thousands of copies. As rules and regulations change far more often than that, the
 publication was out of date by the time it was printed.
Web-based versions of the checklists were then developed, with checklist questions,
 facts and other texts compiled from a variety of sources including third party legalese
 feeds and then updated through the admin pages of a SQL server and finally fed to a
 website. These texts were then copied, pasted and edited for the yearly InDesign
 version.
This was just as cumbersome as creating the original paper version, and also caused
 additional problems with multiple occurrences of the same information.
To handle the problem, we created an authoring and on demand publishing system ([id-xmlprague2013-exist]) for
 the paper version[2], based on eXist and oXygen. Checklists and user data were still produced in
 the SQL database while the associated facts and the standard texts were now handled in
 oXygen/eXist. The latest checklists were mirrored to eXist nightly and a total PDF
 version of the checklists, facts and other material produced and output to the website,
 while the user-specific checklists were imported on demand, when a user PDF needed to be
 produced.
The various eXist conversions (from the raw SQL-DB XML to the publishing XML, from the
 DocBook derivative used for authoring facts to the publishing XML, etc) and PDF
 publishing were handled by a series of XProc pipelines on the server filesystem, not in
 eXist itself[3], and the results were either put back into eXist or fed to a XEP instance,
 finally sending the resulting PDFs to the various recipients using an email
 service.
This solution greatly improved on the old SQL-DB/InDesign combo, but since the
 checklists were still authored in one place (SQL) and the associated facts in another
 (oXygen/eXist), without the two being connected directly in any way because we had no
 control over the SQL-DB, the system was error-prone. A 600+ question checklist with
 almost daily changes had to be exported to eXist and manually associated with 600+
 corresponding fact modules. We needed a system that moved all
 authoring of content (checklists, facts, etc) to one place, oXygen/eXist, and keeping
 only user registration and checklist answer information in the SQL database[4], ensuring that the total checklist with all of the associated facts and
 other related content was always up-to-date and valid before it was output to the
 website and the PDFs.
This paper describes the resulting new system.

The System
This focusses mainly on the eXist/oXygen part; the Wordpress CMS and the SQL-DB are
 both mostly output channels, even though the SQL-DB supplies member checklist answers,
 member metadata and profiling information to eXist.
eXist Layout
The eXist database has the following collection layout:
Figure 4: eXist-db Collection Layout
[image:]

The eXist layout is split into several parts:
	There is a publishing chain, represented by the
 mhs and rhs branches. MHS and
 RHS are two separate regulatory areas requiring their own checklists, but
 are handled identically by the system.

	There is a work branch that is split into the two
 regulatory checklist branches, MHS and RHS. These include collections for
 storing checklists, facts and standard texts (auxiliary
 information such as preface sections or appendices) not directly associated
 with specific questions) while editing the contents in oXygen.

	And finally, there is a system branch that contains
 the XSLT stylesheets, XQuery scripts, XML linkbases, schemas, and so on,
 used to manipulate and move the data in the other branches.
Note
There is also a separate eXist-DB web application, stored in eXist's
 /db/apps structure. The app is used for various
 administrative tasks.

The Publishing Chain
The principle of the publishing chain is simple enough. There is an
 export map that contains the raw data to be published. The
 data is stored in subcollections according to information type: Checklists, facts
 and standard texts copied from the work area are stored in their own subcollections,
 and the user data (metadata and their checklist answers) imported from the SQL
 database are stored as combined files per user in users.
Each user is identified using a unique user ID generated by the SQL database. A
 convention used everywhere in the system is that uid0 designates the
 total checklist with all of the questions and facts, while uidXYZ
 identifies the subset for some user with the uid XYZ.
In the older oXygen/eXist system as well as this one, the raw data in
 export is then converted by a chain of steps, each
 converting a specific type of information for a specific user, basically either the
 total, uid0, or uidXYZ, and the results stored in corresponding subcollections in
 pub. This is the basic process:
	If publishing for a specific user, convert user metadata in
 export/users to the publishing XML format and store
 in pub/users.

	Normalise the modularised checklists in
 export/checklists (by default, this happens
 automatically in eXist), convert the resulting XML to the publishing XML
 format and store as
 pub/checklists/pub-checklists-uid0.xml[5].

	Convert every corresponding fact file for the total checklist
 (uid0) in export/facts to the
 publishing XML format, normalise them into a single XML file, and store the
 results in pub/facts/pub-facts-uid0.xml. The conversion
 is always based on the checklist in the previous step, so only the facts
 that are required by it (see section “Node IDs”) are converted.

	If publishing for a specific user uidXYZ, convert the user-specific
 checklist answers from the user data files in
 export/users to the publishing XML format and store
 in pub/checklists/pub-checklists-uidXYZ.xml.

	Using the converted user-specific checklist, filter the total converted
 facts file for uid0 (step 3), removing any inapplicable facts, and store it
 in pub/facts/pub-facts-uidXYZ.xml.

	Convert any standard texts in export/standard-texts
 to the publishing XML format and store them in
 pub/standard-texts.

	Using the root XML file linking to the other XML modules converted in
 previous steps (the root file is a standard text converted in step 6),
 normalise it into one big XML file and save the result as a temp
 file.

	Convert the normalised temp XML to FO format and feed the results to a XEP
 formatting engine.

	Store the PDF in an output collection that is then used by the SQL
 database to fetch the PDF and send it to the recipient or publish it on the
 website.

As mentioned, the uidXYZ process runs on demand, when a user logged
 onto the checklist website orders a PDF version of his answers, while the
 uid0 total checklist document is produced nightly and published
 on the website for those members that have not yet registered for the online
 checklist services.
Each step above consists of an XQuery wrapper, called by the SQL-DB as an http
 request during the synchronisation and publishing processes, that in turn invokes
 XSLT stylesheets that do the actual conversion. Frequently, the XQuery will prepare
 the indata in some way, perhaps adding base URIs or filtering the indata according
 to some criteria based on the regulatory checklist branch (mhs or
 rhs; see above).
The facts and the standard texts are also converted to HTML for use by the SQL
 database for the web versions of the checklists, where they are used as
 context-sensitive help texts. The publishing process is similar to the above, using
 one XQuery per step and information type, storing the results in their respective
 subcollection inside the html collection. Since the facts and
 standard texts are written using a DocBook derivative, the XSLT used is a very
 slightly updated DocBook XSLT 2.0 package[6].
Whenever the website requires an HTML fragment, the SQL database sends an http
 request to eXist, invoking an XQuery that reads a linkbase listing every resource in
 the system (see section “Node IDs and the Linkbase”), and gets a link to the converted HTML in
 return.
Note
The RHS checklists branch is currently somewhat simpler than MHS, presently
 requiring no PDF output, only HTML, but this is about to change as I write
 this.

Node IDs and the Linkbase
Early on, it occurred to us that an extended XLink linkbase that listed the
 resources in eXist would be useful. For example, to use a fact HTML file as a help
 text on the web requires only the link to the HTML in eXist, so looking that link up
 in one place made sense. Similarly, when authoring a checklist question in oXygen,
 locating the associated fact's URI in a single linkbase file rather than searching a
 number of collections inside the work area seemed like a sensible
 alternative.
So, the most interesting resources (and relations between them) for lookup by the
 SQL database or others are the checklists and their associated facts. , using
 @node-id values as keys.
Node IDs
But how do we know that a question is indeed associated with a fact? We use a
 simple attribute, @node-id, to identify a question. For a fact to
 be associated with that question, it needs to include the same
 @node-id value in its root element. Here is a checklist
 fragment (the qandaentry element identifies questions, while
 qandaset identifies groups of questions
 (which are basically grouped questions according to some topic; groups also use
 facts to provide further detail):
<?xml-model href="http://localhost:8080/exist/rest/db/lrf/system/common/schemas/lrfbook/lrfbook.rnc" type="application/relax-ng-compact-syntax"?>
<section
 xmlns="http://docbook.org/ns/docbook"
 text-type="checklist"
 version="lrfbook"
 operation="G">
 <titleabbrev>G</titleabbrev>
 <title>Allmänna Gårdskrav</title>
 <qandaset
 text-type="group"
 xml:id="d1e17"
 node-id="node-id-G1-2015-03-26-0100">
 <title>Anmälnings- och tillståndsplikt</title>
 <para>Reglerna nedan berör enbart anmälnings- och tillståndspliktiga företag. Syftet är att
 minska risken för att miljön förore­nas eller att andra betydande olägenheter för
 människors hälsa eller miljön uppstår. </para>
 <qandaentry
 text-type="question"
 xml:id="d1e31"
 node-id="node-id-G1-1-2015-03-26-0100"
 cc="true">
 <question>
 <para>Om verksamheten är anmälningspliktig, har anmälan gjorts till kommunen?
 (Tvärvillkor att anmäla djurhållning)</para>
 </question>
 </qandaentry>
 <qandaentry
 text-type="question"
 xml:id="d1e50"
 node-id="node-id-G1-2-2015-03-26-0100"
 cc="true">
 <question>
 <para>Om verksamheten är tillståndspliktig, har tillstånd lämnats av länsstyrelsen?
 (Tvär villkor att anmäla djurhållning)</para>
 </question>
 </qandaentry>
 ...
 </qandaset> ...
 <qandaset
 text-type="group"
 xml:id="d1e1058"
 node-id="node-id-G10-2015-03-26-0100">
 ...
 </qandaset>
</section>

Your Swedish may be rusty, but the interesting bits here concern the
 @node-id attributes. For example,
 qandaentry[@node-id='node-id-G1-1-2015-03-26-0100] at the top,
 highlighted above, is associated to this fact:
<?xml-model href="http://localhost:8080/exist/rest/db/lrf/system/common/schemas/lrfbook/lrfbook.rnc" type="application/relax-ng-compact-syntax"?>
<sect1
 xmlns="http://docbook.org/ns/docbook"
 cc="true"
 node-id="node-id-G1-1-2015-03-26-0100"
 text-type="fact"
 version="lrfbook"
 xml:id="d729e2">
 <title>Anmälningspliktig verksamhet</title>
 <para>(Tvärvillkor)</para>
 <para>Djurhållning över 100 djurenheter kräver en anmälan till kommunen. Anmälan om t.ex. utökad
 djurhållning ska göras minst 6 veckor före planerad start. Verksamheten bör invänta
 kommunens beslut i ärendet, då beslutet kan innehålla särskilda villkor. Kommunens beslut
 kan även överklagas av t.ex. närboende.</para>
 ...
</sect1>

A one-to-many relation is also possible: the same fact can be used with
 several questions simply by adding the @node-id values to the fact,
 each separated by whitespace: <sect1 node-id="node-id-1
 node-id2"...>...</sect1>

Linkbase
An extended XLink linkbase at its simplest is basically a list of
 points of interest, pointers to resources called locators.
 They are pointed out using a URI and possibly some kind of fragment identifier
 or pointer inside the resource, frequently to ID attributes. Optionally, the
 linkbase may then define relationships between these locators, called arcs, and
 there are also a number of other features having to do with giving the locators
 and arcs roles as well as other information about their expected behaviour. For
 a far better introduction to XLink, please read the specification (see [id-xlink]).
The linkbases (there is one for each regulatory branch of checklists) look
 like this (the actual file in this case contains some 3500 locator
 entries):
<linkbases>
 <linkbase
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="extended">
 <locator
 xlink:type="locator"
 xlink:href="http://localhost:8080/exist/rest/db/lrf/mhs/export/facts/A10-10-Fyrhjuling-och--node-id-A10-10-2015-04-16-0200.xml"
 node-id="node-id-A10-10-2015-04-16-0200"
 res-type="fact"
 xlink:label="A10-10-2015-04-16-0200-fact"/>
 <locator
 xlink:type="locator"
 xlink:href="http://localhost:8080/exist/rest/db/lrf/mhs/export/facts/A10-9-Rekommendation--node-id-A10-9-2015-04-16-0200.xml"
 node-id="node-id-A10-9-2015-04-16-0200"
 res-type="fact"
 xlink:label="A10-9-2015-04-16-0200-fact"/>
 <locator
 xlink:type="locator"
 xlink:href="http://localhost:8080/exist/rest/db/lrf/mhs/export/facts/A10-8-Kontroll-av-dra-node-id-A10-8-2015-04-16-0200.xml"
 node-id="node-id-A10-8-2015-04-16-0200"
 res-type="fact"
 xlink:label="A10-8-2015-04-16-0200-fact"/>
 ...

 <locator
 xlink:type="locator"
 xlink:href="http://localhost:8080/exist/rest/db/lrf/mhs/export/checklists/checklist-A-uid0.xml#d1e5485"
 node-id="node-id-A10-8-2015-04-16-0200"
 res-type="checklist"
 xlink:label="A10-8-2015-04-16-0200-question"/>
 <locator
 xlink:type="locator"
 xlink:href="http://localhost:8080/exist/rest/db/lrf/mhs/export/checklists/checklist-A-uid0.xml#d1e5493"
 node-id="node-id-A10-9-2015-04-16-0200"
 res-type="checklist"
 xlink:label="A10-9-2015-04-16-0200-question"/>
 <locator
 xlink:type="locator"
 xlink:href="http://localhost:8080/exist/rest/db/lrf/mhs/export/checklists/checklist-A-uid0.xml#d1e5502"
 node-id="node-id-A10-10-2015-04-16-0200"
 res-type="checklist"
 xlink:label="A10-10-2015-04-16-0200-question"/>
 ...

 </linkbase>
</linkbases>

The example lists three checklist questions and their associated facts. Note
 that the checklist locators include fragment identifiers to pinpoint the
 question inside the checklist. Also note the @res-type attribute
 that identifies the type of resource[7] that is listed.
Similarly, the linkbase lists every resource in the work area.
The linkbase does not currently include the converted versions of the
 resources in html and its subcollections. Instead, it
 relies on the nightly synchronising process to do the actual conversion and
 simply rewrites the link that is returned to the SQL database to point at the
 HTML equivalent, with the query returning a 404 if there is no HTML version at
 the target location.
A query made by the SQL database for the HTML version of the fact file A10-8
 (@node-id="node-id-A10-8-2015-04-16-0200"), highlighted above,
 includes the domain (regulatory checklist branch), type and media, like
 this:
http://localhost:8080/exist/rest/db/lrf/system/common/linkbase/xquery/get-resource.xq?domain=mhs&node-id=node-id-A10-8-2015-04-16-0200&type=fact&media=html
This would simply return the HTML version's URL:
<data>http://localhost:8080/exist/rest/db/lrf/mhs/html/facts/A10-8-Kontroll-av-dra-node-id-A10-8-2015-04-16-0200.htm</data>
This would then be used when publishing the pop-up help text on the
 website:
Figure 5: An HTML Fact Published As Help Text
[image:]

The linkbase is also used to find matching resources when editing a resource
 in oXygen. See section “Finding Matching Resources ”.
Note
It would, of course, be possible to implement the query functions in eXist
 without gathering the @node-ids and their associated resources
 inside a linkbase, and instead look for them directly in eXist, but we saw
 several advantages with a linkbase:
Firstly, a linkbase does not have to list every
 resource with a @node-id in eXist, only those that we consider
 to be needed. That selection can easily be changed by rewriting the linkbase
 generation code.
Second, the linkbase offers a single point of contact for outside systems;
 it provides in itself a level of indirection. A query function that returns
 content from it easier than something that deals with the entire
 database.

Work
The work area replicates the general collection structure found in the publishing
 chain, split into two regulatory branches:
Figure 6: The Work Area
[image:]

The information is placed strictly after information type: checklists in
 checklists, facts in facts, and so on.
 This again makes it very easy to manipulate and move the data in well-defined
 steps.
Writing Checklists and Facts
The checklist groups and questions control the process, so they are edited
 first. If a new question is added, the fact text is written afterwards,
 sometimes much later, when there is sufficient background information (for
 example, regulatory or legal information, numbers, etc). This made the old
 system fairly error-prone because the question and the fact were written apart
 in time and in two separate systems. Frequently, there would be no matching fact
 file for a question on the web.
The new system handles this by allowing the checklist to control the
 publishing process (see section “Checklist Publishing”) and using the @node-id
 attribute values to match facts.
The linkbase makes it easy to find out if there is already a matching fact in
 the system (see section “Finding Matching Resources ”), and there is also a way to first write a
 new fact file and then associate a question to the new fact, using an XQuery
 that copies the question's @node-id value, allows the user to
 browse for the target fact file, and finally adds the value to the fact[8].
Of course, there are also functions that generate new @node-id
 values and replace existing ones, if the relationships between checklists and
 facts need to be updated.

Finding Matching Resources
When authoring content in oXygen Author, the linkbase is used to locate
 corresponding resource(s) for the one being edited. The function is available as
 a context-sensitive menu item:
Figure 7: Find Matching
[image:]

So, when editing, say, the checklist question A10-8, a query to find the
 corresponding question (implemented as an oXygen action in the LRFBook
 framework) would locate the A10-8 fact and open the query answers as XInclude
 links in a wrapper document[9]:
<?xml version="1.0" encoding="UTF-8"?>
<db:article xmlns:db="http://docbook.org/ns/docbook" version="lrfbook">
 <db:title>Matchande resurser</db:title>
 <db:para>Klicka på XInclude-länkarna nedan för att öppna de matchande resurserna.</db:para>
 <xi:include
 xmlns:xi="http://www.w3.org/2001/XInclude"
 href="http://31.216.36.169:8080/exist/rest/db/lrf/work/mhs/facts/A10-8-Kontroll-av-dra-node-id-A10-8-2015-04-16-0200.xml"/>
</db:article>

The fact that oXygen will automatically expand XIncludes makes this approach
 even more useful:
Figure 8: matched-res-a10-8.jpg
[image:]

If the matching fact needs to be edited, the author only has to click on the
 XInclude link to open the file.

Checklist Publishing
The checklists control the process. Every time a checklist collection is
 approved and copied into the publishing chain, the process (an XQuery
 transformation run as an oXygen action) walks through the checklist groups and
 questions in every linked checklist module, comparing each @node-id
 value against @node-ids in fact XML files. When a matching file is
 found, it is copied to export/facts. Any facts that do not
 match a group or a question are left alone.
When a checklist module has been checked, it is also copied to the publishing
 chain, and the process moves on to the next module, until there are no more
 modules to check. Finally, the root checklist file (basically a DocBook file
 containing XInclude links) is copied to the publishing chain.

Writing Standard Texts
As mentioned before, standard texts are auxiliary files related
 to the checklists and facts but not dependent on them. They include appendices,
 introductory texts, etc.
There is also a root file that binds the document parts together using
 XInclude links. As the checklists and their associated facts are governed by
 regulatory requirements, they are not linked into the root directly, but instead
 inserted automatically by the publishing process when outputting PDF, beyond the
 author's control. Thus, the author is only able to add, remove, and change the
 order of the standard texts in the root XML.

Users, Selections and Profiling
The user registration information (name, address, telephone, email, etc) is
 created and maintained in the SQL database, as is any information concerning their
 respective operations. These include two somewhat generic areas with information on
 the farm and the work environment, but also two more specific operational areas,
 livestock and crop. All four are grouped in far more detail, however, and many of
 them are interrelated across the operational areas. For example, a small farm with
 only a few hens will have fewer regulatory requirements on the farm and the work
 environment than a large, 400-cow plant. There are also geographical dependencies,
 with some farms situated near protected water bodies and groundwater stocks and
 therefore falling under other regulatory requirements.
The many relationships between the operational areas, the user information and the
 user checklist answers was deemed to require a relational database, even in the new
 system.
If left unfiltered, the sheer number of checklist questions (MHS alone contains
 around 650 of them) has caused many members to shy away from the checklists and
 understandably so. For this reason, the new system adds profiling capabilities when
 authoring checklists.
The idea is as simple as it is common. A group or question is profiled using one
 or more labels that describe when the group or question is applicable. Profile
 values might include >400-hens or a county name, stating that the
 question is only applicable if the member has more than 400 hens or operates in the
 specified county. In the XML, the profiles are whitespace-separated attribute
 values:
<qandaentry profiles="value1 value2">...</qandaentry>
These questions, of course, become part of the total checklist that is exported to
 the SQL database and used as the online checklist web form:
Figure 9: Checklist Questions on the Web
[image:]

The profiles for each question are tracked by the SQL database, but additionally,
 the SQL database also defines relations between separate
 profiles. The >400-hens value, for example, might relate to a
 question regarding the farm's size and facilities, meaning that answering
 yes to the question about the number of hens being more than 400
 might automatically cause other questions to be included and yet others to be
 excluded. In any case, the member is directed only to relevant questions.
The profile values are created and edited in the SQL database[10], but converted to XML and exported to
 system/common/profiles/xml/profiles.xml in eXist when
 needed. This file is simply a list of profile values:
<profiles xmlns="http://cos.se/ns">
 <section>
 <title>Verksamheter
 </title>
 <profile>Biodling</profile>
 <profile>Djurhållning</profile>
 <profile>Livsmedelsförädling</profile>
 <profile>Odling</profile>
 <profile>Trädgårdsföretag_Potatisodlare</profile>
 <profile>Övrigt</profile>
 </section>
 ...
 <section>
 <title>Odling
 </title>
 <profile>Ekologisk_odling_EU</profile>
 <profile>Ekologisk_uppfödning_KRAV</profile>
 </section>
 ...
 <section>
 <title>Län
 </title>
 <profile>Blekinge_län</profile>
 <profile>Dalarnas_län</profile>
 <profile>Gotlands_län</profile>
 <profile>Gävleborgs_län</profile>
 <profile>Hallands_län</profile>
 <profile>Jämtlands_län</profile>
 <profile>Jönköpings_län</profile>
 <profile>Kalmar_län</profile>
 <profile>Kronobergs_län</profile>
 <profile>Norrbottens_län</profile>
 <profile>Skåne_län</profile>
 <profile>Stockholms_län</profile>
 <profile>Södermanlands_län</profile>
 <profile>Uppsala_län</profile>
 <profile>Värmlands_län</profile>
 <profile>Västerbottens_län</profile>
 <profile>Västernorrlands_län</profile>
 <profile>Västmanlands_län</profile>
 <profile>Västra_Götalands_län</profile>
 <profile>Örebro_län</profile>
 <profile>Östergötlands_län</profile>
 </section>
</profiles>
This file is then read by the Profiles pop-up dialog in
 oXygen, used by the author to edit the profiles of a group or question:
Figure 10: Profiles Pop-up Dialog in oXygen
[image:]

Here, the author selects any profile values that apply to the group or question.
 If it is about beekeeping, for example, the author might probably want to check the
 beekeeping profile value, as well as any physical locations that
 are applicable.
The pop-up is implemented using oXygen's proprietary CSS extensions, making adding
 a simple dialog such as this easy, using only a few lines:
qandaset:before, qandaentry:after {
 content: "Profiler: "
 oxy_editor(
 type, popupSelection,
 edit, "@profiles",
 values, oxy_xpath('string-join(doc("http://profile:profile@31.216.36.169:8080/exist/webdav/db/lrf/system/common/profiles/xml/profiles.xml")//cos:profile/text(), ",")'),
 resultSeparator, " ",
 columns, 10,
 selectionMode, "multiple",
 fontInherit, true);
 font-size:12px;
}
The values property does most of the job fetching the profiles and
 edit defines the attribute (@profiles).

System Collection Layout
The system collection layout reflects the same philosophy
 that is used for the contents as described in the previous sections:
Figure 11: The System Layout
[image:]

Here, the organisation is based on the differences between the regulatory
 checklist branches, using a common collection for shared
 resources and dividing the rest into branch-specific parts. Currently, the
 mhs branch is more complex, with more than double the
 amount of data than rhs and including PDF publishing in
 addition to the web.
This might change but if so, this layout makes it easy to implement the change. It
 is also easy to add a branch, something that is being discussed.

Schemas
The eXist/oXygen system uses a number of schemas, two of which deserve mentioning
 here.
LRF-Pub
The old, XProc-based system ([id-xmlprague2013-exist]) started life as a PDF on demand
 publishing system for the web-based checklists that were then fed from the SQL
 database handling all content. The content was only to be exported to the PDF on
 demand system when publishing a PDF. Therefore, the first schema made was a
 Relax NG schema designed specifically to be used to generate the PDF checklist
 document. It was unsuitable for actual authoring, since it included loose
 content models and constructions designed to handle XML export data form the SQL
 database.
So, when the requirements changed to include authoring, we needed to either
 redo the publishing schema (and customise an editor) or add another specifically
 for authoring. Enter DocBook 5.

LRFBook
The contents in the work area are written using a DocBook 5 variant called
 LRFBook that excludes a lot of unneeded structures
 (especially those used for technical content), and adds a few LRF-specific
 attributes. The schema, done in Relax NG Compact Syntax, is close enough to
 DocBook to be able to use oXygen's DocBook 5 customisation almost out of the
 box, with only a few additions to help authors manage the LRF-specific
 features.

Exports, Imports and Publishing
Every night, the server initiates an integration process, a
 synchronisation of contents between the SQL database on one hand and the eXist database
 on the other. It also starts a complete PDF output process for uid0 in eXist, converting
 current export contents to pub and onwards to
 a finished PDF, and to html.
The new total checklists for mhs and rhs are
 then fetched by the SQL database from eXist, including not only edited question contents
 but possibly also new profiles for them, causing the web contents to be updated and the
 selection process in the checklists to be refined.
User-specific checklists that include their comments and due dates, on the other hand,
 are only produced on demand. in that case, the SQL database converts the user data to
 raw XML and exports it to eXist, then initiating the publishing chain for that user
 only. Eventually, a link to the new PDF is returned by eXist, obfuscated by the server
 and included in an email to the user.
The SQL database also includes search functionality for the web service, the Wordpress
 contents, and eXist's HTML content. The latter is implemented as an http request to an
 XQuery that then returns the document URI and copies of every matching node. The latter
 are presented as fragments in the search results.
When needed, the SQL database exports a new profiles XML file to eXist, instantly
 updating the allowed profile values when editing checklists in oXygen.
Versioning and Rollbacks
None of the XML content is currently versioned in any way. While it has always
 been an option to enable eXist's versioning module and to add similar content
 management to the SQL database, so far the customer has been unwilling to pay for
 that particular feature.
This does not mean that there is no way to go back to an earlier stage if
 something goes wrong. eXist is backed up nightly, and the backups for the last week
 (and, further back, once every month) are stored in case errors manage to find their
 way to the published content. In that case, rollbacks will always be made to
 work rather than the publishing chain and then republished,
 as this ensures that the checklists will always be associated with the correct
 facts.
Nevertheless it is usually easier and faster to fix the problem in oXygen and then
 republish, as the backup is handled by developers rather than the writers; to date,
 a rollback of one or more documents since the old system went live has happened on a
 handful of occasions, and once when the server itself failed. Nothing of the kind
 has yet happened with the new version.

End Notes
The system went live in late April, around the Balisage paper submission deadline, but
 before that, we also had a test system running for several weeks, both with system
 testers and real-life users, and can present some conclusions.
First of all, the end users find the system to be much faster than its predecessor,
 and based on the rather small number of bug reports, the system is also more
 reliable.
The improved reliability is confirmed by the writers, who can now publish checklists
 and their associated facts with ease, knowing that the question/fact pairs will always
 match.
For me as a developer, the oXygen/eXist-DB combo works like a charm. It's fast, it's
 stable, and even though I'm a markup geek and don't know a thing about Java, writing the
 various functions for the conversions, linkbase queries, editor customisation, etc, has
 been a joy—most of them were written in XQuery and XSLT—and I only had to ask for a
 single JAR from the developers who were busy writing the SQL database and Wordpress
 parts.
Also, while moving away from XProc was a disappointment for me, redoing the pipelines
 in XQuery made a huge difference in terms of performance and reliability; the XProc
 implementation was on the server filesystem rather than eXist itself, using James
 Sulak's eXist XProc library ([id-eXist-sulak]) to send XML back and forth between eXist and the file
 system, because XProc in eXist then (December 2012) was basically broken[11]. When preparing to upgrade the old system, I really wanted to move those
 XProc pipelines into eXist, as a new Calabash XProc module for eXist was made available
 about a year ago. My tests quickly proved it to be unreliable, unfortunately. It used an
 embedded old version of the Calabash JAR which caused some problems, but there were also
 limitations to what it could do. And, worst of all, it was mostly undocumented. The
 state of XProc in eXist remains a sad affair.
Also, a couple of other points:
	Yes, I know it is possible to handle the profiling functionality directly in
 eXist rather than in the SQL database, including the relations between them. I
 did consider implementing profiling in the linkbase, but this would have taken
 more time while not adding enough; profiles are edited only rarely.

	There are currently no arcs in the linkbase. There should have been; using
 arcs rather than @node-id matching would be cool.

Last but not least, I would like to extend a heartfelt thank you to my colleagues at
 Condesign, but also to LRF who graciously agreed to let me write and submit this
 paper.

References
[id-xmlprague2013-exist] Nordström, Ari. eXistential Issues in
 Farming. XML Prague Proceedings 2013. http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
[id-lrf-presentation] Presentation of LRF. http://www.lrf.se/globalassets/dokument/om-lrf/in-english/lrf_presentation_engelska.pdf
[id-miljohusesyn-nu] Miljöhusesyn (Environmental Audit
 Scheme, the checklist web service, Swedish only). http://www.miljohusesyn.nu
[id-eXist-sulak] eXist XProc Extension Library. James
 Sulak's XProc library for communicating with eXist. https://github.com/jsulak/eXist-XProc-Library
[id-xlink] XML Linking Language (XLink) Version 1.1, Extended
 Links http://www.w3.org/TR/2010/REC-xlink11-20100506/#extended-link

[1] Well, paper, actually, but most now print out the document at home,
 even though there is still a market for print-on-demand services.
[2] And later, the HTML output.
[3] Because of limitations in the then-current eXist implementations of XProc and
 Calabash.
[4] A relational database was seen as better suited for the kind of tasks that
 relate user-specific metadata to checklist answers, limiting the relevant
 questions from 600+ to less than a hundred.
[5] This file is fetched nightly by the SQL database and published on
 the website, ensuring that the latest available checklists are
 always used. The pub-checklists-uid0.xml file will frequently
 contain updated or new questions that are identified using new node
 IDs (see section “Node IDs”). The SQL database uses these to
 pair questions with facts during the member registration and
 checklist fill processes.
[6] The updates handle eXist-specific addressing and the XLink-based
 cross-references used when authoring contents.
[7] This is actually not entirely necessary since every specific type of
 information uses its own collection, making it easy to identify the
 type. Using a dedicated attribute makes it easier to index the linkbase
 in eXist, however.
[8] A solution we considered was to use extended XLink arcs in the
 linkbase to define these relations, rather than creating explicit
 relationships using the @node-id values. This might still
 happen, but the current solution was faster to implement in the existing
 XSLT from the XProc-based solution.
[9] A fact might be used by more than one question, which makes it more
 practical to list the matches in a single XML document, as XInclude
 links. It is also far easier to do for a non-programmer like yours
 truly.
[10] We did consider allowing the author to edit the profiles in oXygen and
 exporting that to SQL, but as the values are not edited often, an easier and
 faster solution was to keep profiling in the SQL database for now.
[11] The XQuery-based xprocxq did not support enough of the
 spec, and neither did the XML Calabash module; besides, it
 was mostly broken with newer Calabash versions.

Balisage: The Markup Conference

XML Solutions for Swedish Farmers
A Case Study
Ari Nordström
Ari Nordström is a freelance markup
 geek, based in Göteborg, Sweden, but offering his services across a number of
 borders. His information structures and solutions are used by Volvo Cars,
 Ericsson, and many others. His favourite XML specification remains XLink so
 quite a few of his frequent talks and presentations on XML focus on or at least
 touch on various aspects of linking.
Ari is the proud owner and head
 projectionist of Western Sweden's last functioning 35/70mm cinema, situated in
 his garage, which should explain why he once wrote a paper on automating
 commercial cinemas using XML. He now realises it's too late, however.

Balisage: The Markup Conference

content/images/Nordstrom01-010.jpg
Gandise e (o)

e > G1 Anmilnin| [Har dut
[Reglerma nedd A=

[C] Ovrigt
andaentey > Tvarll (= g genge piss
[question» G1.1

[Energi RHS
[P Om verksa [Entreprenad RES

) Fiske REES

1) Girdsbuti RESS

1) Girdshotell RES

] Gédstestaucang RHS

Poofier: Empty]

[qandaentry > Tvarvil]
[question > G1.2

[3akt RES
(2> Omverksa 1 et ris
Boofier: Empty] Gandaentry|

[qandacntry » [question» 1.3

P22 > Om verksamheten ar tilstindspliktie, lamnas drigen en miljérapport till Svenska miljérapporteringsportalen? pard

‘question]

for manniskos

content/images/Nordstrom01-011.png
9 -4 [eXist-db localhost|
¢ Bdb
> 8 apps
¢ @if
o 8 mhs
o8 rhs
? @ system
¢ 8 common
o @ linkbase
o @ profiles
o @ schemas
o 8 xquery
o @ xsit
¢ 8 mhs
o @ xml
o @ xquery
o @ xslfo
o @ xsit
o 8 pdf
¢ @ rhs
o @ xml
o 8 xquery
o @ xsit
o @ tmp
o @ work
o [@ system

content/images/Nordstrom01-001.png
A107

Underhalls och kontrolleras fordonens bromsar, inklusive parkeringsbromsen regelbundet?

Al08

Kontrolleras regelbundet att traktordrag och dragégla ar intakt och inte forsliten och att
hitchkrokar har fungerande lasning?

A109

Anvands midjeblte vid traktorkbming?

At10.10

Arden som kbr fyrhjuling minst 16 & och har giltigt férarbevis?

content/images/Nordstrom01-006.png
9 -8 eXist-db localhost
¢ Bdb
> 8 apps
¢ @if
o @ mhs
o8 rhs
o @ system
? B8 work
¢ 8 mhs
o @ checkiists
o @ facts
o @ standardtexts
¢ 8 hs
o B checkiists
o @ facts
o @ standardtexts
o system

content/images/Nordstrom01-007.jpg
o

qundsenny)| ¢
para) Anvid &

Insert
Section
Link

Generate IDs

ucstion]

e Empt) |

[qandacntry)|

para) Ar q

ook epersions
st

Text

Refsctorng

e

] associatefact AL
5 AddorreplacenodeD AlFS
Nl

fgt orarbevis? < para] < questic

Finds matching resource(s) based on node ID

content/images/Nordstrom01-008.jpg
dbzarticle >
@=> Article: Matchande resurser @z

[db:para > Klicka pa XInclude-lankarna nedan for att oppna de matchande resurserna. < db:paral

siinctude > # http://31.216.36.169:8080/exist/rest/db/Irfworl/mhs/facts/A10-8-Kontroll-av-dra-node-id-A10-8-2015-04-16-0200.xml

s> [ie> Section 1: Kontroll av drag

[para > Drag och dragaglor ska konrolleras regelbundet. Slitna dragoglor ska bytas ut. Se tl att hitchkroken lises ordentigt vid varje tilkoppling. ¥
stora pifestning detta innebir pd hitchkroken. <(para] (sectl] sfinclude] dbarticie]

content/images/Nordstrom01-009.png
A10.7 Underhalls och kontrolleras fordonens
bromsar, inklusive parkeringsbromsen
regelbundet?

A10.8 Kontrolleras regelbundet att traktordrag
och dragagla ar intakt och inte forsliten
och att hitchkrokar har fungerande
lasning?

A10.9 Anvands midjeblte vid traktorksrming?

content/images/Nordstrom01-002.png
A10.7 KONTROLL AV BROMSAR
De ir viktige art kontrollera fordonens bromsar, inklusive
parkeringsbromsen, regelbunder. En
traktor/fordonskombination ska ha en stoppstriicka kortare
in 19,8 m f6r en trakeor som gir i 40 km/h och 12,3 m fér en
traktor som giri 30 km/h. En slipvagn kopplad tll trakeor
miste vara utrustad med bromsar, om dess bruttovike ir stérre
in traktoms bruttovike.

A10.8 KONTROLL AV DRAG
Drag och dragsglor ska kontrolleras regelbunder. Slitna
dragiiglor ska bytas ut. Se till att hitchk roken lises ordentlige
vid varje tillkoppling Varsirskilt observant pi lastvixlarvagnar
och den stora pilfrestning detta innebir pi hitchkroken.

A10.9 REKOMMENDATION OM BALTE | TRAKTORN

Med anledning av det skade antalet olyckor med traktorer
rekommenderas att alltd anviinda midjebile i traktorn.
Detsamma giller passagerarstol. Midjebilte ger automatiskt en
bittre sitstillning, vilket skonar rygg och hifrer.
Rekommendationen stods av LAMK, Lantbrukets
arbetsmiljskommitté. (Rekommendation)

content/images/Nordstrom01-003.jpg
User info

<oXygen/>
||
LRF

content/images/Nordstrom01-004.png
checklists

export
standard-texts °

users
checklists
facts
pub standard-texts o
& users
images

facts
html

standard-texts

checklists

standard-texts
images

Irf
checklists
export

facts
checklists

htmI

trash
common

system /

checklists

mhs facts
standard-texts °

checklists

content/images/Nordstrom01-005.png
Fakta for AIB.8

Kontroll av drag

Drag och dragéglor ska kontrolleras regelbundet. Slitna dragsglor ska bytas
ut. Setill att hitchkroken lases ordentligt vid varje tillkoppling. Var sarskilt
observant pa lastvaxlarvagnar och den stora pafrestning detta innebar pa
hitchkroken.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

