[image: Balisage logo]Balisage: The Markup Conference

Diagramming XML
Exploring Concepts, Constraints and Affordances
Liam R E Quin
XML Activity Lead
W3C

<liam@w3.org>

Balisage: The Markup Conference 2015
August 11 - 14, 2015

Copyright ®2015 W3C® (MIT, ERCIM, Keio, Beihang)

How to cite this paper
Quin, Liam R E. "Diagramming XML." Presented at: Balisage: The Markup Conference 2015, Washington, DC, August 11 - 14, 2015. In Proceedings of Balisage: The Markup Conference 2015.
 Balisage Series on Markup Technologies vol. 15 (2015). https://doi.org/10.4242/BalisageVol15.Quin01.

Abstract
The growth in popularity of “Big Data” has brought an increased
 interest in visualization; that is,
 in software that draws graphical representations of data in the hope
 that a human observer can spot emergent patterns. Visualization takes
 data and shows a usually incomplete view.
People working with XML documents may have large amounts of data to
 visualize, in which case some of these techniques can be very effective.
 People may also wish to explore constraints on the XML documents, such as those typically
 expressed in an XML DTD or schema.
This paper will focus primarily not on data visualization of trends
 but on explicit visual representation
 of relationships: that is diagrams
 that illustrate a DTD schema, an XML instance, a universe of possible
 instances, and relationships between these things. Techniques used will
 focus on producing diagrams intended for use in Web browsers using
 libraries such as D3.js.
An underlying motivation for this work is to explore affordances
 peculiar to XML documents: to ask, what makes XML special, or, what
 would need to be reinvented if one were to abandon XML for other systems.

Balisage: The Markup Conference

 Diagramming XML

 Exploring Concepts, Constraints and Affordances

 Table of Contents

 	Title Page

 	Introduction

 	Diagramming an XML Document

 	Schemas and Potential Documents

 	Domain-Based Visualizations

 	Representing Paper

 	Beyond Two Dimensions

 	Interactivity and Animation

 	Interactivity, Foreground and background

 	Related Work

 	Conclusions

 	About the Author

 Diagramming XML
Exploring Concepts, Constraints and Affordances

Introduction
A visualization in general is a
 spatial presentation of data or information: the effectiveness of a
 visualization depends on the human ability to process what is seen and to
 recognize patterns. The term includes diagrams and drawings of concepts,
 illustrations, and, of particular interest here, data visualizations, in
 the sense of Owen 1987.
A data visualization (for the purpose
 of this paper) is the act of (or the result of) presenting data using an
 automated algorithm (possibly with manual intervention or tweaking).
 Vis
A diagram (for the purpose of this
 paper) is a visualization of information that is explicitly designed by a
 human: one might think of the distinction between a visualization in
 general and a diagram in particular as similar to the difference between a
 graph plotted based on a formula and a drawing.
The object of this paper is
 to explore ways to create visualizations and diagrams relating to XML documents and their schemas,
 diagrams that are specific to XMl and the ways that XML is used.
 The goal of these graphics is that they be in some measure:
	Elucidatory
	that is, that they form a part of an explanation of the XML in some way;

	Pedagogical
	that is, that the viewer may learn from the graphics;

	Æsthetic
	that is, pleasing to the eye.

Where possible, the graphics should also be accessible; that is, interactive features should be
 available for example to someone using assistive technology such as speech
 to text or a keyboard with no mouse or pointing device. These graphics are
 an alternate representation of schemas, DTDs and XML documents, and it
 does not always make sense to try to make them accessible to blind users
 where the alternate text description would typically be the DTD or other
 schema fragment being illustrated, but they should certainly work for
 people who are colour-blind for example.
The intended audience of the diagrams consists primarily of
 people creating documents and people trying to understand potentially very large XML schemas;
 some of the diagrams are also visualizations of collections of XML documents and information
 within them and may be of more general interest.

Diagramming an XML Document
Before starting to draw pictures we should understand the nature of an
 XML document. In a later section we will explore Document Type
 Declarations and various sorts of schema languages and constraint systems,
 but we should start with something as simple as possible.
The term XML document is defined only
 indirectly in the XML Specification: A data object is an
 XML document if it is well-formed, as
 defined in this specification. In addition, the XML document is valid if
 it meets certain further constraints. However, we also have,
 The function of the markup in an XML document is to describe
 its storage and logical structure and to associate attribute name-value
 pairs with its logical structures
 XML 1998. In other words we have a pragmatic test for
 whether something is an XML Document rather than a clear statement of what
 the term XML Document might mean. We read
 also that an XML Document has two aspects (and, lacking a third, cannot be
 divine): its storage structure, also called physical, and its
 logicalstructure. The physical aspect is sometimes referred to as an XML
 file, although in fact a single XML document might be formed from any
 number of computer files and a computer file much contain data for
 multiple documents.
An XML Document, then, may exist at several levels. Some of these are
 as follows:
	A representation inside computer storage (for example, a
 sequence of blocks on a hard drive)[1];

	A stream of data that forms a sequence of binary-encoded numbers,
 usually each of 8 bits (that is, having a range from 0 to 255),
 achieved by interpreting the binary numbers as “bytes;”

	A sequence of Unicode characters, achieved by interpreting the
 byte stream as being a sequence of encoded characters in which one or
 more binary numbers are combined to form each Unicode character[2];

	An in-memory representation of an XML document, perhaps accessible
 using the methods described in the XDM XDM 3.0 or DOM ; the XML
 specification does not mandate any particular storage
 mechanism;
Note that an application is free to build any data structure its designer chooses;
 this does not have to be complete. A program that extracts colours used by an SVG diagram
 would obviously not need to store the rest of the input, even temporarily.
This representation is achieved by parsing the sequence of Unicode characters using
 the grammar rules in the XML specification;

	An on-screen rendering of the in-memory representation,
 achieved for example using a CSS-based tree-renderer such as a Web browser,
 an XML editor’s user interface, an SVG graphics editor, and so on;

	A printed representation of the XML document,
 perhaps achieved using XSL-FO, XML or HTML with CSS,
 proprietary tools such as InDesign, or with some other toolset.

We can start with any of these; which is appropriate depends on our
 purpose. For example, someone developing a parser may want to see a
 representation of the input stream as a sequence of characters, to debug
 the mapping from character encodings to Unicode. Most readers of this
 paper are probably using existing XML tools so we will start instead with
 a logical representation.
Logical Representation
[image:]A minimal book diagram.

The diagram in Logical Representation is remarkable partly in its ugliness but chiefly in how
 little it tells the viewer. It shows a parent-child relationship
 between a book element and its contained title and chapter
 elements. The intent of such diagrams is usually two-fold: first, to give an indication of document hierarchy;
 second,
 to reassure the newcomer to XML that the logical model differs from the so-called
 “physical” model of markup characters and text. In fact, such a distinction is not as clear-cut as the beginner might like.
 A problem with this diagram is that the individual lines are not significant; neither are the boxes.
 Figure 2 (arguably) conveys the same information more succinctly.

Figure 2
[image:]
A more minimal illustration of hierarchy in an XML logical document instance.

We draw boxes and lines perhaps because they are familiar from other people who draw
 boxes and lines, and perhaps influenced by a variety of boxes-and-lines diagrams in computing.
 But this is the first of a number of examples in this paper where
 the “traditional” computer science paradigm is not
 a perfect fit for XML documents. Boxes are used to group things, but
 we only had one item in each box. Lines are used to indicate explicit parent/child
 references but in fact XML documents do not have such things. Instead, the parent/child
 relationship is inferred from containment.
A diagram showing a representation closer to how an XML document might
 be stored in computer memory is shown in Figure the Third, where the arrows represent direct reachability: an element object
 might contain a pointer or reference to a linked list of contained
 elements. Such a diagram is useful for computer programmers implementing
 XML-based systems but not so useful for authors and schema designers. The
 programmers may prefer (or need) more complete information, too, and,
 again, we will return to this with a UML-style example. Note that from a
 data structure perspective an implementation of a relationship that can be
 followed in either direction typically involves a pair of pointers, using
 more memory than unidirectional links and possibly requiring more care on
 the part of the programmer to maintain both ends of links
 correctly.
Figure the Third
[image:]
One way to store a model of an XML document in computer memory is
 to use a doubly-linked list for the children of each element and to
 have both a parent and a first-child pointer in each element[3].

In considering how XML documents may be stored we have strayed from
 logical models of XML documents to physical, where we started this section.
 The primary audience for this paper is not programmers writing their own
 XML parsers, since there are already a great many XML parsing libraries.
The simple diagrams we have shown so far do not show the textual content of a document, nor
 do they show XML attributes. One reason for this[4] is that a horizontal tree quickly runs out of room, both in print
 and on a computer screen. Transposing the tree can make more room. In Figure 4
 XML containment has been indicated with nesting. Attributes are still not shown.

Figure 4
[image:]
Using indenting and type size to show hierarchy
 and including some of the text from each element.

One of the goals of this paper is to apply some basic principles of
 graphic design to XML diagrams. We’ll gradually introduce ideas from graphic design
 in the course of the paper, but let’s start by adding some design flexibility.
 One way to get more room for the text in our diagram is simply to rotate it, as shown in
 Figure the Fifth. This does save space but at the expense of readability.
So far we have used only position to show hierarchy.
 Other ways to indicate hierarchy use size and colour. One way to use colour is to invoke
 artistic landscape composition and the associated phenomenon of human perception of distance,
 in which the brain perceives parts of an image coloured red and more highly saturated
 to be closer to the viewer than objects coloured blue and with less intense colour.
 The example in Figure the Sixth misuses this in a naïve manner.
 The problem is that, in a transcription of a printed book or manuscript,
 element names are generally less important in the hierarchy than the text,
 but the diagram shows them as large, warm-coloured foreground labels.
 A similar problem is common in highlighting colour schemes for computer programming
 languages: the keywords are often shown in bold, with variable and function names in grey or italics.
 It should if anything be the other way round.

Figure the Fifth
[image:]
Vertical text might admit more children at the expense of reduced readability.
 This is an example of the more general design problem of operating with externally-imposed
 constraints, such as display or paper sizes combined with human vision.

Figure the Sixth
[image:]
Using colour, size and saturation to indicate foreground and
 background may emphasize hierarchy in ways that are not appropriate.

 In this section we have used some simple diagrams to illustrate an XML document.
 Our purpose has primarily been to lay foundations for later sections:
 these diagrams are not XML-specific. In the next section we will contrast generic
 diagrams with diagrams specific to a specific subject matter or domain.

Schemas and Potential Documents
XML has the distinction of being the only markup system in widespread
 use today in which documents are commonly constrained in terms of what they can contain. An XML
 vocabulary can define not only a set of names, such as invoice, payee,
 total-amount, item, but also a set of rules that limit the content of
 elements, their placement, the relationships between them, and their
 quantity. One might want a rule that if you add up all of the individual
 item prices the total must match. A text-book publisher might insist that
 documents to be published in a particular series or imprint contain
 information on author, title and date at the start, together with chapters
 that each have a title and one or more paragraphs followed by a closing
 summary and student questions.
Some people come to an XML schema wanting to understand it for the
 purpose of changing it; others want to write software that processes
 conforming documents; in most cases (one hopes), the majority of people
 approaching the schema want to create conforming documents.
A graphical representation of the constraints surrounding an XML
 vocabulary could be a visualization,
 intended for exploration, or it could be a diagram, created by a designer for expository purposes. In
 practice any graphical representation will almost certainly be used for
 both exploration and storytelling, and so we see the wisdom in Alberto
 Cairo’s observation that there’s a continuous spectrum rather than two
 distinct sorts of picture Cairo 2013.
Let’s begin with considering a particular schema. For the purposes of
 this paper we will use the term schema to
 mean any set of constraints on documents, whether prescriptive or
 descriptive. Rather than draw the entire schema we’ll attempt to draw the
 content rules for a single element.
Elements in XML have associated attributes with values, they have
 contained elements, and they may also have immediate textual content. It
 is unusual for vocabularies to constrain the use of processing
 instructions of XML comments and although it sometimes done we will not
 consider it in this paper, because when it is done it is usually a special
 case of constraining elements. So our first attempt at drawing an element
 surrounds it with its attributes and the child elements it might contain;
 this is shown in Figure the Seventh.
Figure the Seventh
[image:]
Minimalistic-style drawing of a single element from a schema.

The vocabulary illustrated is NISO JATS, although that is not of
 particular concern in this paper. For our purpose what matters is the idea
 of illustrating a schema. This is not a new idea; a review of older
 diagrams shows us a wide range, from largely textual depictions of SGML
 DTDs shipped with SoftQuad Panorama™ in 1994 through Microstar Near and
 Far Designer diagrams all the way to complete UML and entity-relationship
 diagrams. A Near and Far Designer style diagram[5] is shown in Figure the Eighth (redrawn by the
 author using Inkscape).
Figure the Eighth
[image:]
A diagram in the style of the old Near and Far Designer tool,
 showing possible contained elements for the front element.

The Near and Far Designer diagram shows several things at the same
 time: the front element has a tilde after
 its name to show that an instance of that element in a document can accept
 attributes; a question mark at the start of a name indicates optionality;
 an asterisk indicates a group of elements of which any number (including
 zero) can appear in any order in a sequence. There is no explicit
 indication of sequence (it is implied by vertical juxtaposition) and no
 immediate indication of what any of the sub-elements might contain (in the
 application this could be obtained by actuating the represenation of an
 element, wherupon the application would insert the diagram for the element
 concerned, expanding the tree. This diagram format was marketed primarily
 for use by people working directly with an SGML or (later) XML document
 type definition and doing document analysis rather than for people editing
 a document, even though many people working with documents also found it
 useful.
Figure the Ninth
[image:]
A “Village” diagram of potential containment. The term “village
 diagram” is used by the author because these diagrams often resemble
 maps of small settlements of people and houses. Their primary
 characteristcs are that the children at each level are arranged
 relatively far from their parent but with their owm immediate children
 clumped closely around them; a danger for items to overlap is
 mitigated by having the children branch off at angles resulting in the
 child-clumps being arranged in a loose circle around their common
 parent. A more formal term is “multi-directional tree diagram” as used
 for example by Lima 2013 Chapter 04 but that
 conflates the widely-spaced clumping layout with the various
 angles.

The principle of progressive
 disclosure suggests that a diagram intended for authors
 should not go beyond immediate needs and should not show grand-child
 elements. But this would fail to take into account the goal that an author
 might have to insert an element that is not shown. In addition, in many
 XML vocabularies, most elements can be given attributes such as xml:lang or id
 so the indication of attributes is not very useful. Figure the Ninth shows an initial attempt by the author to
 produce an alternative design. Here, the hierarchy of potential
 containment is shown with text size as well as colour, and the lines are
 in colour to exploit a foreground/background visual illusion, in that they
 can be seen as primary (with a reddish tint) or as background (thin, not
 saturated, actually purplish). The names of potentially-contained elements
 have been rotated in a rough spiral around the names of their putative
 parents. From a design perspective this makes them secondary: the goal is
 to give indication of the elements beyond the current focus. This could be
 combined in an interactive application, for example by highlighting the
 elements that can directly contain text; Figure the Tenth does this using colour, but now something non-obvious has been
 introduced that requires a secondary explanation. In addition, neither
 sequence nor the presence of attributes is represented in these village
 diagrams; only the fact of possible containment.
The goal of Village diagrams is to give a quick indication of
 potential containment. The diagrams make little attempt to show the
 ordering of potential child elements, leaving that task to authoring
 software: in a content model of the form (a, b, c, (d | e | f)*, g, h, c)
 the initial elements are placed in required order but all other potential
 children are sorted alphabetically; the diagrams are to be read clockwise
 starting at the top of each cluster. These diagrams may appear
 “friendlier” or less intimidating than full UML-style diagrams, or even
 than the Near and Far Designer pictures, to people less accustomed to
 thinking in terms of complex abstract containment, athough this hypothesis
 has not been tested in usability studies.
Figure the Tenth
[image:]
The village Diagram re-imagined to highlight elements that can
 contain text.

We will return to Village Diagrams when we discuss interactivity, and
 we will return to the relationship between a document and its schema when
 we go beyond two dimensions. This section has illustrated a distinction
 between a tree constructed from a particular XML document instance (an
 actual tree) and a (possibly unbounded) set of possible trees implied by a
 schema. The difference means that representing a schema as a tree can be
 misleading: any given element might be allowed to appear in multiple
 points in a hierarchy in an instance document so that the grammar implied
 is not a strict tree: an element may have more than one potential parent.
 None the less, trees have been used for representing information for
 hundreds of years and their familiarity should not be underestimated.

Domain-Based Visualizations
The Extensible Markup Language, taken with the entire “XML Stack” of
 specifications and technologies, is really a complex system for defining
 domain-specific markup languages. These are sometimes called a vocabulary or, using an older term from SGML
 days, a tag set. The term vocabulary is
 used in this paper to mean a set of element names, together with attribute
 names, used in a particular way for any particular sort of document. A
 vocabulary often has constraints, such as requiring that an invoice has a
 total amount. Languages for expressing these constraints will be discussed
 in a later section under the generic name of schemas.
 Consider the situation in which one is given a set of XML documents
 and assigned the task of understanding them in some way. You might need to
 know which element names were used, or which attributes appear on which
 elements, or what is the longest single line of text, or whether any 8-bit
 characters occur. But more likely is that your task is to understand some
 things about the information represented by the documents.
 For sighted people, an efficient way to understand a lot of data is
 often to have the computer draw a picture of the data. Pictures and
 diagrams that are used to explore possible relationsips in data rather
 than being used to explain already-understood relationships to other
 people are called data visualizations.
 Peter Robinson wrote, a
 concentration on digital methods, for themselves, may neglect the base
 questions facing any editor: why is the editor making this edition; for
 whom is the editor making this edition?
 Robinson 1997 A similar question faces anyone creating
 visualizations: it is all to easy to get lost in the awesome and limitless
 beauty of artificial trees and to forget one’s true sense of purpose.
 Peter Robinson concluded, The great
 promise of electronic editions, to me, is not that we will find new ways
 of storing vast amounts of information. It is that we will find new ways
 of presenting this to readers, so that they may be better readers. To do
 this, we will have to teach our editions to swim to the
 readers.

Figure the Eleventh is a chord diagram generated by
 extracting cross-references from a dictionary of biography; the arcs
 represent entries that mention other entries. This sort of diagram is
 excellent for quickly finding “clusters,” or groups of related data—in
 this case people referred to often or people who refer to many others. The
 entry for Raphael in this diagram, for example, is connected to the entry
 for Peruguino and also to that for Duerer. A link from the article for
 Peruguino makes a connection that is here easily visible but might
 otherwise, in a dictionary with approximately 10,000 entries, be
 overlooked. A similar diagram showing places mentioned could be overlaid
 to give an idea of the likelihood that people worked together or knew one
 another.
Figure the Eleventh
[image:]
A Chord Diagram shows relationships between entries (in this case)
 or sometimes groups of entries. This particular diagram illustrates
 cross-references in a biographical dictionary, in this case restricted
 to cross-reference to or from entries for people alive at the same
 time as Erasmus. The size of each segment is proportional to the
 number of cross-references in the given entry. The colours are
 arbitrary here and do not convey information, but help the viewer to
 track the different groups of lines. Arranging the names around the
 circle by country of birth, or by date of birth, can make evident
 relationships that are not obvious from a casual reading of a single
 entry of the dictionary.

A chord diagram can be a useful adjunct to other navigation systems for a large
 corpus, especially when generated automatically. It can also be made interactive;
 we will explore this in the section on interactivity later in this paper.
 Important for our purpose here is that we can exploit a mixture of XML markup,
 domain knowledge about the document to find which element represent a person’s biography,
 and schema awareness to find ID values.

Representing Paper

 Figure the Twelfth shows a visualization made by
 overprinting successive pages of a book. The top of the figure is fairly
 regular, with shadows caused be ascenders and descenders; towards the foot
 of the page one can see the double-column shadows of footnotes. The faint
 line at the very bottom is where a double-page spread was set longer,
 probably to avoid an awkward heading placement on the next page.
Figure the Twelfth
[image:]
Overlaying multiple pages of a book.

The example of overlaid printed pages shows how a visualization might
 be of use to different people. If you show a printed book to an
 experienced printer or publisher you’ll see them lift the book up to the
 light and peer through the paper. They are testing the quality of “back
 up,” the alignment of lines of type on both sides of the paper, because
 care taken in this affects the amount of “show-through,” distracting and
 unsightly shadows from the past and future appearing between the lines of
 the text.

Beyond Two Dimensions
We have seen examples of diagrams in which text is rotated, either as
 a partial circle or,
 as in the village diagrams, at other angles. In this section we will examine some
 visualizations that use three spatial dimensions.
 A three-dimensional diagram can be used to provide extra space,
 or to show increased detail in the centre of a picture without entirely
 losing the information at the edges.
 This sort of diagram is a simulated three-dimensional projection.
 Figure the Thirteenth shows a village diagram projected onto the surface
 of a three-dimensional surface, giving an egg-like effect. This turns out to have
 more visual appeal than practical application, but similar “hyper-focal” elliptical projections
 have been used in commercial product, including SoftQuad’s HoTMetaL Pro™, with
 some success. What makes these projections useful is that you can move the “lens”,
 or rather, move the “paper” beneath a fixed lens, to magnify different parts of
 the diagram at pleasure.

Figure the Thirteenth
[image:]
A village diagram projected onto the surface of an egg is useful
 only if you can move the canvas (or move the egg) easily. User
 experience is central to the success of applications that use 3D
 techniques because skills and knowledge demanded of the user tend to
 be specialized.

Another approach to a third dimension is to construct virtual three-dimensional models
 which a user can then manipulate, examine, rotate and explode.
 Figure the Fourteenth shows a deconstructed view of a single page of a printed
 book. In the figure, the page apparatus, annotations and cross-references, the central Biblical
 text and the commentary are each represented as a separate layer. This is a three-dimensional
 model created using the libre software package
 Blender. A Web-based object renderer can show this object
 and allow a user to rotate it, to zoom in and view it from different angles, and, like the present
 writer, to become lost and confused. The figure uses a background gradient in order to help
 orient the viewer; this is especially helpful if the view becomes accidentally inverted.

Until such time as user interfaces for Web based model viewers are designed
 with user experience in mind, three dimensional work seems to be of limited utility.
 In addition there is today difficulty in software portability, although Web browser support
 for 3D object rendering is improving and, at the time of writing, becoming portable.

Figure the Fourteenth
[image:]
A three-dimensional “exploded view” of a printed page makes apparent
 the various parts.

Interactivity and Animation
 The Chord diagram in Figure the Eleventh was generated
 using XQuery (with the BaseX implementation) to generate a JSON document
 read by a JavaScript that uses the D3 library. The layout mechanism used
 is a parametrized force directed layout Meirelles 2013
 pp. 64ff. Thomas 2015 contains a worked example that may
 be instructive.

 It is possible to generate a D3 diagram from XML rather than
 from JSON, and even to use D3 to animate or lay out an existing SVG document. However,
 almost all of the easily-available examples use JSON, at least in part because of the
 simplicity of loading JSON in JavaScript.

Using JavaScript in the Web browser brings an added dimension to the diagrams.
 We can animate them and make them respond to the mouse pointer.
 Figure the Fifteenth is drawn and laid out using the D3.js JavaScript library;
 it shows that an article element can contain
 sub-article,
 front,
 body and
 floats-group sub-elements and gives indication
 of what each of those elements may in turn contain.
 in this version the text labels are all horizontal, but the final layer of potential
 containment are again drawn in a spiral. They use an italic typeface because
 italic is economical of space and has relatively high readability when displayed
 at an angle.

 If you drag a mouse pointer over one of the element groups in the diagram,
 nothing will happen, because this paper uses static reproductions of the diagrams.
 However, in a live version the sub-elements are brought to the “foreground” by
 becoming darker, as shown in Figure the Sixteenth

Figure the Fifteenth
[image:]
A “spiral” village diagram implemented in a Web browser using the
 D3.js JavaScript library. The circles behind each main label were
 added to show the user that the individual groups can be dragged
 around with a mouse (or finger); such visual indications of possible
 interactions are known as affordances.

Figure the Sixteenth
[image:]
The active element group is shown with darker sub-elements,
 bringing them (in an artistic compositional sense) to the foreground.

A combination of interactivity and animation can be effective in
 encouraging users to explore a diagram. An alternate way to present a tree
 is to use nested circles to indicate containment, and Figure the Seventeenth
 shows a circular treemap illustrating DTD-based potential containment.
 This diagram also includes attributes (prefixed with an @-sign), and marks
 optionality and cardinality with *, ? and + as in a DTD. Circular treemaps use
 a lot of space, unfortunately, but they may be helpful in teaching people
 about element containment.

Figure the Seventeenth
[image:]
A circular treemap (as
 described by Lima 2013). Different labels become more
 or less readable at different levels of zoom, initiated by clicking on a circle.

A more traditional presentation of a DTD uses a tree;
 Figure the Eighteenth shows such a tree, drawn using
 D3.js and software to parse a DTD and generate JSON; it would be
 possible to write that software in JavaScript and have the Web browser
 read the DTD directly, or to transform an XML Schema using XSLT.
 Figure the Nineteenth shows the same diagram after
 a user has interacted with it by pressing some of the boxes to the right of the labels.
 Pressing once expands, and pressing again hides the sub-tree.
 A space-saving tree layout is used, creating a relatively compact view
 despite the apparently wide spacing. The expansion actually occurs over
 approximately one-fifth of a second, so that there is a strong sense of
 expansion and collapse. The motion turns out to be quite rewarding and
 strongly encourages exploration.

Figure the Eighteenth
[image:]
The initial view of the DTD shows the root element and the top-level elements
 that it might contain. In this case there are XML attributes, a required metadata element
 and an or-group suggested by a star (★).

Figure the Nineteenth
[image:]
This figure shows the same diagram as the previous figure,
 after the user has clicked on some of the “expansion” boxes to the
 right of the labels.

The interactive nature of a Web browser with JavaScript can blur the distinction
 between document and application. The power this gives must be balanced by the responsibility
 to create Web pages and applications that people can actually use.
Figure the Twentieth
[image:]
A more complex chord diagram; when there are more then 360 labels
 some overlap starts to occur at the periphery. This could be mitigated using
 similar grey/black foreground/background techniques to those used in
 some of the other diagrams.

Figure the Twentyfirst
[image:]
When the user “hovers” over a name or the corresponding circle segment,
 only the arcs corresponding to that name are shown. Additional text is also
 shown; the text in this figure is in “debugging mode” rather than user mode.
 Note that popping up text can have accessibility problems even for sighted users,
 so the actual application displays the text elsewhere along with other domain-specific
 information.

Interactivity, Foreground and background
The chord diagram from the previous section is already complex enough
 that it becomes difficult to use on smaller screens. An interesting
 application of chord diagrams might be an interface to allow users to
 explore containment in a schema, showing the might-contain and
 might-be-within relationships. But in a large schema the circle would be
 too large.
One way to mitigate visual complexity is to use the human vision
 system’s ability to discriminate between foreground and background. The
 use of colour has already been mentioned in the discussion of Village
 Diagrams, with warm colours (red, orange) being perceived as closer to the
 viewer than cold colours (blue, green). The use of focus can also help the
 vision system to “pre-process” an image and draw attention to pats
 perceived as foreground: blurring the edge of items as a function of
 distance leaves the sharp-edged foreground items prominent.
Complex three-dimensional diagrams benefit greatly from simple
 artistic techniques such as systematic colour choice and blurring to
 simulate distance. Although the three-dimensional diagrams are too complex
 to achieve with D3 and JavaScript in the scope of a short paper, the
 techniques also apply to simpler diagrams. Blurring and fading in
 particular can be an effective alternative to “progressive disclosure,”
 indicating where further information is available but without distracting
 the user. A sharpening technique with colour value is used in the
 interactive Village Diagrams to bring an element’s potential children to
 the foreground when the user indicates interest.

Related Work
People have been writing programs to draw diagrams based on SGML and
 XML documents. Wendell Piez, David Birnbaum, David Dubin, Michael
 Sperberg-McQueen and others have presented diagrams at Balisage and the
 preceding series of conferences, Extreme Markup.
The use of tools such as D3 with XQuery is not new, although using the
 D3 library to draw XML-specific relationships appears at best
 uncommon.
The primary contributions in this paper (the author hopes) are the use
 of the Web browser and JavaScript to make interactive diagrams and
 visualizations; systematic use of principles and technique from the fields
 of graphic design and representational art; an emphasis on some
 XML-specific sorts of relationships such as potential containment coupled
 with a minimalist reductionism to try to make the diagrams simple and
 clear.

Conclusions
XML Documents exist as part of a rich ecosystem of schemas, constraints,
 potential documents and actual documents, transformations and relationships.
 Data visualization and diagramming techniques can help people to perceive
 and understand relationships in new ways.
The Open Web Platform has matured to the point where Web browsers can
 display SVG and can perform sophisticated visualizations that can be
 created, modified and even animated with JavaScript; JavaScript libraries
 such as jQuery and D3.js simplify the work of doing this considerably.
This paper has shown examples of visualizing: information in XML documents;
 XML documents and their structure; XML documents and their relationships with
 XML Schema constraints;
 and also the universe of potential XML documents that an XML Schema defines.
 Some of these visualizations are unique to constrained markup languages such
 as XML with a Schema, and perhaps also help to illustrate some of the value of
 using a Schema even if that Schema is not prescriptive.
Finally, some discussion of graphic design and artistic composition has
 been applied to visualization and diagram techniques; this is a subject
 for which there are many examples and few tutorials.
The author hopes this paper will encourage readers to explore visual
 representations for themselves, and also that the paper will help readers
 to explain some of the benefits of using XML to other people.

Bibliography
[XML 1998] Bray, Tim, Paoli, Jean,
 Sperberg-McQueen, C. M., Maler, Eve and Yergeau, François, Extensible Markup Language (XML) 1.0 (Fifth
 Edition), W3C, 1998; the latest version is always online at
 http://www.w3.org/TR/REC-xml/
[Cairo 2013] Cairo, Alberto,
 The Functional Art: An introduction to information
 graphics and visualization, New Riders, 2013. A useful book
 with significant amounts of discussion and examples used to illustrate
 points rather than being chosen primarily (or only) for aesthetic
 reasons.
[DOM] Le Hors, Arnaud, et al., Document Object Model (DOM) Level 3 Core
 Specification, W3C, 2004; available online at http://www.w3.org/TR/DOM-Level-3-Core/.
[Lima 2013] Lima, Manuel, The Book of Trees: Visualizing Branches of
 Knowledge, Princeton Architectural Press, New York, 2013.
 Includes both an historical perspective and clear descriptions of a number
 of ways of displaying trees based on a simple category
 system.
[Meirelles 2013] Meirelles,
 Isabel, Design for Information, Rockport,
 2013. Many examples and some principles,such as figure/ground, influenced
 by graphic design.
[Owen 1987] Owen, Scott, ed.
 HyperViz - Teaching Scientific Visualization Using
 Hypermedia (A project of the ACM SIGGRAPH Education Committee,
 the National Science Foundation (DUE-9752398), (DUE 9816443) and the
 Hypermedia and Visualization Laboratory, Georgia State University); see
 article Definitions and Rationale for Visualization, last
 updated October 1999.
 http://www.siggraph.org/education/materials/HyperVis/hypervis.htm.
[Robinson 1997] Robinson, Peter. What text really is not, and why
 editors have to learn to swim, in Literary and Linguistic Computing,
 Vol 24, No. 1 (2009). doi:https://doi.org/10.1093/llc/fqn030. Originally written in 1997.
[Thomas 2015] Thomas, Stephen A.,
 Data Visualization with JavaScript, No Starch Press, 2015.
 Although the coverate of trees and tree-like structures is limited, this book makes few
 assumptions about the background of the reader and is particularly helpful for those people
 less confident with the JavaScript language.
[XDM 3.0] Walsh, Norman, Burglund,
 Anders, and Snelson, John, XQuery and XPath Data
 Model 3.0, W3C, 014; available online at http://www.w3.org/TR/xpath-datamodel-30/.

[1] We will for the purpose of this paper ignore details of file
 system block allocation, mainframe fixed record padding,
 cross-system byte size variations, and many other technical
 details, and will consider a computer file to be a sequence of
 bytes, each of which has a numeric value in the range 0..255
 inclusive, while recognizing that this is itself an
 abstraction.
[2] Strictly speaking the sequence can use a non-Unicode encoding,
 but the resulting XML document, at least conceptually, is made
 from a sequence of Unicode characters.
[3] A more efficient approach (in both space and time) is to use a
 finger-tree, but that is wandering outside the scope of this
 paper.
[4] apart from the fact the author didn’t include them in the pictures!
[5] Version 3 of MicroStar Inc.’s Near and Far Designer included both
 SGML and XML DTD support.

Balisage: The Markup Conference

Diagramming XML
Exploring Concepts, Constraints and Affordances
Liam Quin
XML Activity Lead
W3C

<liam@w3.org>
Liam is on the staff at the World Wide Web Consortium, working
 from home in rural Ontario.

Balisage: The Markup Conference

content/images/Quin01-009.jpg
£l 5
uw $ % e L A./&/
% r% S «\s,é 3 A%.fo
o 2. Oy 0P bo 4 ¥ >
m AEEE £ T BEILE & o
7, ~ & x, o &
3 = S o5t w?wao%w Q rnfmv &
(2 g\os q Y T Q
< (®) SaAITeUIR) B .rO R
% z Wa Q0 table-wrap
@ Sy tab)e.
S ,W\dvll S\ﬁmU:%w
dno,g.,, donp_ %4 roup
“Eny, ,Q&B
Uedsip M
Bnw.oj-dsip N
um,./\wa% 2 S o
Jas %85 §
0 3
U‘JJ mm AMVOQ D& @ &
% a Yoy
3 woy sub-article

sub-article
B
eSPOnSe

content/images/Quin01-015.jpg

content/images/Quin01-014.jpg

content/images/Quin01-013.jpg
Hi%
i
Ha,,\
_3 WA
;9
o.,@
be V_A\m
ew,q@ Jm
__%o
o8
)
] U
o % m
% ; B |
:

content/images/Quin01-012.jpg
M

content/images/Quin01-019.png
@.- @xmins:mtl

mtllaglibdefs.— _ elem.sec intro) ’

(context.entry)+

context.inf

(UL

content/images/Quin01-018.png
mtllaglibdefs.— _

content/images/Quin01-017.jpg

content/images/Quin01-016.jpg

content/images/Quin01-011.jpg
munstersebasian —
more-svihomas
menlageowe —

content/images/Quin01-010.jpg
o S <
2 a 7 g o o
o — ~ \V.
o 3 @\s,b L S
" .
%, %wo m,v.% wm %S .‘u&av& c&#ﬁ@ Goc L ohn %,0/. fofAO 3@9&?
7vs ESENY S, 2 Q'
» & . X3y Yo &
Sy £ refAISt Prog
} 5 ©, notes seAnewsye QO table-wrap
5 L o Lo tabe.
[: wr,
2 & ap-
8 13 8roy
5,50 ’
Q:Q%, Slonp_ o4
m\ztt ,QM\B
Udsiy A,
Bnwio)-dsip
um,./\wm%v M S g
R %J;w. L ® o2 2
3534 % 5 8
FR2% % %88
5 g Mo 2= 7 7
QI» o
< 0y .
8 wousub-article

[}

S o
sy, A £ 3
Vgon 2% T S
m,NWE: ,\&G = © : DO.

3 EN]

(RIS a e

.Nco wn O

el1aW-jeunol iy

content/images/Quin01-004.png
book

title
The Itinerary of John leland the ...

chapter

From Cambridge to Eltesle Village

chapter
The toune of Pykering is large but

chapter
As the Servants of Mr. Ellis of ...

content/images/Quin01-003.png
book

title<<—>chapter «—>chapter <<—>chapter

content/images/Quin01-002.png
book

title chapter chapter chapter

content/images/Quin01-001.png
book

title

cha

pter

cha

pter

chapter

content/images/Quin01-008.png
? journal-meta ~

article-meta ~

front ~

def-list ~

list ~

ack ~

* blO =

fn-group ~

glossary ~

notes ~

content/images/Quin01-007.png
@article-type
@dtd-version
@id
@specific-use
@xml:base
@xml:lang
@xmlns:mml

@xmlns:xlink

@xmlns:xsi

article

front
body
back
floats-group

sub-article

response

content/images/Quin01-006.png
book

title

The Itinerary of John leland

chapter

From Cambridge to Eltesle Village

chapter

The toune of Pykering is large but

chapter

As the Servants of Mr. Ellis of ...

content/images/Quin01-005.png
book

chapter chapter

chapter

title

As the Servants of Mr. Ellis of ...

The toune of Pykering is large but

From Cambridge to Eltesle Village

The Itinerary of John leland the ...

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Quin01-021.jpg
= agricol-rodolpht

I spipopnenrycc

pisorivs johy

sesiiaies = e

phieiphus:francis — comaris

praves £0rt-comeiy
eu B g,
s

content/images/Quin01-020.jpg
R opher
pies

e

ymond-john
et
=1 -
3
T

clay
— comarus.

dhopo-gooye

 e—

i

pisorius
phiefphus:francis —

=

