[image: Balisage logo]Balisage: The Markup Conference

Web-Based Job Aids Using RESTXQ and JavaScript for Authors of XML Documents
Amanda Galtman
Documentation Tool Developer
MathWorks

<Amanda.Galtman@mathworks.com>

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © 2016 The MathWorks, Inc.

How to cite this paper
Galtman, Amanda. "Web-Based Job Aids Using RESTXQ and JavaScript for Authors of XML Documents." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup Conference 2016.
 Balisage Series on Markup Technologies vol. 17 (2016). https://doi.org/10.4242/BalisageVol17.Galtman01.

Abstract
Using XML as the source format for authoring technical publications creates
 opportunities to develop tools that provide analysis, author guidance, and visualization.
 This case study describes two web applications that take advantage of the XML source format
 of documents. The applications provide a browser-based tool for technical writers and
 editors in a 100-person documentation department of a software company. Compared to desktop
 tools, the web applications are more convenient for users and less affected by
 hard-to-predict inconsistencies among users' computers. One application analyzes file
 dependencies and produces custom reports that facilitate reorganizing files. The other helps
 authors visualize their network of topics in their documentation sets.
Both applications rely on the XQuery language and its RESTXQ web API. The visualization
 application also uses JavaScript, including the powerful jQuery and D3 libraries. After
 discussing what the applications do and why, this paper describes some architectural
 highlights, including how the different technologies fit together and exchange data.

Balisage: The Markup Conference

 Web-Based Job Aids Using RESTXQ and JavaScript for Authors of XML Documents

 Table of Contents

 	Title Page

 	Making Life Easier for Authors

 	Application 1: Reporting on File Reorganization
 	Web Form and Step-by-Step Procedure

 	RESTXQ Usage in XQuery Module

 	Separation of Analysis and Formatting
 	Alternate Approach Using XSLT

 	Unit Testing for Analysis Functions

 	Application 2: Visualizing a Network of Linked Topics
 	Small Multiples and Iterative Behavior

 	Boundaries Between XQuery and JavaScript

 	Calling from JavaScript to XQuery

 	Passing Data from XQuery to JavaScript
 	Script as an XQuery Return Value

 	JSON Serialization

 	Data Processing After JavaScript Regains Control

 	Challenges

 	Conclusion

 	About the Author

 Web-Based Job Aids Using RESTXQ and JavaScript for Authors of XML Documents

Making Life Easier for Authors
Publishing organizations have known for years that structured markup languages can
 facilitate processing of documents into final deliverables. Historically, a big challenge has
 been making the markup palatable to authors. In two specific browser-based applications that
 take advantage of the XML format, authors have come to see XML as an ally, and not just a
 necessary evil.
The applications analyze dependencies among files and topics in potentially large sets of
 documentation topics, and they deliver relevant information to authors using a web browser.
 The technologies behind the applications are XQuery [R4], its RESTXQ
 web API [R2], [R3], JavaScript, and popular
 JavaScript libraries. The applications described here are used in a 100-person documentation
 department and are not publicly available. However, the underlying technologies are available
 to you. This paper shows you enough about possibilities and techniques to inspire you to
 create your own web applications that combine powerful XML data processing with user-friendly,
 robust, and potentially dynamic interfaces.

Application 1: Reporting on File Reorganization
The first application helps authors move XML files and associated graphics files within a
 file system, without breaking dependencies and without violating business rules of the
 company. It is more cost-effective and less frustrating to make the right set of changes once
 than to iteratively break and fix things. In 2015, a change in business rules caused the
 documentation department to move several hundred files that were connected to hundreds of
 other files through file references. The volume of work and the potential complexity of
 dependencies meant that having authors manually analyze dependencies would be inefficient and
 error-prone.
At the other extreme, designing and implementing a push-button tool that analyzed
 dependencies, moved files, and interacted with the software configuration management system
 would have required more tool development time than was available. To address the core need
 within a reasonable time period, we chose the middle ground and developed a web application
 that analyzes dependencies and provides guidance. One manager said that her group found the
 guidance helpful: "Quite a few people were a bit concerned about this work but, once they
 followed the instructions, they got it done very quickly." Over 90% of the file moves were
 completed in less than a year.
Web Form and Step-by-Step Procedure
To use this application, authors submit a form in a web browser that indicates the file
 to move, the new location, and which of two computing clusters they use. In the browser, the
 application displays a report describing a procedure for moving the file and addressing all
 its dependencies. The following sample report indicates in step 4 that moving the XML file
 necessitates moving its referenced graphics files to comply with business rules. In step 5,
 the report indicates which references to the relocated graphics files also need to be
 updated in other XML source files.
[image:]
The web interface was more appealing than alternatives for two reasons:
	Convenience for authors. They do not need to install anything new or look up a
 command-line syntax.

	Timing. When we developed this application, the department was planning to switch
 XML editors. A tool that ran only in the old editor would have become obsolete quickly.
 By contrast, a web application is independent of the XML editor.

The next three sections discuss the technical details of how RESTXQ turns XQuery
 functions into web applications, ways to separate analysis code from formatting, and unit
 testing techniques.

RESTXQ Usage in XQuery Module
The file reorganization application is a simple web application, with a single form that
 leads to a static report. This application was a good way to start exploring the RESTXQ web
 API, building on our group's prior experience with XQuery. RESTXQ is a good fit for the
 technical requirements of this application, providing a way to make a web browser call
 XQuery code when the author accesses a URL associated with the code. The XQuery code can
 access XML files in a file system, or in a database compatible with the RESTXQ
 implementation. In this case, there was already a BaseX database associated with the XML
 source files.
Using the BaseX [B1] engine for the XQuery language, we developed a
 single module file that defines a series of XQuery functions. Here are how the functions
 correspond to the author's actions in the browser:
	The author points the web browser at a specific URL that ends with
 move-xml. A RESTXQ annotation, %rest:path("move-xml"), in
 the declaration of a particular XQuery function in the module tells BaseX to invoke that
 function [R1]. The job of that function is to return HTML markup
 so the browser can render it. As a result, the browser renders the form.

	The author submits the form, causing BaseX to invoke a different XQuery function in
 the module. This function returns the HTML markup for the report, including text content
 tailored to the particular file that the author wants to move. In the course of
 computing the correct HTML markup, the function calls other functions, as described
 next.

We use the same BaseX database to do bulk reporting on file dependencies, chiefly to
 help identify files that are shared or unused. Instead of using a web application for the
 task, the bulk reporting uses cron jobs that create Excel reports. We chose this approach
 because analyzing the whole file set is time-consuming and because the requirements for bulk
 reporting do not make a compelling argument for a web application.

Separation of Analysis and Formatting
If you work with XML documents or HTML5, you are familiar with the idea of separating
 semantics or content from presentation or styling. By design, the XQuery module for this
 application mostly separates the data analysis, such as looking for file dependencies in the
 XML documents, from the formation of HTML markup for the browser. Separating these concerns
 makes it easier to write unit tests for the analysis code and easier to change the
 appearance or organization of the HTML report.
For example, one step in the report instructs authors to update XInclude references from
 the XML file they are moving to other XML files. Behind this step are these XQuery
 functions:
	filemove:xincludes-within-file — Finds the XInclude references and
 returns their href attribute values as a sequence of strings.

	filemove:html-xincludes-within-file — Takes the sequence of strings as
 an input argument, and returns a sequence of HTML <p> and
 elements that the author ultimately sees in the browser. The
 prefix html- in the function name is a naming convention throughout this
 XQuery module.

The unit test module has these corresponding test functions:
	test:xincludes-within-file — Tests that
 filemove:xincludes-within-file identifies the correct XInclude references
 and returns the results in the expected data structure.

	test:html-xincludes-within-file — Tests that
 filemove:html-xincludes-within-file produces the expected HTML markup for
 different input patterns, including the case where there are no XInclude references to
 report.

Alternate Approach Using XSLT
An alternate way to achieve the desired separation would be to make the XQuery module
 produce not HTML markup, but rather intermediate XML markup that links to an associated
 XSLT stylesheet. The author's web browser would receive the XML markup, apply the XSLT
 stylesheet to it, and render the resulting HTML markup. This approach would include
 additional components in the implementation: a design for the intermediate XML markup, the
 XSLT stylesheet, and potentially an XSpec unit test file for the XSLT. Analysis functions
 in the XQuery module would return data as XML markup fragments instead of as sequences or
 maps.

Unit Testing for Analysis Functions
Multiple unit testing frameworks exist for XQuery, some of which are vendor-specific
 [W1][X1][V1]. Because we use BaseX to develop and deploy the web
 application, we use the BaseX unit testing module for testing [U1]. We have unit tests for all the analysis functions and most other functions. The unit
 tests reside in a separate XQuery module that imports the main XQuery module for the file
 reorganization application.
For some functions, unit testing is straightforward; you call the function with
 representative but simple input arguments, and use unit:assert() or
 unit:assert-equals() to check that the function returns an expected
 result.
For other functions, we use a set of XML files with known dependencies on other XML
 files to be able to check that the analysis functions find the correct set of dependencies.
 Basing tests on production XML documents would make the tests unstable because the XML
 documents change over time. Instead, we use a small set of test documents. The test module
 includes a setup function that creates an XQuery database with the test documents. In the
 declaration of this setup function:
	The %unit:before-module annotation makes BaseX call this function
 before executing the test cases in the module.

	The %updating annotation indicates that the function updates a database
 [S1]. In this case, the function creates a database
 using the BaseX function, db:create [D1].

After the setup function executes, unit tests can use the testing database when calling
 the functions under test.

Application 2: Visualizing a Network of Linked Topics
The second application for XML authors helps them visualize the topic network in their
 DocBook documentation sets. A topic network is a collection of HTML topics and the hyperlinks
 that interconnect those topics. Inter-topic links make it easy for customers to consume a
 collection of related HTML topics. In Every Page Is Page
 One, Mark Baker uses the phrase link richly to describe one
 of seven fundamental characteristics of effective web topics [B2].
Given the importance of links, we wanted a way to visualize the links among topics in a
 way that would help authors gain insight into the topic network they have created. We already
 have ways to create links, modify links, and navigate via links, but nothing visual. This
 diagram uses boxes to represent topics and arrows to represent the links. Solid arrows link
 among the topics shown, while dashed arrows link to topics that are not shown.
[image:]
One challenge is that links and topics in realistic topic networks are too numerous to
 represent using typical directed-graph diagrams. We are only in the early stages of designing
 effective, readable visualizations of topic networks. At the same time, we have learned useful
 technical points that are worth sharing here. We describe a way to combine XQuery with
 JavaScript in a web application that graphically depicts characteristics of XML documents and
 supports iterative exploration.
Small Multiples and Iterative Behavior
The current prototype of this application uses the concept of small
 multiples [T1] to depict author-coded links among topics
 as geometric icons. Icons in the application vary in their characteristics: shape, color,
 and fill. The icon characteristics depend on:
	The information type of the link target

	Whether the link goes from one set of product documentation to another

	Whether the link is located in the topic body or a designated XML link container,
 typically labeled See Also in our HTML deliverables

The following legend shows the combinations of icon characteristics that can occur and
 what they mean.
[image:]
For example, the following row of icons shows that authors coded 25 links in a certain
 topic.
[image:]
The fill, shape, and color of the icons indicate that, of those 25 links:
	Seven are located in the See Also section and point to reference topics in the same
 product.

	Two are located in the See Also section and point to task topics in the same
 product.

	Twelve are located in the topic body and point to reference topics in the same
 product.

	One is located in the topic body and points to a task topic in the same
 product.

	Three are located in the topic body and point to reference topics in other
 products.

The idea is that in the web application, authors can start with a topic of interest,
 click Submit to display the set of icons that depict topic links, and use the depiction to
 learn about topic connectivity in the network of topics. They can hover over any icon to see
 a tooltip that indicates which topic the icon represents. They can click an icon to display
 the corresponding set of icons for that topic, as a new row at the bottom. By iterating,
 they can follow an end user's possible clickstream in the HTML deliverables or cover a
 desired subset of their topics. Using their knowledge of the subject matter and relative
 importance of each topic, they can assess whether the connectivity characteristics of a
 given topic are appropriate. After iterating a few times, the results might look like
 this:
[image:]
This application traverses a large set of XML documents at the back end, while
 supporting graphics and dynamic behavior at the front end. Using a web-based front end lets
 us take advantage of third-party JavaScript libraries.

Boundaries Between XQuery and JavaScript
The application relies on XQuery to find links in the XML documentation and identify
 their characteristics. We integrated the D3 library, a popular JavaScript library for
 visualizing data and manipulating documents based on data [B3], with
 XQuery in a single web application. We also simplified the code using the jQuery JavaScript
 library [J1]. In this application, JavaScript is the main driver, and
 it interacts with XQuery at these discrete points:
	When the author submits a form to indicate a starting topic of interest, the
 jQuery-based callback function calls XQuery to gather data about links to that
 topic.

	After XQuery gathers data from the XML documents, JavaScript depicts the data
 graphically using the capabilities of D3.

	When the author clicks an icon that has a JavaScript callback function, XQuery
 gathers new data about links. The callback for the clickable icons is similar to the
 callback for the submission button in the form.

This diagram summarizes how JavaScript, XQuery, and the author's mouse operations
 transfer control back and forth in this application.
[image:]

Calling from JavaScript to XQuery
One way to call XQuery from JavaScript is to use the AJAX .load() method in
 jQuery [J2]. When this method accesses a URL associated with a RESTXQ
 path, the XQuery engine invokes the XQuery function that maps to that URL. The XQuery
 function returns markup. The .load() method regains control and inserts the
 returned markup into the page.
For example, suppose the HTML page contains the following markup.
<div class="xmlcontainer">
 <!–- XQuery will populate this part of the page. -->
</div>
The following JavaScript code selects the <div> element using a jQuery
 selector, and loads a URL.
$(".xmlcontainer")
 .load("my-restxq-path/mydocID/mytargetID");
Through the RESTXQ path, "my-restxq-path/mydocID/mytargetID", the
 .load() method calls the XQuery function associated with that path. The
 XQuery module contains a function similar to the next excerpt, receiving two function
 arguments via the {$docID} and {$targetID} path templates in the
 %rest:path annotation.
declare
 %rest:path("my-restxq-path/{$docID}/{$targetID}")

 function linkvis:linkinfo(
 $docID as xs:string,
 $targetID as xs:string)
 as element()
{
 (: Body of XQuery function goes here :)
};
When JavaScript regains control, it inserts the return value of the XQuery function into
 the HTML <div> element.
If further JavaScript processing is necessary after the XQuery function has finished,
 the extra JavaScript code can go in a callback function that becomes the third argument of
 .load(). The callback executes when the AJAX request completes.
$(".xmlcontainer")
 .load("my-restxq-path/mydocID/mytargetID", {}, function() {

 // JavaScript code to execute after XQuery function finishes

 });

Passing Data from XQuery to JavaScript
In this case, the return value of the XQuery function is not the
 HTML markup for the graphics we want the application to display. It is the job of D3 to
 create that HTML markup. XQuery gathers data about links in documents and passes the data
 back to JavaScript, enabling D3 to create HTML markup based on the data.
Script as an XQuery Return Value
The JavaScript portion of the application needs variables that contain data computed
 by XQuery. To define these variables, the XQuery function invoked from JavaScript returns
 a <script> element. This element contains inline JavaScript code that
 defines the desired variables as shown here. (The application uses additional properties,
 but for simplicity, this code shows only three properties per array object.)
<script>
var mydata =
 [
 {
 "docID":"import_export",
 "targetID":"buh9wft",
 "topictitle":"Getting Started with Datastore"
 },
 {
 "docID":"import_export",
 "targetID":"bhg4l7w-1",
 "topictitle":"Getting Started with MapReduce"
 }
];
</script>
XQuery code to produce this return value takes this form:
<script>{
 "var mydata = " ||
 serialize(arguments for serializing data...)
 || ";"
}</script>
The following larger XQuery fragment puts <script> in the context of
 the XQuery function that the JavaScript .load() method invokes.
declare
 %rest:path("my-restxq-path/{$docID}/{$targetID}")

 function linkvis:linkinfo(
 $docID as xs:string,
 $targetID as xs:string)
 as element()
{
 (: XQuery computations go here. :)

 return
 <script>{
 "var mydata = " ||
 serialize(arguments for serializing data...)
 || ";"
 }</script>
};
Constructing JavaScript code by concatenating XQuery strings can be inconvenient and
 error-prone. We minimized the amount of code we constructed in this way.

JSON Serialization
We used serialize(...) in the last program listing. JSON is a convenient
 notation for JavaScript to receive, and XQuery can produce data in JSON format. The
 W3C XPath and XQuery Functions and Operators 3.1 candidate
 recommendation outlines how to serialize data as JSON [K1].
 Although this recommendation is not final, some XQuery engine vendors support JSON as the
 candidate recommendation describes. In BaseX, XQuery code such as the following produces a
 JSON array like the earlier sample.
serialize(
 <json type="array">{
 for $thislink in $linkseq (: Define $linkseq elsewhere :)
 return
 <_ type="object">
 <docID>{ (: Query logic, such as $thislink/@docID :) }</docID>
 <targetID>{ (: Query logic... :) }</targetID>
 <topictitle>{ (: Query logic... :) }</topictitle>
 </_>
 }</json>,
 <output:serialization-parameters
 xmlns:output="http://www.w3.org/2010/xslt-xquery-serialization">
 <output:method value="json"/>
 </output:serialization-parameters>
)

Data Processing After JavaScript Regains Control
The processing described so far works as follows:
	The JavaScript .load() method loads a RESTXQ URL, which transfers
 control to an XQuery function.

	The XQuery function computes data and returns a <script> element
 whose inline JavaScript code defines a variable that stores the data.

	JavaScript regains control and executes the code inside
 <script>.

	JavaScript invokes the callback function specified as the third argument in
 .load(). The callback function has access to the variable,
 mydata.

Going one step further, the callback function can use the D3 .data()
 method to bind the data in the mydata variable to graphical objects. Here is
 a JavaScript code fragment that creates an SVG section of the page and inserts an array of
 <g> grouping elements, each of which is associated with an array element
 in the mydata variable.
// Start a new row of data.
var svg = d3.select(".new").append("svg")
 .attr("height",rowHeight)
 .attr("width","100%");
var symdiv = svg.append("g").attr("class","symdiv");

// Insert <g> elements with data bound to them.
var symbolgroups = symdiv.selectAll("g").data(mydata).enter()
 .append("g")
 .attr("transform","translate(" + labelWidth + ",0)")
 .attr("class","gsymbols")
 .on("click",symbolclick);

// Further code inserts symbols, labels, and tooltips.

Challenges
While web APIs for XQuery are not that new, it took the tools group a while to be able to
 use them. We needed to wait until the company's IT infrastructure supported Java servlets. The
 alternative — running XQuery applications from an individual's local Tomcat server environment
 — was not appealing because of the dependency on that person's machine.
An additional challenge has to do with individual skill sets. The documentation tool
 developers in the group who use XQuery are not web technology experts, while the web
 technology experts in the larger organization do not use XQuery. We are working on this
 challenge through collaboration and learning.

Conclusion
Over the past several years, XQuery without the web interface has proven its usefulness to
 documentation tool developers. We are just beginning to explore the benefits of its web
 interface, and we have found it useful for applications such as the ones described in this
 paper. We are considering the use of the XQuery Update Facility [S1] within web applications to modify XML documents, instead of
 just reading and analyzing them.
At the same time, modern authoring tools for XML documents let authors execute XQuery code
 directly within the authoring environment. Depending on requirements, that capability could be
 more convenient than a browser-based application. We would do a case-by-case evaluation of
 functional designs for a given project, and we appreciate having XQuery web applications as a
 viable option.

Bibliography
[B1] BaseX. The XML Database. http://basex.org
[B2] Baker, Mark. Every Page Is Page One.
 Laguna Hills, California: XML Press, 2013.
[B3] Bostock, Mike. D3.js - Data-Driven Documents. http://d3js.org
[D1] Database Module - BaseX Documentation. http://docs.basex.org/wiki/Database_Module
[J1] The jQuery Team. jQuery. http://jquery.com

[J2] The jQuery Team. .load() | jQuery API Documentation.
 http://api.jquery.com/load

[K1] Kay, Michael, ed. XPath and XQuery Functions
 and Operators 3.1. W3C Candidate Recommendation 18 December 2014.
 http://www.w3.org/TR/xpath-functions-31/
[R1] RESTXQ - BaseX Documentation.
 http://docs.basex.org/wiki/RESTXQ.
[R2] Retter, Adam. RESTful XQuery. XML
 Prague 2012, Conference Proceedings, p. 91-124.
 http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.
[R3] Retter, Adam and Christian Grün. RESTXQ
 1.0: RESTful Annotations for XQuery. Unofficial Draft 23 February 2015. http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
[R4] Robie, Jonathan et al, eds. XQuery 3.0:
 An XML Query Language. W3C Recommendation 8 April 2014.
 http://www.w3.org/TR/xquery-30/
[S1] Snelson, John and Jim Melton. XQuery Update Facility 3.0. W3C Last Call Working Draft 19 February 2015.
 http://www.w3.org/TR/xquery-update-30/
[T1] Tufte, Edward. Envisioning
 Information. Cheshire, Connecticut: Graphics Press, 1990.
[U1] Unit Module - BaseX Documentation.
 http://docs.basex.org/wiki/Unit_Module.
[V1] Vatsendvik, Knut. Unit Testing
 Framework for XQuery. https://blogs.oracle.com/knutvatsendvik/entry/unit_testing_framework_for_xquery
[W1] Whitby, Rob. xray.
 https://github.com/robwhitby/xray
[X1] xquery-unit.
 https://developer.marklogic.com/code/xquery-unit

Balisage: The Markup Conference

Web-Based Job Aids Using RESTXQ and JavaScript for Authors of XML Documents
Amanda Galtman
Documentation Tool Developer
MathWorks

<Amanda.Galtman@mathworks.com>
Amanda Galtman develops XML markup designs, quality-checking tools, and other
 XML-based tools for MathWorks software documentation. She integrated XQuery and RESTXQ
 into the Documentation Department's tool chain. She was previously a technical writer at
 MathWorks.

Balisage: The Markup Conference

content/images/Galtman01-005.png
Topic Network Visualization (Prototype)

Use a "small multiples" visualization to learn about links among topics.

Starting Doc ID: import_export

Starting Topic ID: [pundwft

Submit

1) Getting Started with Datastore
import_export#buhut

2) DatabaseDatastore
database_ug#bufomi

3) Import Data Using a DatabaseDatastore
database_ug#butz_6v

) Working with a DatabaseDatastore:
database_ug#butz_B1

See Also Legend, Version info

AAAAAAAEEEAAAAADZ

3z
-

q}l WAAAAAAAAAD

(dotabase ugoutz 81 Working with s Databasebatasore |
AAAAAAAARERADD

AAAAAAAERERAEmAADADD

content/images/Galtman01-004.png
AAAAAAAREBAAAAAAAAAAAAD

content/images/Galtman01-003.png
doop4o0Op<donEpr<4AOND

to reference topic in same product
Link from "See Also” to task topic in same product

Link from "See Also” to navigation page in same product
Link from "See Also” to other topic type in same product
Link from "See Also” to reference topic in other product
Link from "See Also” to task topic in other product

to navigation page in other product
Link from "See Also” to other topic type in other product
Link from topic body to reference topic in same product
Link from topic body to task topic in same product

Link from topic body to navigation page in same product
Link from topic body to other topic type in same product
Link from topic body to reference topic in other product
Link from topic body to task topic in other product

Link from topic body to navigation page in other product
Link from topic body to other topic type in other product

content/images/Galtman01-002.png
Product A Product B

Getting = Database = Import Data e
Started with Datastore Using a
Datastore o Database
- Datastore
T
AR PR | PN
To other link targets... b 44
Working
witha
Database

content/images/Galtman01-001.png
Moving an XML File
Allthe files you have to change, to move an XML file (File X').

File path of XML file to move, relative to sandbox root:
root/matiab/math/defintion_tan.xmi

New path, relative to sandbox root:
root/shared/math/definttion_tan.xml

Cluster:
Bdoct

FYI: Documents that Include File X, Directly or via Nested Xincludes
Please tell the following documents' owners that you plan to change one or more of their files.

© root/matlab/ref/matlab_book.xml
« root/symbolic/ref/symbolic_book.xml

1. Move File X
Move File X to its new location.

FROM: root/matiab/math/definition_tan.xmi
O root/shared/math/definition_tan.xmi

2. Update Xinclude References Within File X
There is nothing to do for this step! File X contains no Xinclude references.

3. Update Xinclude References to File X
In the following files, find the Xinclude references to File X. Update them to form a relative path to root/shared/math/definition_tan.xml.

a. root/matlab/ref/tan.xml
href="../math/definition_tan.xml"

b. root/symbolic/ref/function_tan.xm
href="..//matlab/math/definition_tan.xmi"

4. Move Graphics Files Usex X
Move the following files to a suitable folder.

a. root/matlab/math/equations/tan_triangle.eps
b. root/matlab/math/equations/tan_complex.eps
. root/matlab/math/graphics/trig_diagram.png

5. Update References to Graphics Files from Preceding Step

In the following files, find all references to the indicated graphics files. Update the references to point to the location where you moved the files in the
preceding step.

a. root/shared/math/definition_tan.xmi
fleref="root/matlab/math/graphics/trig_diagram.png"
fleref="root/matlab/math/equations/tan_triangle.eps"
fileref="root/matlab/math/equations/tan_complex.eps”

b. root/matlab/math/definition_cos.xml
fleref="root/matlab/math/graphics/trig_diagram.png"

. root/matlab/math/definition_cot.xml
fileref="root/matlab/math/graphics/trig_diagram.png"

d. root/matlab/math/definition_csc.xml
fleref="root/matlab/math/graphics/trig_diagram.png"

e. root/matlab/math/definition_sec.xml
fleref="root/matlab/math/graphics/trig_diagram.png"

. root/matlab/math/definition_sin.xml
fileref="root/matlab/math/graphics/trig_diagram.png"

6. Move Code Files Used in File X
‘There is nothing to do for this step! File X contains no references to code files you need to move.

7. Update References to Code Files from Preceding Step
There is nothing to do for this step! No XML files need updated references to code files.

8. Run Makefiles and Search Build Log for Missing-File Messages
o prequalify your changes, run the makefiles for all the following books:

© root/matlab/ref/matlab_book.xml
« root/symbolic/ref/symbolic_book.xml

‘Search each build log for messages that indicate missing files:
ERROR: Source file not found.

WARNING: Specified Xinclude file does not exist:

See aiso Moving a Graphics File | Move XML Files and Graphics | Overview Diagram
Report is based on Bdoc1 XQuery database built on 2016-05-26.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Galtman01-006.png
-load() with

<script>
User - RESTXQ defines -
sSubmit” | clicks | JAVaSCript | XQuery | variable _| Javascript
button button function Joad)
callback callback
Joad() with
RESTXQ s
URL
n User n
JavaScript . Graphics
: clicks
icon based on
callback data

