[image: Balisage logo]Balisage: The Markup Conference

FOXpath - an expression language for selecting files and folders
Hans-Jürgen Rennau
Senior Java developer
Traveltainment GmbH

<hrennau@yahoo.de>

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © 2016 by the author. Used with permission.

How to cite this paper
Rennau, Hans-Jürgen. "FOXpath - an expression language for selecting files and folders." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup Conference 2016.
 Balisage Series on Markup Technologies vol. 17 (2016). https://doi.org/10.4242/BalisageVol17.Rennau01.

Abstract
A new expression language (FOXpath, short for folder XPath)
 enables XPath-like addressing of files and folders in a file system. The first
 version of the language is a modified copy of XPath 3.0, with node navigation
 removed and file system navigation added. The language is based on the data
 model XDM 3.0, without assuming any modifications of the model. In a second
 step, the language was merged back into XPath 3.0, resulting in FOXpath 3.0,
 which is a superset of XPath 3.0. The new expression language supports node
 navigation, file system navigation and a free combination of both
 functionalities within a single path expression. A reference implementation is
 described, and the possibility of extending the new functionality beyond file
 systems is discussed.

Balisage: The Markup Conference

 FOXpath - an expression language for selecting files and folders

 Table of Contents

 	Title Page

 	Introduction

 	The FOXpath language
 	Overview

 	Retained XPath 3.0 expressions

 	Semantic extensions of retained XPath 3.0 expressions
 	Effective boolean value

 	The operators Union, Intersect and
 Except

 	Foxpath expression
 	Foxpath operator

 	Steps

 	Fox axis steps

 	Fox axes

 	Fox name test

 	Function library

 	Examples

 	Implementation

 	FOXpath 3.0
 	Overview

 	Syntactic modifications of the FOXpath language

 	Context-dependent parsing

 	Extended path expression
 	Overview

 	Initial operators (/, //, \, \\)

 	Extended semantics of axis steps

 	Preserved semantics of fox axis steps

 	Heterogeneous navigation

 	Examples

 	Generalization

 	Implementation

 	Issues and features at risk

 	Discussion

 	Appendix A. Grammar of the FOXpath 3.0 language

 	Appendix B. Extra-grammatical Constraint

 	About the Author

 FOXpath - an expression language for selecting files and folders

Introduction
 XPath is an expression language for selecting content from XML documents. The
 introduction of XPath 3.0 (8) states:

 The primary purpose of XPath is to address the nodes of
 [XML 1.0] or [XML 1.1] trees. XPath gets its name from its use of a path
 notation for navigating through the hierarchical structure of an XML
 document.

Key concepts of the language are the definition of item selection as a sequence of
 steps and the modelling of a step as a "spatial" movement across a tree, following a
 specified axis. These are combined into the concept of a navigation path, which enables
 item selection in a very elegant, concise and yet readable way. For example, the
 following expression
 //animals/fox[not(trail)]
 selects all fox elements found under an animals element,
 but not containing a trail element. It is not difficult to imagine similar
 possibilities for the selection of items from other, non-XML types of tree-structured
 information – file systems, URI trees, web site maps, object type hierarchies, object
 instance trees, etc. Yet other expression languages enabling XPath-like navigation of
 non-XML tree structures do not seem to exist, or are not popular enough to be easily
 discovered, excepting JSONPath (5) and JXPath (6).
An interesting alternative to new XPath-like languages would be extensions of the
 XPath language itself: the addition of new kinds of expressions enabling a traversal of
 non-XML trees along navigation axes, filtered by item tests and predicates. In this
 context, file systems (or, more generally, resource name trees) deserve particular
 interest. The selection of files and folders is of course an important operation in its
 own right - XPath-like ls (Unix) or dir (Windows) commands
 could be quite useful. But if available within XPath, navigation of resource name trees
 could complement node navigation. The addition might enable composite navigation,
 starting with the selection of resources and continuing with the selection of nodes
 within the selected resources. Ideally, such two-level navigation might even be
 expressed by a single path expression.
This paper reports the design and implementation of FOXpath, a new expression language
 for selecting files and folders (FOXpath = folder XPath). The language can be
 characterized as a modified copy of XPath 3.0, in which node navigation is replaced by
 URI navigation. The paper then proceeds to describe the integration of FOXpath into
 XPath 3.0, resulting in FOXpath 3.0, which is a superset of XPath 3.0. It extends the
 path expression by URI navigation, enabling
 expressions like the following:
 \projects\\parks[not(ancestor~::private]]* //animals/fox[not(trail)]
which merges file system navigation (addressing files contained by a
 parks folder which itself is not contained by a private
 folder) and node navigation into a single, continuous path.

The FOXpath language
This section describes the first version of the FOXpath language, which is a modified
 copy of XPath 3.0, not a superset. The subsequent section (section “FOXpath 3.0”)
 will describe FOXpath 3.0, the result of integrating FOXpath into XPath 3.0
Overview
FOXpath is an expression language designed to enable elegant and fine-grained
 selection of files and folders. The goal is to achieve maximum similarity with
 XPath. The goal includes both, syntactic similarity as well as equivalent levels of
 expressiveness. The FOXpath language is a modified copy of the XPath 3.0
 language:
	It is an expression language based on the data model XDM 3.0 (13).

	It has the same processing model as XPath 3.0 (8).

	Its grammar is a modified copy of the XPath 3.0 grammar:
	The sole kind of expression which has been removed is the path
 expression.

	The sole kind of expression which has been added is the foxpath expression.

	The syntax of the new foxpath expression resembles the syntax of
 the path expression of XPath 3.0.

	Its semantics are a modified copy of the semantics of XPath 3.0:
	The semantics of all retained XPath 3.0 expressions are retained
 or extended (see below).

	The semantics of the new foxpath expression resemble the semantics
 of the path expression of XPath 3.0.

The term extended semantics is used for a
 modification of the evaluation rules which in particular cases avoids a type error
 and defines a successful evaluation instead. Such a modification can be viewed as an
 extension as it does not change the evaluation unless the original rules prescribe a
 type error. FOXpath applies such extensions to several operators as well as to the
 definition of the effective boolean value. An
 example is an additional rule defining the evaluation of the except
 operator when an operand contains atomic items.

Retained XPath 3.0 expressions
Except for the path expression, all basic kinds of expression retain the syntax
 and semantics as defined by XPath 3.0. In a few cases the semantics were extended by
 additional rules enabling a successful evaluation where XPath 3.0 evaluation raises
 a type error. The following table summarizes the XPath 3.0 expressions retained by
 the FOXpath language.

 Table I

 The XPath 3.0 expressions
 and operators retained by the FOXpath language. The
 Semantics column indicates whether expression
 semantics of XPath 3.0 have been retained (=) or extended (E).
 When several examples are given, they are seperated by a
 semicolon.

	Expression or operator	Semantics	Example
	Arithmetic expression	=	$a + $b ; $a - $b ; $a * $b ; $a div $b ; $a idiv $b ; $a mod $b ;
 -$a
	Cast expression	=	$a cast as xs:integer*
	Comma operator	=	$x, $y
	Conditional expression	=	if ($a instance of xs:integer) then $a else "?"
	Context item expression	=	.
	Except operator	E	$nodes1 except $nodes2
	Filter expression	=	$names[not(starts-with(., 'test-'))]
	For expression	=	for $a in $as, $b in $bs return concat($a, b)
	Function call (constructor function)	=	xs:date($s)
	Function call (dynamic)	=	$f($s)
	Function call (static)	=	lower-case($s)
	General comparison	=	$a = $b ; $a != $b ; $a < $b ; $a <= $b ; $a > $b ; $a
 >= $b
	Inline function expression	=	function($n, $v) {concat($n, ': ', $v)}
	Instance of expression	=	$a instance of xs:integer*
	Intersect operator	E	$nodes1 intersect $nodes2
	Let expression	=	let $a := 1, $b := 2 return $a + $b
	Logical expression	=	$a or $b and $c
	Named function reference	=	replace#3
	Node comparison	=	$a << $b ; $a >> $b ; $a is $b
	Numeric literal	=	123 ; 5.1 ; 1.1E5
	Parenthesized expression	=	($x, $y)
	Quantified expression	=	some $a in $as satisfies $a lt 0 ; every $a in $as satisfies $a lt
 0
	Range expression	=	1 to 10
	Simple map operator	=	$uris ! doc(.)
	String concatenation expression	=	$name || ': ' || $value
	String literal	=	'London' ; "Paris"
	Treat expression	=	$a treat as xs:integer
	Union operator	E	$nodes1 | $nodes2 ; $nodes1 union $nodes2
	Value comparison	=	$a eq $b ; $a ne $b ; $a lt $b ; $a le $b ; $a gt $b ; $a ge $b
	Variable reference	=	$x

Semantic extensions of retained XPath 3.0 expressions
Several semantic extensions were made in order to streamline the processing of URI
 sequences. Most importantly, XPath does not define the effective boolean value of a
 sequence of several atomic items, and an attempt to evaluate the effective boolean
 value of such a sequence raises a type error. In XPath, therefore, a predicate
 expression which may resolve to a sequence of several URIs must be avoided, whereas
 support for such predicate expressions is highly desirable when navigating the URI
 tree of a file system. The extensions are detailed below.
Effective boolean value
If the operand is a sequence of several items which starts with an atomic
 item, XPath 3.0 mandates the raising of a type error. In FOXpath, the effective
 boolean value of the operand is equal to the effective boolean value obtained
 for a value consisting of the first item of the operand.

The operators Union, Intersect and
 Except
If an operand of the Union operator contains an atomic item,
 XPath 3.0 mandates the raising of a type error. In FOXpath, the expression
 returns the value fn:distinct-values((E1, E2)), where
 E1 and E2 denote the operands.
If an operand of the Intersect operator contains an atomic item,
 XPath 3.0 mandates the raising of a type error. In FOXpath, the expression
 returns the value fn:distinct-values(E1[. = E2]), where
 E1 and E2 denote the operands.
If an operand of the Except operator contains an atomic item,
 XPath 3.0 mandates the raising of a type error. In FOXpath, the expression
 returns the value fn:distinct-values(E1[not(. = E2)]), where
 E1 and E2 denote the operands.

Foxpath expression
The FOXpath language modifies the XPath 3.0 language by removing the path
 expression and adding a new kind of expression, the foxpath
 expression. This expression resembles the path expression
 syntactically and has semantics which appear like a translation of node navigation
 into the navigation of a file system. The similarity can be illustrated by
 considering the following definition from XPath 3.0 (8):

 [Definition: A path
 expression can be used to locate nodes within trees. A
 path expression consists of a series of one or more steps, separated by
 "/" or "//", and optionally beginning with "/" or "//".]

Compare this to the definition of a foxpath expression:
[Definition: A foxpath
 expression can be used to locate files and folders in a file
 system. A foxpath expression consists of a series of one or more steps,
 separated by “/” or “//”, and optionally beginning with “/” or “//”, or with
 "/" or "//" preceded by a drive letter and a colon.]

Foxpath operator
As a path expression combines successive steps using the path operator (/),
 the foxpath expression combines successive steps using the foxpath operator (/
 in FOXpath, but \ in FOXpath 3.0, see section “Syntactic modifications of the FOXpath language”). The semantics of the foxpath
 operator can be regarded as a modified copy of the semantics of the path
 operator, designed to support step-wise navigation of the file system.
XPath 3.0 defines the path operator as follows (8).
XPath 3.0:
The path operator "/" is used to build expressions
 for locating nodes within trees. Its left-hand side expression must
 return a sequence of nodes. The operator returns either a sequence of
 nodes, in which case it additionally performs document ordering and
 duplicate elimination, or a sequence of non-nodes. Each operation
 E1/E2 is evaluated as follows: Expression
 E1 is evaluated, and if the result is not a (possibly
 empty) sequence s of nodes, a type error is raised
 [err:XPTY0019]. Each node in s then serves in turn to
 provide an inner focus (...) for an evaluation of E2, as
 described in 2.1.2 Dynamic Context. The sequences resulting from all the
 evaluations of E2 are combined as
 follows:
	If every evaluation of E2
 returns a (possibly empty) sequence of nodes, these sequences
 are combined, and duplicate nodes are eliminated based on node
 identity. The resulting node sequence is returned in document
 order.

	If every evaluation of E2
 returns a (possibly empty) sequence of non-nodes, these
 sequences are concatenated, in order, and
 returned.

	If the multiple evaluations of
 E2 return at least one node and at least one
 non-node, a type error is raised
 [err:XPTY0018].

The definition of the foxpath operator is a modified copy of this
 definition.
FOXpath:
The foxpath operator is used to build expressions
 for locating files and folders in a file system. Each operation
 E1/E2 is evaluated as follows: Expression
 E1 is evaluated and the result is atomized, resulting
 in a sequence s. Every item in s then serves
 in turn to provide an inner focus for an evaluation of E2.
 The sequences resulting from all the evaluations of E2 are
 combined as follows:
	If every evaluation of E2
 returns a (possibly empty) sequence of atomic items, these
 sequences are concatenated, items are cast to
 xs:string, duplicate items are eliminated and
 the remaining items are returned in sorted
 order.

	If the multiple evaluations of
 E2 return at least one node, the result
 sequences are concatenated, in order, and
 returned.

 The evaluation of the foxpath operation E1/E2 (syntax changed to
 E1\E2 in FOXpath 3.0) is summarized by the following
 pseudo-code:
 let $items := data(E1) ! E2
 return
 if (every $item in $items satisfies $item instance of xs:anyAtomicType)
 then
 sort(distinct-values($items ! string(.)))
 else
 $items

Steps
Whereas a step in XPath 3.0 is either an axis step or a postfix expression, a
 step in FOXpath is either a fox axis step or a postfix expression.

Fox axis steps
FOXpath introduces a new kind of expression, the fox
 axis step. Its definition is derived from the definition of an
 axis step (8), repeated here for the reader’s
 convenience:
XPath 3.0:
[Definition: An axis
 step returns a sequence of nodes that are reachable from
 the context node via a specified axis. Such a step has two parts: an
 axis, which defines the "direction of movement" for the step, and a node
 test, which selects nodes based on their kind, name, and/or type
 annotation.]

A fox axis step is defined analogously:
FOXpath:
[Definition: A fox axis
 step returns a sequence of URI references that are
 reachable from the URI reference provided by the context item via a
 specified fox axis. Such a step has two parts: a fox axis, which defines
 the “direction of movement” for the step, and a name test, which selects
 URI references based on the resource name, defined as the final step of
 the URI path.]

Fox axes
The definition of a fox axis is derived from the definition of XPath axes. The
 following table summarizes all fox axes. Note that there is no
 following axis and no preceding axis, as these
 were considered to be without practical value.

 Table II

 The fox axes defined by
 the FOXpath language. The string name
 represents a name test combined with the navigation
 axis.

	Axis	Fox axis step syntax	Abbreviated syntax
	syntax	equivalence
	self	self~::name	-	-
	child	child~::name	name	child~::name
	descendant	descendant~::name	-	-
	descendant-or-self	descendant-or-self~::name	...//...	.../descendant-or-self~::*/...
	parent	parent~::name	..	parent~::*
	ancestor	ancestor~::name	...name	ancestor~::name
	ancestor-or-self	ancestor-or-self~::name	-	-
	following-sibling	following-sibling~::name	-	-
	preceding-sibling	preceding-sibling~::name	-	-

Fox name test
XPath combines a navigation axis with a node test, which may be either a name
 test or a kind test. Similarly to this, a fox axis is always associated with a
 fox name test. A fox name test constrains the name of files and folders to be
 selected. Contrary to an XPath name test, a fox name test may contain wildcard
 characters:
	Character * represents zero or more arbitrary
 characters

	Character ? represents exactly one arbitrary
 character

If these characters should appear in a name as such, they must be escaped by a
 preceding tilde (~).
A fox name test can use one of two alternative syntaxes:
	Canonical syntax

	Abbreviated syntax

Using the canonical syntax, a fox name test
 consists of a name representation surrounded by backquotes. Within the name
 representation, two adjacent backquotes are interpreted as a single backquote
 character. Apart from the doubling of backquotes and the escaping of literal
 wildcard characters and of the tilde character by a preceding tilde
 (~), no other escaping is necessary or allowed.
The abbreviated syntax of a fox name test
 consists of a name representation without surrounding delimiters. Within the
 name representation, several non-wildcard characters must be escaped by a
 preceding tilde (~) in order to avoid syntactical
 ambiguities:
 ~ [] \ / <> () = !|, WHITESPACE
The initial character of a name test is subject to additional constraints: if
 the initial character of matching names should be a digit, dot (.) or backquote
 (`), the name representation must escape the digit, dot or backquote by a
 preceding tilde (~).
See Appendix A for the ENBF production of a fox name
 test (rules [908a] - [912a]). The following table shows a few examples.

 Table III

 Examples of fox name
 tests using the canonical or abbreviated
 syntax.

	Canonical syntax	Abbreviated syntax
	`foo`	foo
	`.git`	~.git
	`2016`	~2016
	```foo`	~`foo
	`foo+bar`	foo~+bar
	`foo(1)`	foo~(1~)
	`foo bar`	foo~ bar
	`foo``bar`	foo`bar


                


Function library
The FOXpath language supports all functions supported by XPath 3.0 (10) as well as a few additional functions
                expected to be useful when selecting files and folders from a file system. The
                additional functions are summarized by the following table.

                Table IV

                             Functions supported by the
                                    FOXpath language and not supported by XPath
                                3.0.
                        

	Name	Meaning
	bslash	Returns the argument with forward slashes replaced by back
                                slashes.
	eval-xpath	Returns the value of the argument string evaluated as an XPath 3.0
                                expression.
	file-contains	Returns true if the file contains a pattern specified
                                in glob syntax.
	file-date	Returns the date and time of the last modification.
	file-lines	Returns the lines of a text file, optionally filtered by a pattern
                                using glob syntax (4).
	file-name	Returns the file name, which is the last step of the file URI.
	file-size	Returns the file size as number of bytes.
	has-xatt	Returns true if the context item is the URI of an XML
                                document containing an attribute whose name, value and parent
                                element name match the specified constraints.
	has-xelem	Returns true if the context item is the URI of an XML
                                document containing an element whose name and text content match the
                                specified constraints.
	has-xroot	Returns true if the context item is the URI of an XML
                                document having a root element with a name matching the specified
                                constraints.
	is-dir	Returns true if the argument is the URI of a
                                directory.
	is-file	Returns true if the argument is the URI of a file,
                                rather than a directory.
	matches-xpath	Returns the effective boolean value of the XPath expression supplied
                                as an argument and evaluated in the context of the document whose
                                URI is either specified as second argument or provided by the
                                context item.
	xroot	Returns the local name of the root element of the document with a
                                URI specified by argument or provided by the context item; returns
                                the empty sequence if the URI does not reference an XML
                                document.


            

Examples
Here are some examples of valid expressions of the FOXpath language. All examples
                refer to a folder wild902 containing an installation of the WildFly
                application server (version 9.0.2.Final), downloaded from (7). For further examples, requiring FOXpath 3.0, see (section “Examples”).

   # Child axis   (top level files and folders)
   /wildfly902/*
   =>
   /wildfly902/.installation
   /wildfly902/appclient
   /wildfly902/bin
   /wildfly902/copyright.txt
   /wildfly902/docs
   /wildfly902/domain
   ...

   # Child axis, filtered   (top level files)
   /wildfly902/*[is-file(.)]
   =>
   /wildfly902/copyright.txt
   /wildfly902/jboss-modules.jar
   /wildfly902/LICENSE.txt
   /wildfly902/README.txt

   # Descendant axis   (count all XML files) :)                
   count(/wildfly902/descendant~::*.xml)
   => 375

   # Embedded //   (count folders and folders)   
   count(/wildfly902//*[is-dir()]), count(/wildfly902//*[is-file()])
   => 891 1261
   
   # Multiple embedded //   
   /wildfly902//layers//*sql*//*.xml
   => /wildfly902/modules/system/layers/base/javax/sql/api/main/module.xml
   
   # Parent axis   (all folders containing html files) :)   
   /wildfly902//*.html/parent~::*
   => /wildfly902/welcome-content
   
   /wildfly902//*.html/..
   => /wildfly902/welcome-content
   
   # Ancestor axis   (all top-level folders containing directly or indirectly XSD files)
   /wildfly902//*.xsd/ancestor~::*[parent~::wildfly902]
   => /wildfly902/docs

   /wildfly902//*.xsd/...*[parent~::wildfly902]
   => /wildfly902/docs

   # Preceding-sibling axis   (top level files and folders, before 'docs' :)                
   /wildfly902/docs/preceding-sibling~::*
   => 
   /wildfly902/.installation
   /wildfly902/appclient
   /wildfly902/bin
   /wildfly902/copyright.txt

   # Following-sibling axis   (top level files and folde4rs, after 'docs' :)
   /wildfly902/docs/following-sibling~::*
   =>
   /wildfly902/domain
   /wildfly902/jboss-modules.jar
   /wildfly902/LICENSE.txt
   /wildfly902/modules
   /wildfly902/README.txt
   /wildfly902/standalone
   /wildfly902/welcome-content

   # Position predicate (foward axis)                
   /wildfly902/descendant~::*.xml[1]
   => /wildfly902/appclient/configuration/appclient.xml

   /wildfly902/descendant~::*.xml[last()]
   => /wildfly902/standalone/configuration/standalone_xml_history/standalone.last.xml

   # Position predicate (reverse axis)
   /wildfly902//*standalone.last.xml/ancestor~::*[1]
   => /wildfly902/standalone/configuration/standalone_xml_history
   
   /wildfly902//*standalone.last.xml/ancestor~::*[2]
   => /wildfly902/standalone/configuration
   
   # Parenthesized step   (count all XML or XSD  files)   
   count(/wildfly902//(*.xml, *.xsd))
   => 758
   
   # Filtering by attribute name, value and parent name  
   /wildfly902//sql//*.xml[has-xatt('name','javax/sql*', 'path')]
   =>
   /wildfly902/modules/system/layers/base/javax/sql/api/main/module.xml
   
   # Filtering by element name and value  
   /wildfly902//*.xml[has-xelem('*property-type','java*')]
   =>
   /wildfly902/modules/system/layers/base/org/jboss/genericjms/main/META-INF/ra.xml

   # Filtering by root name  
   /wildfly902//*.xml[has-xroot('connector')]
   =>
   /wildfly902/modules/system/layers/base/org/jboss/genericjms/main/META-INF/ra.xml

   # Filtering by matching XPath
   /wildfly902//*.xml[matches-xpath('count(//*:subsystem) > 100')]
   =>
   /wildfly902/domain/configuration/domain.xml
   
   # Final step a concatenation   (file path + file size)
   /wildfly902//*[is-file(.)][file-size(.) le 50]/concat(., ' (', file-size(.), ')')
   =>
   /wildfly902/modules/system/layers/base/org/jboss/as/jdr/main/resources/plugins.properties (40)
   /wildfly902/modules/system/layers/base/sun/jdk/main/service-loader-resources/META-INF/services/java.sql.Driver (29)
   
   # Final step an edited path   (file extension)
   sort(distinct-values(/wildfly902//*[is-file(.)]/replace(., '.*\.', '')), lower-case#1)
   => bat conf css Driver dtd exe gif html ico jar jbossclirc log MF png properties ps1 ScriptEngineFactory sh so txt xml xsd

   # Empty directories
   fox  "/wildfly902//*[is-dir(.)][empty(*)]"
   =>
   /wildfly902/.installation
   /wildfly902/domain/data/content
   /wildfly902/domain/tmp/auth
   ...

   # A quantified expression   (checking that all XML and XSD documents are wellformed)
   every $doc in /wild902//(*.xml, *.xsd) satisfies doc-available($doc)
   => true


Implementation
A reference implementation of the FOXpath language is available, written in the
                XQuery language, version 3.1. The implementation is an integral part of the
                implementation of the FOXpath 3.0 language. See section “Implementation”
                for further information.


FOXpath 3.0
Overview
The FOXpath 3.0 language is not a modified copy of XPath 3.0, but a superset of XPath 3.0: every valid XPath 3.0 expression
                is also a valid FOXpath 3.0 expression. This was achieved by “disassembling” the new
                expression kind (the foxpath expression) and integrating its parts (foxpath operator
                and fox axis step expression) into the path expression of the XPath language. This
                integration required syntactic changes of the new parts compared to the original
                FOXpath language in order to avoid syntactic ambiguity. Specifically, whereas in
                FOXpath the path operator (/) is effectively redefined in order to support the
                navigation of resource name trees, FOXpath 3.0 restores the original path operator and adds a foxpath operator (\) represented by a backslash, rather than
                a forward slash. Besides, extra-grammatical constraints were added which achieve the
                disambiguation of node name tests versus fox name tests using the abbreviated syntax
                and not preceded by an explicit fox axis.

Syntactic modifications of the FOXpath language
Integration of the FOXpath language into XPath involves two syntactic
                modifications:
	The foxpath operator is represented by a backslash \, not by
                        a slash /.

	Dependent on the location within the expression tree, a fox name test can
                        be constrained to use the canonical syntax, rather than the abbreviated
                        syntax. 


Use of the abbreviated fox name syntax is controlled by a new extra-grammatical constraint. It allows the abbreviated
                syntax only in places where the context item is known to originate from a fox axis
                step and hence can be assumed to be a resource URI. 

Context-dependent parsing
The benefit of supporting the abbreviated syntax of a fox name test is regarded as
                important enough to justify a context dependency of expression parsing. Consider how
                the abbreviated syntax makes file system navigation as elegant as node tree
                navigation, comparing this example

   \projects\\offline\*\(config, src)[flag.xml]
with the equivalent expression using canonical syntax:

   \`projects`\`offline`\\`*`\(`config`, `src`)[`flag.xml`]
Independently of the backquotes, none of the name tests could be a node name test,
                rather than a fox name test:
	The name tests projects, offline and
                            * appear behind the foxpath operator and are therefore
                        evaluated in the context of an item known to represent a resource URI, not a
                        node

	The name tests config, src and
                            flag.xml represent immediate sub expressions of an
                        expression apprearing behind the foxpath operator


The rules formalizing such inference rely on a pseudo-function
                    context-is-URI(E) which takes an expression E from the
                expression tree of a query and returns true or false,
                according to these rules: 
	If E is the top-level expression of the query,
                            context-is-URI(E) is false

	If E is the right-hand operand of the foxpath operator,
                            context-is-URI(E) is true

	If E is the right-hand operand of the path operator,
                            context-is-URI(E) is false

	If E is the right-hand operand of the simple map operator
                        (!), context-is-URI(E) is false

	Otherwise, context-is-URI(E) is equal to
                            context-is-URI(parent expression of E)


The parsing of an expression E depends on
                    context-is-URI(E) as follows: 
	If E matches the abbreviated syntax of a fox name test, it is
                        parsed as a fox name test if and only if context-is-URI(E) is
                            true.

	If the text of E is two adjacent dots (..), it
                        is parsed as an abbreviated fox axis step if context-is-URI(E)
                        is true, and it is parsed as an abbreviated node axis step
                        otherwise.


To illustrate the effect of context-is-URI(E), consider the following
                examples in which E denotes an expression:

\a\E
\a\\E
\a\(b, E)
\a\b[E]
\a\(b, c[d[E]])
In all cases, context-is-URI(E) is true so that
                    E may use the abbreviated fox name syntax.

Extended path expression
Overview
The path expression of FOXpath 3.0 is an extended version of the path
                    expression of XPath 3.0. Remember that in the FOXpath language the foxpath
                    expression replaces the path expression of XPath 3.0. In the FOXpath 3.0
                    language, the foxpath expression is in turn replaced by an extended path expression, which merges the constituents of both,
                    the original path expression and the new foxpath expression. As a point of
                    reference, let us once more consider the definition of a path expression given
                    in XPath 3.0 (8):
XPath 3.0

                        [Definition: A path
                                expression can be used to locate nodes within trees. A
                            path expression consists of a series of one or more steps, separated by
                            "/" or "//", and optionally beginning with "/" or "//".] 
                    


In FOXpath 3.0, the following definition holds:
FOXpath 3.0

                        [Definition: A path
                                expression can be used to locate nodes within trees, or
                            files and folders within a file system. A path expression consists of a
                            series of one or more steps, separated by “/”, “//”, “\” or “\\”, and
                            optionally beginning with "/", "//", "\" or "\\", or with "\" or "\\"
                            preceded by a drive letter and a colon.]
                    


Whereas in XPath 3.0 a step is either a postfix expression or an axis step, in
                    FOXpath 3.0 a step is either a postfix expression or an axis step or a fox axis
                    step. 

Initial operators (/, //, \, \\)
In an extended path expression, initial “/” or “//” has the same semantics as
                    in XPath 3.0. Initial “\” or “\\” (optionally preceded by a drive letter and a
                    colon) has similar semantics, but referring to the file system. Their definition
                    references a new function fox:root-URI(), which returns the root
                    folder of the file system. As some file systems define several root folders
                    distinguished by a "drive letter", a second variant of the function accepts a
                    single parameter which is interpreted as drive letter and returns the
                    corresponding root folder.
A "\" at the beginning of a path expression is an abbreviation for the initial
                    step fox:root-URI()\ (however, if the "\" is the entire path
                    expression, the trailing "\" is omitted from the expansion.) The effect of this
                    initial step is to begin the path at the root folder of the file system.
                    Similarly, a "x:\" at the beginning of a path expression has the effect to begin
                    the path at the root folder returned by the function call
                        fox:root-URI("x")).
A "\\" at the beginning of a path expression is an abbreviation for the
                    initial steps fox:root-URI()\descendant-or-self~::*\ (however, "\\"
                    by itself is not a valid path expression.) The effect of these initial steps is
                    to establish an initial URI sequence comprising the URIs of all files and
                    folders in the file system. This URI sequence is used as the input to subsequent
                    steps in the path expression. Similarly, a "x:\\" at the beginning of a path
                    expression establishes an initial URI sequence comprising the URIs of all files
                    and folders found in the file system identified by drive letter "x".

Extended semantics of axis steps
The semantics of an axis step is extended in order to enable seamless
                    combination of fox axis steps and axis steps. Whereas the semantics of XPath 3.0
                    prescribe a type error if the left-hand operand of the path operator returns
                    atomic values, the semantics of FOXpath 3.0 avoid the type error by prescribing
                    a “nodification” of any atomic values: the atomic value is replaced by the
                    document node obtained by calling the fn:doc function with the
                    atomic value as argument. (If, however, the function call raises an error, the
                    path expression raises an error.) Thanks to this extension, expressions like the
                    following:
   \projects\niem\\*.xsd /xs:schema/xs:element
can be evaluated, as the first axis step (reading from left to right) is
                    applied to the result of parsing each resource URI returned by the preceding
                    step into document nodes.

Preserved semantics of fox axis steps
The semantics of fox axis steps are not changed compared with the semantics
                    defined by the FOXpath language. In summary, a fox axis step consists of a
                    navigation axis and a name test and optional predicates. The evaluation of
                    predicates is governed by the same rules as the evaluation of predicates in node
                    axis steps.

Heterogeneous navigation
The semantics of axis steps and fox axis steps imply that both kinds of steps
                    can be mixed without restriction. In the typical case, all fox axis steps
                    precede the first node axis step, selecting the resources into which the node
                    axis steps navigate, for example:
   \projects\\*.xsd /xs:schema/@targetNamespace
However, different patterns are also possible. For example, initial node axis
                    steps might navigate into a catalog document, arriving at items containing the
                    URIs of folders. Subsequent fox axis steps may navigate down into those folders
                    (or anywhere into the file system, starting at those folders):

   doc("catalog.xml")//projectHome/@uri \\*.xml


Examples
All examples of FOXpath expressions shown in (section “Examples”) can be converted into examples of FOXpath 3.0 by replacing each / operator by
                its new syntax which is a backslash (\). Here come a few further examples
                demonstrating the merging of fox steps and node steps into a single path
                expression.
   
   # All root element names
   sort(distinct-values(\wildfly902\\*.xml /local-name(*)))
   =>
   connector
   domain
   host
   jboss-cli
   module
   module-alias
   server
   
   # All XSDs with a top-level element declaration 'Claims'
   \wildfly902\\*.xsd[/xs:schema/xs:element/@name = 'Claims']
   =>
   /wildfly902/docs/schema/ws-trust-1.3.xsd
   /wildfly902/docs/schema/wstrust/v1_3/ws-trust-1.3.xsd
   
   # All XSDs with a target namespace containing 'jaxws'
   \wildfly902\\*.xsd[contains(./*/@targetNamespace, 'jaxws')]
   =>
   /wildfly902/docs/schema/jbossws-jaxws-config_4_0.xsd

   # For each found XML document a sorted list of all element names
   \wildfly902\\bind\\*.xml\concat(., ': ', string-join(sort(distinct-values(//local-name(.))), ' '))
   =>
   /wildfly902/modules/system/layers/base/com/sun/xml/bind/main/module.xml: dependencies module properties property resource-root resources
   /wildfly902/modules/system/layers/base/javax/xml/bind/api/main/module.xml: dependencies module resource-root resources


Generalization
The file system is just an instance of a larger abstraction – a tree of resource
                    URIs[1], or "resource tree" for short. Examples of such trees include: 	Resource URIs exposed by a RESTful web service

	The URIs of documents stored in a NOSQL database

	The URIs of resources managed by a version control system


 The navigation of URI references supported by the FOXpath language
                is not restricted to the file system - any other type of resource tree can be
                included, for which two basic navigation functions are available, from which the
                functionality of foxpath navigation may be derived completely: 

    fox:child-uri-collection($uri as xs:string) as xs:anyURI*
    fox:root-uri($uri as xs:string) as xs:anyURI?                    

While these functions are sufficient to enable foxpath navigation of a resource
                tree, the efficiency of navigation may be greater if
                    fox:child-uri-collection() supports a second parameter specifying a
                name pattern, which corresponds to a fox name test. A further increase of efficiency
                may be provided by an additional function returning all descendant URIs, rather than
                only child URIs. This leads us to the following set of functions enabling efficient
                navigation of resource trees: 
    fox:child-uri-collection($uri as xs:string, $namePattern as xs:string?) as xs:anyURI*
    fox:descendant-uri-collection($uri as xs:string, $namePattern as xs:string?) as xs:anyURI*    
    fox:root-uri($uri as xs:string) as xs:anyURI?                    

 Implementations of these functions will tend to be specific for a particular
                type of resource tree. The FOXpath language can support navigation of several types of resource trees if a function is
                available which maps a given URI to the appropriate instances of those basic
                navigation functions:
    fox:get-function-child-uri-collection($uri as xs:string) as function(xs:string, xs:string?) as xs:anyURI*
    fox:get-function-descendant-uri-collection($uri as xs:string) as function(xs:string, xs:string?) as xs:anyURI*    
    fox:get-function-root-uri($uri as xs:string) as function(xs:string) as xs:anyURI?                    

 The appropriate instances are those applicable to the type of the resource tree
                to which the input URI belongs. In the case of the file system, instances of the
                first two of these functions are provided by (partial applications of) the EXPath
                defined function file:list, and an instance of the third function can
                be implemented by a simple string manipulation extracting from a file system path
                the initial slash and the drive letter optionally preceding it. 
Note the difference between a resource tree type and a resource tree instance. The
                current version of the FOXpath language supports a single resource tree type which
                is the file system. However, the implementation supports the distinction of multiple
                resource trees via drive letters as used by the Windows file system.

Implementation
A reference implementation of the FOXpath 3.0 language is available, written in
                the XQuery language, version 3.1. The implementation consists of five XQuery library
                modules, summarized in the following table.

                Table V

                             The XQuery library modules
                                    implementing the FOXpath 3.0 language.
                        

	Module	Purpose
	foxpath.xqm	Resolves a foxpath expression to an XDM value.
	foxpath-parser.xqm	Parses a foxpath expression into a tree-structured
                                representation.
	foxpath-util.xqm	Provides utilities used by the parser and the resolver.
	foxpath-processorDependent.xqm	Encapsulates the dependency on a particular XQuery processor.
	foxpath-resourceTreeTypeDependent.xqm	Encapsulates the dependency on particular types of resource trees -
                                file system and (later) possibly others.


            
The implementation depends on several functions of the file module
                    (3) defined by the EXPath initiative (2). Currently, the implementation can only be executed using
                the BaseX processor (1), because in a few cases the BaseX
                extension function xquery:eval is used in order to evaluate expressions
                whose evaluation in pure XQuery appeared to be difficult (or tedious) beyond
                proportion:
	Partial function application

	Instance of expression

	Treat expression

	Castable expression

	Cast expression


This dependency on the BaseX processor will be removed as soon as there will be an
                EXPath defined (or W3C defined) function for the dynamic evaluation of XPath
                expressions. The current dependency is factored out into a single function:
   declare function f:xquery($xquery as xs:string, $context as map(*)?) as item()* {
      if (exists($context)) then xquery:eval($xquery, $context) 
      else xquery:eval($xquery)        
};

The code can thus easily be adapted for execution by a different XQuery processor,
                which meets the following conditions: 	supports XQuery, version >= 3.1

	supports all extension functions of the EXPath defined
                                file module, version >= 1.0

	supplies an extension function for the dynamic evaluation of XPath
                            expressions



The implementation of the FOXpath 1.0 language is an integral part of the
                implementation of the FOXpath 3.0 language (see section “FOXpath 3.0”).
                Whether the code behaves as an implementation of the FOXpath 1.0 language or as an
                implementation of FOXpath 3.0 is controlled by an external variable, defaulting to
                version 3.0.
The implementation can be downloaded from here: https://github.com/hrennau/foxpath
                .

Issues and features at risk
A crucial aspect of FOXpath 3.0 is the syntax of fox name tests, as it impacts the
                “look and feel” of file system navigation and its combination with node navigation
                into a single navigation model. The abbreviated fox name syntax is an important
                feature as it maximizes elegance and the similarity between node tree and URI tree
                navigation. But the feature raises two issues: (a) it introduces a context-dependent
                parsing rule (the same expression syntax can be parsed as a node name test or a fox
                name test), (b) it burdens the grammar with complex escaping rules (many characters
                must be escaped, and even more characters when used at the beginning of the name
                test). Such escaping rules could be removed by adopting an alternative syntax rule
                suggested by the lookup operator of XPath 3.1 (9). The
                alternative rule would restrict the use of abbreviated syntax to NCNames and NCNames
                with inserted wildcard characters. In all other cases, the canonical syntax would be
                mandatory.
Dependent on feedback of users and perhaps other implementers, the feature of an
                abbreviated fox name syntax might be removed or modified to admit abbreviated syntax
                only for NCNames and NCNames with inserted wildcard characters.


Discussion
The practical usefulness of an expression language for file system navigation is
            fairly obvious. A simple shell script can make the functionality immediately available
            and thus serve as a far more powerful alternative to shell commands like the Unix
                ls command or the Windows dir command. Command-line tools
            may use the FOXpath language as the syntax for command-line options selecting input
            files. Any program language may profit from an API function enabling expression-based
            selection of resources. 
Especially great is the potential benefit of FOXpath for XPath itself and languages
            built upon it (XQuery (12), XSLT (14), XProc (11)). This is due to
            the fact that the selection of resources and the selection of nodes within resources are
            two phases of the same operation, which is the selection of information items from a
            system of resources. The seamless integration of FOXpath into XPath 3.0 is therefore
            felt to lift the usefulness of FOXpath to a significantly higher level.
It may be asked if the first version of FOXpath, which is like XPath minus node
            navigation plus file system navigation, is of any interest when there is FOXpath 3.0
            which is XPath plus file system navigation. Though less
            interesting from a conceptual point of view, FOXpath 1.0 may nevertheless be an
            interesting option for implementers and users who do not wish to deal with the
            complexities of node navigation and perhaps are simply not interested in the navigation
            of XML nodes. 
Another question worth asking is whether integration of FOXpath and XPath may be
            achieved in a simpler way than provided by FOXpath 3.0. An extension of the path
            expression as introduced by FOXpath 3.0 is a far-reaching extension of the XPath
            language itself which may be regarded as a risk better not taken. As a conceivable
            alternative, a simple and risk-less integration is provided by a plain extension
            function 
   fox:foxpath($foxpath as xs:string) as item()*
which consumes a FOXpath expression and returns an XDM value. In comparison to the
            seamless integration of FOXpath into XPath provided by FOXpath 3.0, such a function
            offers a comparable gain of functionality, though with less elegance. Comparing these
            expressions,
FOXpath 3.0:

   \projects\\parks[not(ancestor~::private]]\*
   //animals/fox[not(trail)]                    

XPath + fox:foxpath():

   fox:foxpath(
   "\projects\\parks[not(ancestor~::private]]\* ")/doc(.)
   //animals/fox[not(trail)])

one may be inclined to start the introduction of FOXpath into XPath with an extension
            function, and postpone the integration of FOXpath into the expression architecture of
            the XPath language until the usefulness has been consolidated and any major issues
            revealed by field experience have been addressed. 
While such a cautious approach to adoption is appealing, it should not blind us to the
            remarkable chances which a full integration (integration on the level of the expression
            language) promises. As discussed above (section “Generalization”), a file system
            is just a particular type of resource tree, whereas the concept of foxpath navigation
            refers to resource trees in general, rather than only the file system. This insight
            might boost our motivation to make resource tree navigation an integral part of the
            XPath language.

Appendix A. Grammar of the FOXpath 3.0 language
The grammar of the FOXpath 3.0 language is a modified copy of the XPath 3.0 grammar.
            Rule numbers with appended "a" (e.g. [901a]) identify a new rule. Rule numbers with appended "m" (e.g. [35m]) identify a rule
            obtained by modifying a rule of the XPath 3.0 grammar;
            the rule number of the original rule in the XPath 3.0 grammar is equal to the rule
            number of the modified rule without the "m" postfix: for instance, rule [35m] is a
            modified copy of XPath 3.0 rule [35]. Numbers without postfix "a" or "m" identify rules
            which have been defined by the XPath 3.0 grammar and are retained by the FOXPath 3.0
            grammar. 
Comments or extra-grammatical constraints on grammar productions are between /* and */
            symbols. 	A "xgc:" prefix is an extra-grammatical constraint, explained in Appendix B.

	A "gn:" prefix means a "Grammar Note", and is meant as a clarification for
                        parsing rules.




[1m] FOXPath                ::= Prolog Expr
[901a] Prolog               ::= ((DefaultNamespaceDecl | NamespaceDecl) Separator)* (VarDecl Seperator)*
[902a] Seperator            ::= ";"
[903a] NamespaceDecl        ::= "declare" "namespace" NCName "=" URILiteral
[904a] DefaultNamespaceDecl ::= "declare" "default" "element" "namespace" URILiteral
[905a] VarDecl              ::= "variable" "$" VarName TypeDeclaration? ((":=" VarValue) | ("external" (":=" VarDefaultValue)?))
[906a] URILiteral           ::= StringLiteral
[907a] VarValue             ::= ExprSingle
[908a] VarDefaultValue      ::= ExprSingle
[2] ParamList               ::= Param ("," Param)*
[3] Param                   ::= "$" EQName TypeDeclaration?
[4] FunctionBody            ::= EnclosedExpr
[5] EnclosedExpr            ::= "{" Expr "}"
[6] Expr                    ::= ExprSingle ("," ExprSingle)*
[7m] ExprSingle             ::= SimpleFLWORExpr
                                | QuantifiedExpr
                                | IfExpr
                                | OrExpr
[909a] SimpleFLWORExpr      ::= (SimpleForClause | SimpleLetClause)+ "return" ExprSingle
[9] SimpleForClause         ::= "for" SimpleForBinding (","
                                SimpleForBinding)*
[10] SimpleForBinding       ::= "$" VarName "in" ExprSingle
[11] LetExpr                ::= SimpleLetClause "return" ExprSingle
[12] SimpleLetClause        ::= "let" SimpleLetBinding (","
                                SimpleLetBinding)*
[13] SimpleLetBinding       ::= "$" VarName ":=" ExprSingle
[14] QuantifiedExpr         ::= ("some" | "every") "$" VarName "in"
                                ExprSingle ("," "$" VarName "in"
                                ExprSingle)* "satisfies" ExprSingle
[15] IfExpr                 ::= "if" "(" Expr ")" "then" ExprSingle "else"
                                ExprSingle
[16] OrExpr                 ::= AndExpr ( "or" AndExpr )*
[17] AndExpr                ::= ComparisonExpr ( "and" ComparisonExpr )*
[18] ComparisonExpr         ::= StringConcatExpr ( (ValueComp
                                | GeneralComp
                                | NodeComp) StringConcatExpr )?
[19] StringConcatExpr       ::= RangeExpr ( "||" RangeExpr )*
[20] RangeExpr              ::= AdditiveExpr ( "to" AdditiveExpr )?
[21] AdditiveExpr           ::= MultiplicativeExpr ( ("+" | "-")
                                MultiplicativeExpr )*
[22] MultiplicativeExpr     ::= UnionExpr ( ("*" | "div" | "idiv" | "mod")
                                UnionExpr )*
[23] UnionExpr              ::= IntersectExceptExpr ( ("union" | "|")
                                IntersectExceptExpr )*
[24] IntersectExceptExpr    ::= InstanceofExpr ( ("intersect" | "except")
                                InstanceofExpr )*
[25] InstanceofExpr         ::= TreatExpr ( "instance" "of" SequenceType
                                )?
[26] TreatExpr              ::= CastableExpr ( "treat" "as" SequenceType
                                )?
[27] CastableExpr           ::= CastExpr ( "castable" "as" SingleType )?
[28] CastExpr               ::= UnaryExpr ( "cast" "as" SingleType )?
[29] UnaryExpr              ::= ("-" | "+")* ValueExpr
[30] ValueExpr              ::= SimpleMapExpr
[31] GeneralComp            ::= "=" | "!=" | "<" | "<=" | ">" | ">="
[32] ValueComp              ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"
[33] NodeComp               ::= "is" | "<<" | ">>"
[34] SimpleMapExpr          ::= PathExpr ("!" PathExpr)*

[35m] PathExpr              ::= ("/" RelativePathExpr?)
                                | ("//" RelativePathExpr)
                                | RelativePathExpr
                                | (DriveSelector? "\" RelativePathExpr?)
                                | (DriveSelector? "\\" RelativePathExpr)
[36m] RelativePathExpr      ::= StepExpr (
                                ("/" 
                                | "//" 
                                | (DriveSelector? "\")
                                | (DriveSelector? "\\")
                                ) StepExpr)*`
[37m] StepExpr              ::= PostfixExpr | AxisStep | FoxAxisStep

[38] AxisStep               ::= (ReverseStep | ForwardStep) PredicateList
[39] ForwardStep            ::= (ForwardAxis NodeTest) | AbbrevForwardStep
[40] ForwardAxis            ::= ("child" "::")
                                | ("descendant" "::")
                                | ("attribute" "::")
                                | ("self" "::")
                                | ("descendant-or-self" "::")
                                | ("following-sibling" "::")
                                | ("following" "::")
                                | ("namespace" "::")
[41] AbbrevForwardStep      ::= "@"? NodeTest
[42] ReverseStep            ::= (ReverseAxis NodeTest) | AbbrevReverseStep
[43] ReverseAxis            ::= ("parent" "::")
                                | ("ancestor" "::")
                                | ("preceding-sibling" "::")
                                | ("preceding" "::")
                                | ("ancestor-or-self" "::")
[44] AbbrevReverseStep      ::= ".."
[45] NodeTest               ::= KindTest | NameTest
[46] NameTest               ::= EQName | Wildcard
[47] Wildcard               ::= "*"
                                | (NCName ":" "*")
                                | ("*" ":" NCName)
                                | (BracedURILiteral "*")                        /* ws: explicit
                                                                                */
[910a] FoxAxisStep          ::= (ReverseFoxStep | ForwardFoxStep) PredicateList
[911a] ForwardFoxStep       ::= (ForwardFoxAxis FoxNameTest) | AbbrevForwardFoxStep
[912a] ForwardFoxAxis       ::= ("child" "~::")
                                | ("descendant" "~::"
                                | ("self" "~::"
                                | ("descendant-or-self" "~::")
                                | ("following-sibling" "~::")
[913a] AbbrevForwardFoxStep ::= FoxNameTest
[914a] ReverseFoxStep       ::= (ReverseFoxAxis FoxNameTest) | AbbrevReverseFoxStep
[915a] ReverseFoxAxis       ::= ("parent" "~::")
                                | ("ancestor" "~::")
                                | ("preceding-sibling" "~::")
                                | ("ancestor-or-self" "~::")
[916a] AbbrevReverseFoxStep ::= ("..." FoxNameTest)                                
                                | ".."                                          /* xgc:
                                                                                only-if-context-is-uri
                                                                                */
[917a] FoxNameTest          ::= CanonicalFoxNameTest 
                                | AbbrevFoxNameTest
[918a] CanonicalFoxNameTest ::= "`" ([^`]|``)* "`"
[919a] AbbrevFoxNameTest    ::= (  [^~\[\]\\/<>()=!|,.d] | ([~] [~\[\]\\/<>()=!|,.\d])  )
                                (  [^~\[\]\\/<>()=!|,\s] | ([~] [~\[\]\\/<>()=!|,\s]     )*
                                
                                                                                /* gn:abbrevFoxNameTest
                       Character sequence in which the following characters are escaped by preceding ~:
                          ~ [] \/ <> () =!|,\s
                       Additional constraint concerning the first character:
                          it must not be a digit or a dot unless escaped by preceding ~ 
                                                                                */
                                                                                
[920a] DriveSelector        ::= DriveLetter ":"
[921a] DriveLetter          ::= [a-zA-Z]

[48] PostfixExpr            ::= PrimaryExpr (Predicate | ArgumentList)*
[49] ArgumentList           ::= "(" (Argument ("," Argument)*)? ")"
[50] PredicateList          ::= Predicate*
[51] Predicate              ::= "[" Expr "]"
[52] PrimaryExpr            ::= Literal
                                | VarRef
                                | ParenthesizedExpr
                                | ContextItemExpr
                                | FunctionCall
                                | FunctionItemExpr
[53] Literal                ::= NumericLiteral | StringLiteral
[54] NumericLiteral         ::= IntegerLiteral | DecimalLiteral |
                                DoubleLiteral
[55] VarRef                 ::= "$" VarName
[56] VarName                ::= EQName
[57] ParenthesizedExpr      ::= "(" Expr? ")"
[58] ContextItemExpr        ::= "."
[59] FunctionCall           ::= EQName ArgumentList                             /* xgc:
                                                                                reservedfunctionnames
                                                                                */
                                                                                /* gn: parens
                                                                                */
[60] Argument               ::= ExprSingle | ArgumentPlaceholder
[61] ArgumentPlaceholder    ::= "?"
[62] FunctionItemExpr       ::= NamedFunctionRef | InlineFunctionExpr
[63] NamedFunctionRef       ::= EQName "#" IntegerLiteral                       /* xgc:
                                                                                reservedfunctionnames
                                                                                */
[64] InlineFunctionExpr     ::= "function" "(" ParamList? ")" ("as"
                                SequenceType)? FunctionBody
[65] SingleType             ::= SimpleTypeName "?"?
[66] TypeDeclaration        ::= "as" SequenceType
[67] SequenceType           ::= ("empty-sequence" "(" ")")
                                | (ItemType OccurrenceIndicator?)
[68] OccurrenceIndicator    ::= "?" | "*" | "+"                                 /* xgc:
                                                                                occurrenceindicators
                                                                                */
[69] ItemType               ::= KindTest | ("item" "(" ")") | FunctionTest
                                | AtomicOrUnionType |
                                ParenthesizedItemType
[70] AtomicOrUnionType      ::= EQName
[71] KindTest               ::= DocumentTest
                                | ElementTest
                                | AttributeTest
                                | SchemaElementTest
                                | SchemaAttributeTest
                                | PITest
                                | CommentTest
                                | TextTest
                                | NamespaceNodeTest
                                | AnyKindTest
[72] AnyKindTest            ::= "node" "(" ")"
[73] DocumentTest           ::= "document-node" "(" (ElementTest |
                                SchemaElementTest)? ")"
[74] TextTest               ::= "text" "(" ")"
[75] CommentTest            ::= "comment" "(" ")"
[76] NamespaceNodeTest      ::= "namespace-node" "(" ")"
[77] PITest                 ::= "processing-instruction" "(" (NCName |
                                StringLiteral)? ")"
[78] AttributeTest          ::= "attribute" "(" (AttribNameOrWildcard (","
                                TypeName)?)? ")"
[79] AttribNameOrWildcard   ::= AttributeName | "*"
[80] SchemaAttributeTest    ::= "schema-attribute" "("
                                AttributeDeclaration ")"
[81] AttributeDeclaration   ::= AttributeName
[82] ElementTest            ::= "element" "(" (ElementNameOrWildcard (","
                                TypeName "?"?)?)? ")"
[83] ElementNameOrWildcard  ::= ElementName | "*"
[84] SchemaElementTest      ::= "schema-element" "(" ElementDeclaration
                                ")"
[85] ElementDeclaration     ::= ElementName
[86] AttributeName          ::= EQName
[87] ElementName            ::= EQName
[88] SimpleTypeName         ::= TypeName
[89] TypeName               ::= EQName
[90] FunctionTest           ::= AnyFunctionTest
                                | TypedFunctionTest
[91] AnyFunctionTest        ::= "function" "(" "*" ")"
[92] TypedFunctionTest      ::= "function" "(" (SequenceType (","
                                SequenceType)*)? ")" "as" SequenceType
[93] ParenthesizedItemType  ::= "(" ItemType ")"
[94] EQName                 ::= QName | URIQualifiedName
                
        

Appendix B.  Extra-grammatical Constraint
This section defines a constraint on the EBNF productions, which is required to parse
            syntactically valid sentences. Further extra-grammatical constraints referenced by the
            productions in (Appendix A) are defined by the XPath 3.0
            specification (8) and are not repeated here.
only-if-context-is-uri
The rule or rule branch annotated may only be used in a context where the context item
            is known to originate from a fox axis step. See section “Context-dependent parsing” for a description how to determine whether the
            constraint is met by a given expression.

Bibliography
[1] BaseX - an open source XML database. Homepage.
                http://basex.org
[2] EXPath Community Group. Homepage. https://www.w3.org/community/expath/
[3] Gruen, Christian et al, eds. File Module 1.0
            ExPath Module 20 February 2015. http://expath.org/spec/file/1.0
[4] glob (programming). Wikipedia article. https://en.wikipedia.org/wiki/Glob_%28programming%29
[5] JSONPath - project homepage on
            https://code.google.com. https://code.google.com/archive/p/jsonpath/
[6] The JXPath component - project homepage on
            https://commons.apache.org/proper/commons-jxpath/. https://commons.apache.org/proper/commons-jxpath/
[7] WildFly application server. Homepage. http://wildfly.org/
[8] Robie, Jonathan, et al., eds. XML Path
            Language (XPath), W3C Recommendation 08 April 2014. https://www.w3.org/TR/2014/REC-xpath-30-20140408/
[9] Robie, Jonathan, et al., eds. XML Path
            Language (XPath), W3C Candidate Recommendation 17 December 2015. https://www.w3.org/TR/2014/REC-xpath-30-20140408/
[10] Kay, Michael, ed. XPath
            and XQuery Functions and Operators 3.0. W3C Recommendation 08 April 2014. http://www.w3.org/TR/xpath-functions-31/
[11] Walsh, Norman, et al. XProc: An XML
            Pipeline Language. W3C Recommendation 11 May 2010. http://www.w3.org/TR/xpath-functions-31/
[12] Robie, Jonathan, Michael Dyck, eds.
            XQuery 3.1: An XML Query Language. W3C Candidate Recommendation 18 December 2014. http://www.w3.org/TR/xquery-31/
[13] Walsh, Norman et al, eds.
            XQuery and XPath Data Model 3.0. W3C Recommendation 8. April 2014 http://www.w3.org/TR/xpath-datamodel-30/
[14] Kay, Michael, ed. XSL Transformations
            (XSLT) Version 3.0. W3C Last Call Working Draft 2 October 2014. http://www.w3.org/TR/xslt-30/



[1] A definition of such a tree might be similar to this: a set of URIs
                        composed of a common prefix followed by one or more steps, meeting the
                        "prefix URIs MUST be folders" constraint not formally defined here.

Balisage: The Markup Conference

FOXpath - an expression language for selecting files and folders
Hans-Jürgen Rennau
Senior Java developer
Traveltainment GmbH

<hrennau@yahoo.de>


Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





