[image: Balisage logo]Balisage: The Markup Conference

SCAP Composer
A DITA Open Toolkit Plug-in for Packaging Security Content
Joshua Lubell
Computer Scientist
National Institute of Standards and Technology

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

How to cite this paper
Lubell, Joshua. "SCAP Composer." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Lubell01.

Abstract
The Security Content Automation Protocol (SCAP) schema for source data stream
 collections standardizes the requirements for packaging Extensible Markup Language
 (XML) security content into bundles for easy deployment. SCAP bundles must be
 self-contained such that each bundle contains all necessary information without
 external references, and reversible such that XML components are unmodified when
 unbundled and re-bundled into new collections. These requirements (along with the
 need for very long, globally unique identifiers) make authoring the content and
 bundling a challenge. SCAP Composer, a software application that uses a Darwin
 Information Typing Architecture (DITA) specialized element type for source data
 stream collections, makes the authoring process easier. SCAP Composer takes an
 incremental approach to aiding SCAP content authors: it helps only with creating
 source data stream collections; it does not offer any help with creating the XML
 resources encapsulated in a data stream collection. SCAP Composer is implemented
 using the DITA Open Toolkit and can be used with any DITA authoring software that
 includes the Toolkit, or with a standalone Toolkit.

Balisage: The Markup Conference

 SCAP Composer

 A DITA Open Toolkit Plug-in for Packaging Security Content

 Table of Contents

 	Title Page

 	1. SCAP Source Data Stream Collections

 	2. The SP 800-126 Schema

 	3. The Source Data Stream Collection DITA Type

 	4. SCAP Composer DITA Open Toolkit Implementation

 	5. Discussion

 	6. Conclusion

 	Appendix A. SCAP-conforming Source Data Stream Collection

 	About the Author

 SCAP Composer
A DITA Open Toolkit Plug-in for Packaging Security Content

1. SCAP Source Data Stream Collections
The Security Content Automation Protocol (SCAP — pronounced ess-cap)
 standard [1] contains a family of Extensible Markup Language
 (XML) [2] vocabularies for representing security content. System
 administrators use configuration checking and vulnerability scanning software tools that
 produce and consume SCAP data to secure servers, workstations, networks, and other
 deployed hardware and applications. United States government agencies and their service
 providers are required to use SCAP-conforming software products [3] and content [4] for security policy
 compliance checking and continuous monitoring of information technology assets. The
 private sector also relies on SCAP products and content for ensuring its information
 systems are protected. For example, banks and credit card companies use SCAP-conforming
 security configuration checklists [5] to verify compliance with
 the Payment Card Industry Data Security Standard [6].
 Additionally, some private sector organizations use SCAP's XML vocabularies to develop
 security content for internal use, or to provide to their customers [7].
Central to the SCAP standard is the source data stream collection data model, an XML
 schema [8] defined in NIST Special Publication (SP) 800-126
 (Technical Specification for the Security Content Automation Protocol) [9]. This schema specifies how to package, into a
 self-contained entity, the collective input required for an SCAP-conforming software
 product to assure a system is not overly vulnerable to cyberattack. The schema enables
 lossless exchange of security content between SCAP-conforming software products,
 allowing SCAP users to avoid vendor lock-in and to share source data stream collections
 within their organization or with partners.
But the same SCAP source data stream collection schema that promotes interoperability
 and shareability among SCAP-conforming software products also makes source data stream
 collection authoring hard. The reason why is that no schema can single-handedly meet the
 needs of SCAP scanner tool developers and SCAP content authors. Section 3 of this paper discusses use of the Darwin Information Typing
 Architecture (DITA) standard [10] to define a new source data
 stream collection XML document type for content authors. This new document type, which
 specializes DITA's map type, does not replace the SP 800-126
 schema. Instead, the new DITA document type serves as an alternative that makes it easier for authors to express a source data
 stream collection. Section 4 describes SCAP Composer, a software
 application that implements the new, author-friendly document type and transforms valid
 instances of it into valid instances of the SP 800-126 schema. SCAP composer uses the
 DITA Open Toolkit [11][1], an open source DITA processor. The National Institute of Standards and
 Technology expects to make SCAP Composer available as open source software in late
 2019.
Before delving into the authoring schema and application, it is important to
 understand why they are needed. Section 2 of
 this paper provides an overview of the NIST SP 800-126 schema's underlying data model
 — highlighting its advantages and drawbacks. But first it is instructive to see
 an example of SCAP in action. Figure 1 illustrates what an
 SCAP-conforming software product can do with a source data stream collection. The
 software depicted enables a user to open an SCAP source data stream collection file,
 view security checklists, and perform configuration and vulnerability scans. The
 checklists reside in the source data stream collection's checklist component, whose XML
 content conforms to the Extensible Configuration Checklist Description Format (XCCDF)
 specification [12]. XCCDF an XML vocabulary SCAP uses to
 represent security configuration rules. Clicking the Scan button causes
 the target system — either the local computer or a remote system — to be checked against
 the checklist to determine whether the checklist's rules are satisfied. Using this
 software to scan a remote target requires that an SCAP scanning client be installed on a
 remote system, and that the network allows secure upload of the SCAP source data stream
 collection file to that system.
Figure 1
[image:]
SCAP-conforming scanning and tailoring software.

This software also provides a user interface for selecting a subset of rules from a
 checklist component, assigning parameters to the subset, and saving the result as a
 tailoring document. The tailoring document references the original checklist component
 without modifying the XML resource it contains, and thus promotes reuse of SCAP content.

The preceding discussion of Figure 1 suggests the following
 important requirements that the SP 800-126 schema must address:	Self-containment: A source data stream
 collection must bundle all information needed to
 perform a scan on the target, without relying on references to external
 files or resources. Self-containment facilitates scans of remote targets by
 ensuring a complete transmission of information between the host system
 initiating the scan and target. Also, a self-contained source data stream
 collection may be digitally signed in its entirety to ensure integrity and
 trustworthiness.

	Reversibility: A source data stream
 collection must bundle its components such that the XML resources the
 components contain are unmodified from their original states, and any XML
 resource can be extracted and re-bundled into a new collection without
 modification to the XML. Reversibility makes it easier to reuse SCAP content
 such as the checklist shown in Figure 1.

2. The SP 800-126 Schema
Figure 2 provides a high-level example of an SCAP source data
 stream collection containing two data streams[2] and five components. Each component encapsulates an XML resource conforming
 to an SCAP vocabulary schema (such as the schema for checklists). Each data stream
 represents a specific SCAP use case, for example, checking the configuration of a server
 running Ubuntu Linux version 16.04. Data streams reference components, as shown by the
 arrows. More than one data stream can reference the same component.
Figure 2
[image:]
SCAP data stream collection.

Figure 2 does not capture two subtleties of SCAP source data
 stream collections. The first has to do with the part-whole relationship between a
 component and the XML resource it encapsulates. An XML resource typically exists outside
 the scope of a source data stream collection. For example, a checklist contained in a
 component may have been copied from its original residing in a security checklist
 repository. Therefore, one can think of a component as a snapshot of an XML resource at
 a specific point in time. Figure 3 illustrates this idea with
 two distinct components, each in a distinct source data stream collection, encapsulating
 the same XML resource. To capture this snapshot notion, the SP 800-126
 schema represents a component as a wrapper element, with a time stamp attribute,
 surrounding a copy of the XML resource.
Figure 3
[image:]
Components reusing the same XML resource.

The second subtlety pertains to component references — shown as directional arrows in
 Figure 2 and Figure 3. At first
 glance, it seems that an XLink simple link [13] can easily
 represent a component reference. But there is a less-than-obvious complication. A data
 stream collection might have two components, with one component's XML resource
 referencing the other component's XML resource. In fact, it is common in SCAP for a
 source data stream to have both a component containing a checklist resource and a
 component containing a check resource described in the Open Vulnerability Assessment
 Language (OVAL). OVAL [14] is an XML vocabulary for representing
 system configuration information, tests and states. An XCCDF checklist rule typically
 references check definitions in an OVAL resource that are used to determine if the
 current state of a system satisfies the rule criteria. XCCDF checklist rules and OVAL
 definitions together usually make up most of the XML data in a source data stream collection[3].
Figure 4 shows a source data stream collection containing
 checklist and check components. The directional arrow labeled href
 indicates a reference from within a checklist rule to a check definition (each
 represented by a small square inside the XML resource). The problem is that the act of
 encapsulating the checklist and check resources into components in a source data stream
 collection breaks the internal references from checklist rules to check definitions. As
 an example, consider the following reference to a check definition from within a
 checklist
 rule:<check-content-ref href="oval.xml"
 name="oval:nist.validation.family:def:1"/>
The
 referenced check definition's identifier is
 oval:nist.validation.family:def:1, and the definition is in a check
 resource whose Uniform Resource Locator (URI), relative to the checklist resource URI,
 is oval.xml. This relative URI reference is useless for an SCAP-conforming
 software product consuming the source data stream shown in Figure 4. What the SCAP-conforming software product needs to know
 is where to find the check component contained inside the source
 data stream collection, not the check resource outside the source
 data stream collection's scope. However, SCAP's reversibility requirement dictates that
 modifying the encapsulated XML resource inside a component is not allowed.
Figure 4
[image:]
Checklist resource with URI reference to a check resource.

The SP 800-126 schema solves this problem by requiring that a data stream referencing
 a component with internal references to a location inside another component include a
 mapping. The mapping enables the source data stream collection consumer to translate
 internal references within the encapsulated XML resource to the corresponding component
 location within the source data stream collection. Figure 4
 shows the mapping as dotted lines indicating a pair of URI references. The first URI
 reference is the relative URI reference inside the checklist rule. The second is the
 reference to the check component in the source data stream collection.
The SP 800-126 schema expresses the mapping using XML Catalogs standard [15] syntax. Figure 5 shows a possible
 XML representation of the reference to the checklist component shown in Figure 4. The component-ref element has an XLink
 simple link pointing to the component, whose identifier is
 scap_gov.nist_comp_content-xccdf. An embedded XML Catalogs
 uri element tells the source data stream collection consumer to
 translate internal references to oval.xml from within the checklist
 resource to references to the URI of the data stream component reference that points to
 the check component, #scap_gov.nist_cref_content-oval.

Figure 5
<component-ref id="scap_gov.nist_cref_content-xccdf"
 xlink:href="#scap_gov.nist_comp_content-xccdf">
 <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <uri name="oval.xml"
 uri="#scap_gov.nist_cref_content-oval"/>
 </catalog>
</component-ref>
Component reference with a mapping from an internal URI reference to the
 corresponding component reference.

The long, verbose identifiers in Figure 5 are the result of
 a SP 800-126 requirement that data stream collections, data streams, components and
 component references have globally-unique identifiers (GUIDs). To this end, the schema
 requires the identifier format conventions shown in Table I. An
 identifier must be underscore-delimited, beginning with scap, followed by
 a reverse domain name system (DNS) style substring associated with the creator, followed
 by a substring indicating the object type being identified (collection,
 datastream, cref or comp), and ending
 with an XML NCName [16]. For example, a data stream containing the
 component reference shown in Figure 5 could have
 scap_gov.nist_datastream_example as its identifier. By requiring GUIDs,
 SP 800-126 reduces the likelihood of conflicting identifiers within a source data stream
 collection or identifiers that conflict with those in another organization's source data
 stream collection.
Table I
SCAP GUID format convention.

	Object	Identifier Format Convention
	Data Stream Collection	scap_reverseDNS_collection_name
	Data Stream	scap_reverseDNS_datastream_name
	Component Reference	scap_reverseDNS_cref_name
	Component	scap_reverseDNS_comp_name

To recap, the SP 800-126 self-containment and reversibility requirements — although
 important for component integration and interoperability — result in added schema
 complexity and added pain for source data stream collection authors. The GUID format
 minimizes the possibility of ambiguous or dangling references, but it results in
 verbose, repetitive, and author-unfriendly identifiers. The SP 800-126 schema's
 underlying data model, hampered by XML's inability to intuitively express part-whole
 relationships between a component and its encapsulated XML resource, represents
 component references as first class objects using XML Catalogs to handle translation of
 resource-to-resource references from within the source data stream collection. This
 added complexity makes authoring a chore and impedes human readability of source data
 stream collections. Appendix A shows the source data stream
 collection XML that was read into the SCAP scanner software application shown in Figure 1. Figure 6 shows a less
 verbose, easier-to-read, and more author-friendly equivalent representation of this
 source data stream collection using the new DITA type discussed in Section 3.

3. The Source Data Stream Collection DITA Type
This section describes a new DITA element type for source data stream collections. The
 source data stream collection element type design arose from a conceptual
 implementation-agnostic information model developed to gain a deeper understanding of
 source data stream collections and how they achieve self-containment and reversibility.
 Reference [17] discusses the conceptual model and how it paved
 the way for an earlier DITA application. This paper provides a more
 implementation-focused perspective, with expanded discussions of DITA specialization in
 this section and DITA-OT implementation in Section 4.
DITA, developed by the Organization for the Advancement of Structured Information
 Standards (OASIS), is a standardized XML-based architecture for authoring, managing,
 reusing and transforming technical content [10]. DITA does not
 specify a schema or set of schemas per se. Instead, the DITA
 architecture provides:	A set of architectural building blocks for forming XML vocabularies called
 element types. These building blocks provide a
 variety of useful features for enabling content management and reuse.

	Two basic element types created from the building blocks: the
 topic and the map. A topic is
 chunk of information. A map is structured collection of references to
 topics, other maps, and non-DITA resources such as, for example, XML
 documents created using non-DITA vocabularies.

	Rules for creating new element types that inherit their processing
 semantics from existing DITA element types. A new element type is a
 specialization of the element type from which it
 inherits. The architecture provides rules for creation of specialized
 element and attribute domains, which are then
 collectively used to define specialized element types. DITA vocabulary
 developers may also specify constraints on a vocabulary's elements and
 attributes. Element and attribute domain specializations can be reused to
 create additional new element types, and thus promote modular and
 interoperable DITA development. Any new element type must be a
 specialization of an existing DITA vocabulary. Specialization makes DITA
 unique among other XML technologies in that implementations of specialized
 element types automatically inherit the functionality of DITA-conforming
 implementations of the element type specialized [18].

	Rules for creating an XML schema for authoring documents conforming to a
 DITA element type. This schema is called a document type
 shell. The document type shell is used only for authoring.
 DITA processing is determined by the DITA document's architectural
 attributes, not the document type shell used to author it.

The burden of following the rules for creating specializations and document type
 shells is a downside of DITA. But this burden falls mostly on developers of
 specializations. Content authors are not exposed to this burden. A DITA document's
 architectural attributes are defined by the document type shell using default values,
 hiding them — and their complexity — from content authors. More importantly, software
 application developers implementing a DITA specialization gain the benefit of inherited
 functionality, resulting in reduced implementation cost [18].
The source data stream collection element type is a specialization of DITA's map
 element type. The map element type was chosen for specialization because SCAP source
 data stream collections and data streams are map-like in nature. Like a DITA map, a
 source data stream collection is essentially a structured collection of components and
 references to components. Each source data stream collection element inherits from one
 of the following elements from the DITA map element type:	map: A DITA map's top-level element.

	topicref: References a topic or external (non-DITA) resource.
 Can also aggregate groups of nested topicref elements.

	keydef: Creates an alias for a file path or short piece of
 text.

Most of the attributes defined in the source data stream collection
 element type inherit from @props, a DITA attribute from which new metadata
 attributes can be specialized.
Table II lists all the XML elements and attributes in the
 source data stream collection element type's document type shell. The leftmost column
 contains the element names. The second column from the left specifies the DITA map
 element (either map, topicref, or keydef) from
 which the source data stream collection element inherits. The third column from the left
 shows the element's content model. *, + and
 ? indicate zero or more occurrences, one or more occurrences, and
 optional, respectively. The rightmost column specifies each element's attributes.
Table II
Source data stream collection DITA document type.

	Element	Inherits From	Content Model	Attributes
	scapDataStreamCollection	map	title?, scapComponent+,
 scapDataStream+	
 reverseDNS

 scapName
schematronVersion

	scapComponent	keydef	EMPTY	
 keys

 href
scope?

	scapDataStream	topicref	scapDictionaries?, scapChecklists?,
 scapChecks	
 scapName

 scapVersion

 useCase

	scapDictionaries	topicref	scapCpeListRef+	NONE
	scapChecklists	topicref	scapBenchmarkRef+, scapTailoringRef+	NONE
	scapChecks	topicref	scapOvalRef+, scapOcilRef*	NONE
	
 scapCpeListRef

 scapBenchmarkRef

 scapTailoringRef

 scapOvalRef

 scapOcilRef

 	topicref	scapExternalLinks?	keyref
	scapExternalLinks	topicref	scapUri+	NONE
	scapUri	topicref	EMPTY	
 keyref

 localUri?

scapDataStreamCollection, the source data stream collection's root
 element, has three attributes. @reverseDNS provides the
 reverseDNS portion for all GUIDs in the collection.
 scapName provides the name portion of the
 collection's GUID. schematronVersion specifies which version of the SCAP
 Requirements Schematron [19] schema to use for validating that a
 transformation (discussed in Section 4) of the DITA map conforms to
 SP 800-126 requirements.
scapComponent represents a component. @keys,
 @href, and @scope are attributes defined in the DITA
 standard. In DITA, @keys provides a list of key names, but the source data
 stream collection element type further constrains it to represent a single key name.
 This succinct name may be used elsewhere in the DITA map in place of the XML resource
 URI (represented by @href) that the component encapsulates. This attribute
 enables source data stream collection authors to specify the URI in just one place and
 use the key name elsewhere in the DITA map. The optional @scope attribute
 specifies whether @href points to a local resource (the default) or an
 external resource on the Internet.
scapDataStream represents a source data stream. @scapName
 provides the name portion of the data stream's GUID.
 @scapVersion and @useCase correspond to required
 attributes in the SP 800-126 schema specifying the version of the SCAP standard to which
 the data stream content should conform, and the data stream's use case.
scapDictionaries, scapChecklists, and
 scapChecks aggregate groups of dictionary component references,
 checklist component references, and check component references, respectively.
scapCpeListRef, scapBenchmarkRef,
 scapTailoringRef, scapOvalRef, and
 scapOcilRef are all component references. @keyref, a DITA
 attribute, enables the author to specify the component being referenced using the short
 name corresponding to the scapComponent element's @keys value,
 saving authors the trouble of having to type the same URI multiple times, and minimizing
 the number of DITA map revisions needed if the URI changes. scapCpeListRef
 references a dictionary component that assigns identifiers to platforms (hardware,
 operating system, or software application) using SCAP's Common Platform Enumeration
 (CPE) nomenclature. These identifiers are typically used in checklist and check
 components for checking the presence of a device, operating system, or software product
 on the target system. scapBenchmarkRef, scapTailoringRef,
 scapOvalRef, and scapOcilRef reference a benchmark
 component, tailoring component, check component containing an OVAL check resource, and
 check component containing an Open Checklist Interactive Language (OCIL) check resource,
 respectively. OCIL is used for checking state via a human-oriented collection of
 information when OVAL-based methods are not feasible.
scapExternalLinks and scapUri together represent the mapping
 (shown in Figure 4) translating internal references within an
 encapsulated XML resource to the corresponding component location within the source data
 stream collection. @keyref is used to specify the component whose
 encapsulated XML resource is being referenced from within the component referenced by
 the parent element of scapExternalLinks. The optional
 @localUri is for overriding the URI obtained when DITA processing
 resolves the key reference specified in @keyref. This is needed when the
 referencing and referenced XML resources are in different local directories, or when one
 is external and the other is local.
Figure 6 lists a DITA map representing the data stream
 collection shown in Appendix A. This data stream collection contains
 one data stream and four components referenced by the data stream. The dictionary
 component and the check component referenced by the dictionary component encapsulate
 dictionary and check resources in the same directory as the DITA map. The benchmark
 component encapsulates a checklist resource in a subdirectory. Another check component
 encapsulates a check resource located externally (and has the value
 external for @scope). Because the dictionary and
 checklist resources both reference check resources, the dictionary component reference
 and benchmark component references contain scapExternalLinks and
 scapUri elements.
Figure 6
<scapDataStreamCollection reverseDNS="gov.nist" scapName="example"
 schematronVersion="1.3">
 <scapComponent href="checklist-content/xccdf.xml" keys="content-xccdf"/>
 <scapComponent scope="external" keys="content-oval" href=
"https://raw.githubusercontent.com/usnistgov/sctools/master/dita/examples/
nist-example/checklist-content/oval.xml"/>
 <scapComponent href="cpe-oval.xml" keys="content-cpe-oval"/>
 <scapComponent href="cpe-dictionary.xml" keys="content-cpe-dictionary"/>
 <scapDataStream scapName="example" scapVersion="1.3"
 useCase="CONFIGURATION">
 <scapDictionaries>
 <scapCpeListRef keyref="content-cpe-dictionary">
 <scapExternalLinks>
 <scapUri localUri="cpe-oval.xml"
 keyref="content-cpe-oval"/>
 </scapExternalLinks>
 </scapCpeListRef>
 </scapDictionaries>
 <scapChecklists>
 <scapBenchmarkRef keyref="content-xccdf">
 <scapExternalLinks>
 <scapUri localUri="oval.xml" keyref="content-oval"/>
 </scapExternalLinks>
 </scapBenchmarkRef>
 </scapChecklists>
 <scapChecks>
 <scapOvalRef keyref="content-oval"/>
 <scapOvalRef keyref="content-cpe-oval"/>
 </scapChecks>
 </scapDataStream>
</scapDataStreamCollection>
Source data stream collection DITA map representing the XML from Appendix A.

4. SCAP Composer DITA Open Toolkit Implementation
The DITA Open Toolkit (DITA-OT) [11] meets the DITA standard's
 requirements for a specialization-aware, output-producing DITA processor. As such,
 DITA-OT merges topics referenced in a map and resolves key references, eliminating the
 need for custom transformation code to perform the functions. Because it is
 specialization-aware, DITA-OT inherits the processing behavior for elements in the
 source data stream collection element type from their supertypes. Thus,
 scapComponent inherits keydef's processing behavior,
 scapSourceDataStream inherits map's processing behavior,
 and the elements based on topicref inherit topicref's
 processing behavior. As a result, DITA-OT built-in functionality greatly reduced the
 coding effort required to implement SCAP Composer.
DITA-OT has a modular architecture with an extensible plug-in mechanism. SCAP Composer
 consists of two DITA-OT plug-ins:	A document type plug-in implementing the source data stream collection
 element type discussed in Section 3. The source data
 stream collection document type shell is defined using RELAX NG compact
 syntax [20] with annotations to support default
 attributes [21].

	A transformation plug-in, requiring the document type plug-in, that
 converts a source data stream collection DITA map into an SCAP source data
 stream collection XML document. The transformation plug-in uses the NIST
 SCAP Content Validation Tool [22], also known as
 SCAPVal[4], to check conformance of individual XML resources and the
 converted source data stream to SP 800-126 requirements.

SCAP Composer can be deployed with any XML authoring software product
 that uses version 3 or higher of DITA-OT. Alternatively, SCAP Composer may be deployed
 with a self-installed DITA-OT, where authoring is done with a non-DITA-aware XML editor
 or text editor. SCAP Composer has been successfully integrated into a commercially
 available XML authoring software product with a built-in DITA-OT. SCAP Composer has also
 been successfully deployed using the free GNU Emacs text editor, which includes an
 nxml mode for authoring and validating XML documents against a RELAX
 NG schema, and a standalone DITA-OT installation. Both deployment options were tested
 with numerous source data stream collection DITA maps, including the source data stream
 collection DITA map in Figure 6.
SCAP Composer's source code consists principally of the following:	RELAX NG compact syntax definitions for the specialized element and
 attribute domains, constraints, document type shell, and public and system
 identifiers needed for the source data stream collection specialized map
 type. The document type plug-in contains these definitions.

	Extensible Style Language transformation (XSLT) [23]
 code that extracts data from the source data stream collection DITA map and
 generates SCAP output. This code is part of the transformation plug-in. The
 code leverages DITA-OT built-in transformation logic and therefore only
 needs to perform tasks beyond basic DITA processing, such as transforming
 the scapURI element and extracting values of attributes needed
 for SCAPval.

	An Ant script for managing the various transformation steps. Ant [24] is a tool for declaring a sequence of build
 actions in XML. DITA-OT provides an Ant script declaring a default sequence
 of extensible transformation steps. Every plug-in has its own Ant script,
 which may use, extend, or skip steps in the default Ant script.

The flowchart in Figure 7 illustrates the workflow defined by the
 transformation plug-in's Ant script. This workflow begins when DITA-OT is invoked with
 sds (short for source
 data stream
 collection) as the output format argument. The plug-in accepts two
 additional optional arguments:	sds.scapval: The path to the SCAPval Java Archive (JAR)
 file.

	sds.componentkey: The @key attribute value of
 one of the input DITA map's scapComponent elements.

Figure 7
[image:]
SCAP Composer transformation plug-in processing
 flow.

Processing begins with a preprocessing stage common to all transformation plug-ins.
 The preprocessing includes the merging and key reference resolution operations mentioned
 earlier. If sds.componentkey is specified, SCAPval validates the XML
 resource pointed to by the key's scapComponent element, and a validation
 report is produced as output (assuming sds.scapval is also specified; if
 not, processing stops with an error message). If sds.componentkey is not
 specified, the plug-in generates a single file in SP 800-126 schema format from the DITA
 map and XML resources. If sds.scapval is specified, the plug-in then
 validates the generated file and produces a validation report.
Suppose the source data stream collection DITA map file name is
 nist-example-hybrid.ditamap, and DITA-OT is invoked as
 follows:dita -i nist-example-hybrid.ditamap -f sds --sds.scapval=scapval-1.3.2.jar
SCAP
 Composer will produce two outputs: the transformation result shown in Appendix A and a SCAPval-generated validation report of the
 transformation result. Figure 8 shows the beginning summary section
 of the validation report. The rest of the report provides detailed results for each
 validation requirement tested. Reference [22] provides more
 information regarding SCAP validation requirements, their associated test procedures,
 and which test procedures include validation using SCAPval.
Figure 8
[image:]
SCAPval validation report summary.

5. Discussion
SCAP Composer takes an incremental approach to aiding SCAP content authors. This is
 both a limitation and a strength. The limitation is that SCAP Composer only helps with
 creating source data stream collections. It does not offer any help with creating the
 XML resources encapsulated in a source data stream collection. Checklist and check
 resources are large, highly complex, and hard to create using conventional XML editing
 software applications. Reference [25] explores the feasibly of
 developing DITA element types for representing checklist rules and profiles (collections
 of rules), but more implementation and testing is needed to scale the proof-of-concept
 demonstration to real-world rule sets.
SCAP Composer's incrementalism is a strength in that its limited scope makes it easy
 both to deploy and integrate with other SCAP content development aids. SCAP Composer has
 no software dependencies other than DITA-OT, which runs in all common operating systems.
 SCAP Composer is not tethered to a larger SCAP software product or content repository
 infrastructure. This flexibility enables SCAP Composer to contribute to a larger
 authoring and content management solution by providing the piece responsible for
 creating source data stream collections, leaving it up to other mechanisms to produce
 and manage the XML resources to be encapsulated.
DITA-OT's extensible and customizable transformation workflow offers many
 possibilities for combining DITA processing with other capabilities. SCAP Composer
 exploits this to combine transformation from DITA to SP 800-126 XML with SCAPval
 validation and report generation. DITA-OT flexibility even allows a workflow with no
 DITA processing at all, as demonstrated by DITA-OT plug-in from Jason Fox [26] that automatically displays a random cat picture or XKCD comic
 strip as a splash screen while waiting for another plug-in's transformation to complete.
Although Fox's plug-in sounds frivolous, the same underlying idea can be practical in
 the context of SCAP Composer. For example, a future version of SCAP Composer could be
 supplemented with a decompose plug-in whose input includes an SP 800-126
 schema-conforming source data stream collection, and whose output is the set of XML
 resources encapsulated by the components contained in the collection. Such a plug-in
 would perform no DITA processing yet would add useful and complementary functionality.
Software products that produce and manage SCAP are part of the broader research and
 development goal of modeling cybersecurity compliance requirements in a manner enabling
 them to be structured, organized, executed and reused efficiently [27]. SCAP Composer is a small contribution to this goal. Other
 efforts, such as the Compliance as Code open source project [28], are more ambitious. Compliance as Code contains a
 collection of compliance rules written in a YAML [29] format,
 OVAL XML fragments, as well as code fragments for automated remediation of compliance
 issues. A collection of build scripts generates SCAP source data stream collections and
 remediation scripts from the fragments. Another effort, ConfigValidator [30], is a system that checks a variety of targets — including
 running containers and cloud-based environments — for compliance with configuration
 rules written in a YAML-based declarative language.
The Compliance as Code and ConfigValidator projects have broader scopes and implement
 far more capabilities than SCAP Composer. However, both rely on one-off collections of
 scripts for processing compliance rules written in non-XML formats. Lack of
 standardization is a barrier to reusing the Compliance as Code and ConfigValidator
 technology in other projects. Also, both projects reject the use of XML for authoring
 compliance rules, claiming XML is hard for humans to edit. But, as SCAP Composer shows,
 XML is not the problem. The real problem is that, as discussed in Section 2, no single schema can meet all implementation
 requirements.

6. Conclusion
This paper describes SCAP Composer, a novel software application for creating and
 validating SCAP source data stream collections. What makes SCAP Composer unique is its
 use of DITA specialization and the DITA Open Toolkit to simplify the reuse of SCAP
 content while adhering to self-containment and reversibility requirements. Integration
 with SCAPval adds the ability for users to conveniently check source data stream
 collections and their components for conformance to SP 800-126. Other efforts to
 facilitate authoring and reuse of SCAP content rely on ad hoc
 authoring formats and extract/transform/load workflows, making them difficult to
 maintain or deploy in new projects. SCAP Composer is based on DITA, a robust
 architecture specifically for authoring and organization of topic-oriented information.
 Because it is standards-based and has a small footprint and scope, SCAP Composer is easy
 to integrate into a variety of SCAP authoring and deployment scenarios.

Note
The author thanks his colleagues at the National Institute of Standards and
 Technology and the anonymous Balisage reviewers for helpful comments and feedback
 on earlier versions of this paper.

Appendix A. SCAP-conforming Source Data Stream Collection
This appendix lists the SCAP-conforming XML read into the scanner software shown in
 Figure 1. To save space, the XML resource markup is not
 shown.
<sds:data-stream-collection
 xmlns:sds="http://scap.nist.gov/schema/scap/source/1.2"
 xmlns:cat="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="scap_gov.nist_collection_example"
 schematron-version="1.3">
 <sds:data-stream id="scap_gov.nist_datastream_example"
 scap-version="1.3"
 timestamp="2019-04-05T20:57:48.814-04:00"
 use-case="CONFIGURATION">
 <sds:dictionaries>
 <sds:component-ref
 id="scap_gov.nist_cref_content-cpe-dictionary"
 xlink:href="#scap_gov.nist_comp_content-cpe-dictionary">
 <cat:catalog>
 <cat:uri name="cpe-oval.xml"
 uri="#scap_gov.nist_cref_content-cpe-oval"/>
 </cat:catalog>
 </sds:component-ref>
 </sds:dictionaries>
 <sds:checklists>
 <sds:component-ref id="scap_gov.nist_cref_content-xccdf"
 xlink:href="#scap_gov.nist_comp_content-xccdf">
 <cat:catalog>
 <cat:uri name="oval.xml"
 uri="#scap_gov.nist_cref_content-oval"/>
 </cat:catalog>
 </sds:component-ref>
 </sds:checklists>
 <sds:checks>
 <sds:component-ref
 id="scap_gov.nist_cref_content-oval"
 xlink:href="#scap_gov.nist_comp_content-oval"/>
 <sds:component-ref
 id="scap_gov.nist_cref_content-cpe-oval"
 xlink:href="#scap_gov.nist_comp_content-cpe-oval"/>
 </sds:checks>
 </sds:data-stream>
 <sds:component id="scap_gov.nist_comp_content-xccdf"
 timestamp="2019-04-05T20:57:48.814-04:00">
 <Benchmark xmlns="http://checklists.nist.gov/xccdf/1.2" ...>
 ...</Benchmark>
 </sds:component>
 <sds:component id="scap_gov.nist_comp_content-oval"
 timestamp="2019-04-05T20:57:48.814-04:00">
 <oval_definitions
 xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5" ...>
 ...</oval_definitions>
 </sds:component>
 <sds:component id="scap_gov.nist_comp_content-cpe-oval"
 timestamp="2019-04-05T20:57:48.814-04:00">
 <oval_definitions
 xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5" ...>
 ...</oval_definitions>
 </sds:component>
 <sds:component id="scap_gov.nist_comp_content-cpe-dictionary"
 timestamp="2019-04-05T20:57:48.814-04:00">
 <cpe-list xmlns="http://cpe.mitre.org/dictionary/2.0" ...>
 ...</cpe-list>
 </sds:component>
</sds:data-stream-collection>

References
[1] Quinn S, Scarfone K, Waltermire D (2012) Guide to Adopting and Using the Security Content Automation Protocol
 (SCAP) Version 1.2 (Draft), NIST Special Publication
 800-117.
[2] Extensible Markup Language (XML) 1.0 (Fifth Edition) (2008),
 W3C Recommendation. Available at http://www.w3.org/TR/xml/
[3] SCAP Validated Products and Modules - Security Content
 Automation Protocol Validation Program. Available at https://csrc.nist.gov/Projects/scap-validation-program/Validated-Products-and-Modules
[4] The United States Government Configuration Baseline (USGCB) -
 NIST. Available at https://usgcb.nist.gov/
[5] Guide to the Secure Configuration of Red Hat
 Enterprise Linux 7. OpenSCAP Security Guide. Available at https://static.open-scap.org/ssg-guides/ssg-rhel7-guide-pci-dss.html

[6] Payment Card Industry (PCI) Data Security Standard (2018),
 Version 3.2.1.
[7] OVAL Repository: Top Contributors. Available at https://oval.cisecurity.org/repository/top-contributors
[8] XML Schema Part 0: Primer Second Edition (2004), W3C
 Recommendation. Available at https://www.w3.org/TR/xmlschema-0/
[9] Waltermire D, Quinn S, Booth H, Scarfone K, Prisaca D
 (2018) The technical specification for the security content
 automation protocol (SCAP) version 1.3 (National Institute of Standards
 and Technology, Gaithersburg, MD), NIST SP 800-126r3. doi:https://doi.org/10.6028/NIST.SP.800-126r3
[10] DITA Version 1.3 Specification (2018) (Organization for the
 Advancement of Structured Information Standards), OASIS Standard. Available at http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
[11] The DITA Open Toolkit: dita-ot/dita-ot (2019) (DITA Open
 Toolkit). Available at https://github.com/dita-ot/dita-ot

[12] Waltermire D, Schmidt C, Scarfone K, Ziring N (2011)
 Specification for the Extensible Configuration Checklist
 Description Format (XCCDF) Version 1.2, NIST Interagency Report 7275
 Revision 4. Available at http://csrc.nist.gov/publications/PubsNISTIRs.html
[13] XML Linking Language (XLink) Version 1.1 (2010), W3C
 Recommendation. Available at https://www.w3.org/TR/xlink11/
[14] OVAL Documentation. Available at http://ovalproject.github.io/
[15] XML Catalogs (2005), OASIS Standard V1.1. Available at
 https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
[16] Namespaces in XML 1.0 (Third Edition) (2009), W3C
 Recommendation. Available at https://www.w3.org/TR/xml-names/
[17] Lubell J (2018) A New SCAP Information and Data Model for Content Authors.
 Critical Infrastructure Protection XII, eds Staggs
 J, Shenoi S (Springer International Publishing), pp 127–146. doi:https://doi.org/10.1007/978-3-030-04537-1_8. Available at https://www.nist.gov/publications/new-scap-information-model-and-data-model-content-authors
[18] Kimber E (2012) DITA for
 Practitioners Volume 1: Architecture and Technology
 (XMLPress).
[19] Information technology — Document Schema Definition Language (DSDL) — Part 3:
 Rule-based validation — Schematron (2016) (International Organization for
 Standardization), ISO/IEC 19757-3. Available at http://schematron.com
[20] Information technology — Document Schema Definition Language
 (DSDL) — Part 2: Regular-grammar-based validation — RELAX NG (2008) (International
 Organization for Standardization), ISO/IEC 19757-2. Available at https://relaxng.org
[21] RELAX NG DTD Compatibility (2001) (Organization for the
 Advancement of Structured Information Standards), Committee Specification. Available at
 https://relaxng.org/compatibility-20011203.html

[22] Cook M, Quinn S, Waltermire D, Prisaca D (2018) Security
 content automation protocol (SCAP) version 1.3 validation program test requirements
 (National Institute of Standards and Technology, Gaithersburg, MD), NIST IR 7511r5. doi:https://doi.org/10.6028/NIST.IR.7511r5
[23] XSL Transformations (XSLT) Version 2.0 (2007), W3C
 Recommendation. Available at https://www.w3.org/TR/xslt20/
[24] Apache Ant (2019) (The Apache Software
 Foundation). Available at https://github.com/apache/ant

[25] Lubell J (2017) Using DITA to Create Security Configuration
 Checklists: A Case Study. Proceedings of Balisage: The Markup Conference, Balisage
 Series on Markup Technologies. (Washington, DC). doi:https://doi.org/10.4242/BalisageVol19.Lubell01
[26] Fox J (2019) Splash Screen Plug-in for the DITA Open Toolkit.
 Available at https://github.com/jason-fox/fox.jason.splash

[27] Steffens A, Lichter H, Moscher M (2018) Towards
 Data-driven Continuous Compliance Testing. 3rd Workshop on Continuous Software
 Engineering (Ulm, Germany), pp 78–84.
[28] Security compliance content in SCAP, Bash, Ansible,
 and other formats: ComplianceAsCode/content (2019) (ComplianceAsCode). Available at
 https://github.com/ComplianceAsCode/content

[29] Ben-Kiki O, Evans C (2009) YAML Ain’t Markup Language
 (YAML™) Version 1.2, 3rd Edition.
[30] Baset S, Suneja S, Bila N, Tuncer O, Isci C (2017) Usable
 declarative configuration specification and validation for applications, systems, and
 cloud. Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference on Industrial Track
 - Middleware ’17 (ACM Press, Las Vegas, Nevada), pp 29–35. doi:https://doi.org/10.1145/3154448.3154453

[1] Certain commercial and third-party products and services are identified in
 this paper to foster understanding. Such identification does not imply
 recommendation or endorsement by the National Institute of Standards and
 Technology, nor does it imply that the materials or equipment identified are
 necessarily the best available for the purpose.
[2] Although SCAP allows for source data stream collections to contain multiple
 data streams, it is common for a collection to contain only a single data
 stream.
[3] To help reduce the sea of acronyms in this paper, unless explicitly stated
 otherwise, the terms checklist, checklist
 component, and checklist resource imply XCCDF as the
 checklist language. Similarly, check, check
 component, and check resource imply OVAL as the check
 language.
[4] SCAPval is a command-line application that validates SCAP source
 and result data streams against SP 800-126 XML schemas, and
 encapsulated XML resources against their XML schemas. SCAPval uses
 Schematron [19] to perform additional
 validations. SCAPval's output is a detailed validation report (Figure 8 shows an example of a validation
 report's summary section). Laboratories accredited to test SCAP
 products are required to use SCAPval reports as part of their
 testing process. Developers of SCAP software products such as the
 scanner shown in Figure 1, SCAP content
 developers, and organizations deploying SCAP products may use
 SCAPval for quality assurance, or to gain insight into SCAP
 validation requirements or product capabilities.

Balisage: The Markup Conference

SCAP Composer
A DITA Open Toolkit Plug-in for Packaging Security Content
Joshua Lubell
Computer Scientist
National Institute of Standards and Technology

Joshua Lubell is a computer scientist whose work focuses on smart
 manufacturing systems cybersecurity. His technical interests include markup
 languages and information modeling. His Baseline Tailor software tool for
 security control selection won an award from Government Computer News. He
 received the United States Department of Commerce Silver Medal for his
 leadership in developing ISO 10303-203, a standard for representation and
 exchange of computer-aided designs. He is also a Balisage hyper-local, residing
 in the heart of Rockville, Maryland.

Balisage: The Markup Conference

content/images/Lubell01-002.png
Data Stream Collection

Data Stream 1 Component 1

Component 2

Component 3

Data Stream 2 Component 4

Component 5

content/images/Lubell01-003.png
Data Stream Collection 1

Data Stream

Component

copy

XML Resource

Data Stream Collection 2

Data Stream

Component

content/images/Lubell01-004.png
Data Stream Collection

Data Stream

Mapping

Componemb

Checklist Resource

0]

href
Component b

Check Resource

O

content/images/Lubell01-005.png
SDS Collection
DITA Map

[SCAP-conforming| Validation
SDS Collection Report

content/images/Lubell01-001.png
@ ris campie ybidsm - SCAP Workbench

Ele Help
e XCCDF Benchmark That References the Validation Content for the family_test

Customaation e et @ Curtomiing CCOF P Tt Rfrncethe Vi Conto e i e CUSTOMZEDY - o x
o EEEEES O |

et f 5 XCCDF Prfl That Reences o Valdoton Contrt . Sl o ot 8 x
userandhost =stonns |+ (5] XCCOF Benchmark Tt References heValttion Corte | T pnd_defnition construct with the negate proper

> Tt e oy ety et s
> Tt eyt i e
> s e fmy vty i e e
> st e oy ety e e et
> Tt e fmy ety i e s
[T EE——
> s e Fomy ety s e et
> Tt e oy ety e e s
> st e et et rstuct

2]
“
El
“
a
@
2]
“
=]

] Testhe famiy ety with e et cpesston | | o [tend- definition-construct-with-negate-property 9]
| vt e smbepmen | | g

5] Tt iy ity it s cprtion

| et theomiy ey it he s cpesion || P

e £
] Tttty ity e s | |2 P ot oy s e e

] Tetth iy ety it the st opricn
] et ey e s cprsion
5] Tetthe oyt it he s apesion
(5] Tt theeten. et constc it ne et

E==s

= o

Dowvnn Ofethremte rsouces Crenedse | SCaN

content/images/Lubell01-006.png
SCAP validation Report

Validation Details Validation Overview Validation Summary

Torger | Fe/ClunenfubeDocumentie Toal Requrement: &
portoenoosloamplein e e
pplicabl Requirments: 56
¥ complenemprconin AL

xample-hybrid/nist-example- Requirements Passed: 540f54

hybridxml 0ofs4
Start: April 10th, 2019 135555 GMT-4 e —arios - estors 27
End: Aprl 10th, 2010 135550 GMT-4 - popicie Pass
Typer SCAP L3 Source

scapual 132

« Validation occurred while in
OFFLINE mode.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

