[image: Balisage logo]Balisage: The Markup Conference

Do we really want to see markup?
James David Mason

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

Copyright ©2019 by the author. Used with permission.

How to cite this paper
Mason, James David. "Do we really want to see markup?." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Mason01.

Abstract
Markup fanatics have long cried, “We need to see the markup!” Yet since the
 earliest stages of developing the SGML standard, there has been an urge even among
 standards developers to avoid having to write tags everywhere. The recent urge to
 create “Invisible XML” is but the latest symptom of a smoldering disease, from which
 I too suffer.

Balisage: The Markup Conference

 Do we really want to see markup?

 Table of Contents

 	Title Page

 	Prologue

 	 ODA, SGML, and the First Hints of Invisible SGML

 	Digression on Word Processors and Seeing Coding

 	Early Invisibility in SGML

 	To Be Seen or Not To Be Seen

 	Appendix A. Markup Minimization

 	About the Author

 Do we really want to see markup?

Prologue
Why do we want to see markup?
That's not a question I would have asked forty years ago when I started using
 computers to process text. I first experienced document markup as an editor and writer
 in the publishing organization at Oak Ridge National Laboratory: I taught myself the
 coding for our typesetting system (developed in house by a physicist) so I could have
 more control over my documents. No WYSIWYG was available to me then! I worked with
 markup on hard copy and edited it using a line editor on a teletype terminal. Because I
 had done that typesetting and also some FORTRAN programming, I was picked to be the
 guinea pig for our new UNIX-based publishing system and eventually to train the rest of
 our staff. I found myself with a full-screen editor on a CRT (much quieter than the
 teletype), learning troff, tbl, and eqn. Basic troff typesetting wasn't all that different from what I knew
 (the systems shared Runoff as a common ancestor), but Joe Ossanna and Brian Kernighan
 had made troff programmable, and that meant that there
 were macro packages, the abstractions of patterns in markup.
My life changed forever: I had encountered Generic Markup! This appealed to me. All my
 life I had been interested in patterns. I had encountered Joseph Campbell and The Hero with a Thousand Faces early in my college career,
 studied Jungian archetypes, and written a dissertation on patterns in early Germanic
 literature. Now I had found something based on patterns I could use in my work—and get
 paid for it.
I chose the MM (Bell Laboratories Memorandum Macros) package as being
 most suited to our work at ORNL and set about adapting the package to our requirements.
 I also rewrote parts of eqn. Then I started training
 our composition staff and eventually the other editors. I attended one of the early
 Seybold Conference series, where someone from IBM talked about something called
 Generic Markup Language. I realized there was a kind of community;
 other people were working on other types of generic markup.
My success with the project at ORNL led to my being asked to present it at a
 Department of Energy conference. There I met Millard Collins, chairman of a new ANSI
 committee (X3V1) working on how to make the new word-processing systems just becoming
 popular communicate with each other. Since part of my job was to get text out of word
 processors and into our UNIX system, I joined the committee at its organizational
 meeting in the fall of 1981. At that meeting, I met Charles Card, who suggested I join
 his committee (X3J6), which was working on, among other things, a Standard Generalized
 Markup Language. I first attended X3J6 in the spring of 1982, and there I had my first
 encounter with Charles Goldfarb, the project editor and driving force behind SGML.
The first of these committees (and its ISO counterpart, ISO/IEC JTC1/SC18) started
 work on something called Office Document Architecture (later Open Document
 Architecture), ISO 8613 [ODA], now largely forgotten. SGML, ISO 8879,
 [SGML] developed originally by X3J6 and its ISO counterpart, the
 JTC1 Experts Group on Computer Languages for Processing Text, is still with us. The two
 ISO committees eventually merged into SC18. In the fall of 1985, I became the convenor
 of the ISO working group responsible for SGML and related projects (SC18/WG8). ODA was
 managed by a parallel working group (SC18/WG3). After the demise of ODA, my SGML group
 became the primary committee in 1998, just as XML was getting started. (As ISO/IEC
 JTC1/SC34, it still exists. [SC34]) The competition between SGML and ODA
 went on for nearly eighteen years. While there were many technical issues (and much
 electro-politics) involved, in many ways the competition was about
 the difference between visible and invisible markup.

 ODA, SGML, and the First Hints of Invisible SGML
Most of the people working on SGML came, like me, from the documentation and the
 scientific and technical publishing industries. We prided ourselves on our connection to
 technology, and we were used to typing codes into computers. We were used to long,
 highly structured documents—and lots of code.
Those who joined the world of descriptive markup only after the arrival of XML may not
 realize how endangered that world had been only a few years earlier. The SGML/ODA
 Wars are, thankfully, long over and forgotten, except by those of us who
 still have scars from them. In retrospect, I think SGML might have survived on its own,
 in a niche community; but if we had not survived the wars, we wouldn't have been able to
 build a support system for it. In particular, we wouldn't have had DSSSL (Document Style
 Semantics and Specification Language, ISO/IEC 10179), and without that we wouldn't have
 had the basis to build XSL and XQuery.
The ODA project was driven largely by makers of word-processing systems and also by
 national telecommunications agencies that were looking to offer yet another tariffed
 service. While they dreamed of WYSIWYG, the reality of their work was long limited by
 the limitations of their hardware, particularly the inability to produce more than
 typewriter-like output when the project began. What ODA seemed to desire most was a
 system that offered a working screen free of codes. Nonetheless, ODA had a foundation
 that was not so simple as their surface goals might suggest, and indeed they had
 considerable influence on SGML and its approach to coding. From its beginnings in
 Wolfgang Horak's dissertation, ODA had an implicit interest in generic structures, [Horak-Kroenert-83] and in the earliest ISO drafts, ODA proposed that
 documents possessed two concurrent, interleaved, high-level document structures,
 layout and logical. What these structures involved was
 never made completely explicit, though layout obviously had to do with
 rendition on the screen and page. The logical structure apparently dealt
 with paragraph-like objects. ODA was the cloud computing of the 1980s: an
 office was expected to rent an ODA terminal from their telephone company, and the
 documents would reside on the company's mainframes. The ODA standards project was
 eventually published in 14 volumes, with several supporting technical reports.
From the beginning, ODA assumed that the serialization of documents would be in binary
 form, ODIF (Office Document Interchange Format). The notation selected was based on
 ASN.1 (Abstract Syntax Notation One, ASN.1 [ASN1]), though with
 modifications because of the concurrent structures. Below the page level, the layout
 structure was control codes for rendering devices, which amounted to invisible inline
 procedural markup. For the logical structure, however, the developers turned to
 type-length-value triplets, with byte count pointers as a kind of implied stand-off
 generic markup.
During the earliest years of the ODA project, I attended their meetings and brought
 back their discussions to the SGML committee. Most of the SGML team considered ODA a
 distraction, but it intrigued Goldfarb, who took it as a personal challenge to develop
 an SGML representation for anything and everything proposed for ODIF. One of the first
 results of this was the introduction of the CONCUR feature into SGML. Because ODA never
 developed an explicit schema mechanism, Goldfarb had to develop a mechanism for dealing
 with ad hoc and implicit structures. The result was Architectural Forms.
 Goldfarb's SGML rendering of something that began as binary and invisible into visible
 markup was eventually folded back into the ODIF standard as an alternative
 serialization.
In the two serializations of ODIF, we had (at least in theory) the materials for a
 reversible transformation between a document whose only visible manifestation was
 something that appeared on a presentation system and one that was encoded in
 conventional, and readable, character markup. It was sufficiently interesting to
 Goldfarb that he played with the idea of developing a binary version of the whole SGML
 design, on the assumption that it would be more compact and therefore easier to transmit
 over a bandwidth-limited network. That came to an end when NIST calculated the relative
 sizes of binary- and SGML-encoded ODA documents and found the latter to be more
 compact.
Although the reversible transformation between visible and invisible markup was
 defined, at least for definition of the serialization of ODA, it never worked in
 practice. While we all know SGML and its heirs, which have multiple implementations, ODA
 was never completely implemented and today is largely forgotten. It had, on paper, a
 bewildering number of options from which profiles could be extracted, only a few of
 which had even trial laboratory implementations. Those of us who had to cope with its
 presence generally think of it as an expensive failure. Yet it influenced DSSSL, and
 thus XSL, through its page model. And it started the debate of how to represent
 overlapping structures that still intrigues participants in Balisage.
One of the things that killed the ODA project was visible markup. ODA was not intended
 to be seen, even in the SGML encoding. ODA was not really even intended to be created
 directly (though Philips did at one point attempt, unsuccessfully, to build an ODA
 editor as a laboratory project). ODA was originally intended to be used in invisible
 environments, for communication between systems. It was too hard for all but a few
 specialists to comprehend its rather abstract model and its difficult binary
 representation. ODIF could be generated only by machines, doing things like pointer
 arithmetic. SGML markup, in contrast, was expected to be created by end users. It turned
 out as something we could—and did—create by hand, and we expected to see that which was
 both document markup and the interchange format. Yves Marcoux and Martin Sévigny
 considered eye-readability to be the primary reason that SGML succeeded
 where ODA did not. [Marcoux]
I trace the last gasps of ODA to the SC18 plenary in 1995. The convenors of the
 working groups were sitting together at the head table, and I was next to Steve Price,
 the convenor of WG3 and the chief public advocate for ODA. I happened to look at his
 laptop screen and saw he was taking notes in a text editor—in HTML. I leaned over and
 whispered to him I'm glad to see you've come over to our side.
 What do you mean? he asked. You're taking notes in SGML, I
 replied. No, he shot back, it's this new World Wide Web
 thing.
 Yes, I can see it's HTML, and that's an SGML application. He was crushed.
 His group, which had big money behind it, had spent years trying to compete with ours,
 which had worked because of a passion for its project. All this time the ODA developers
 had never really grasped what we were doing. Meanwhile, we sold our concept quietly,
 planting it in places like CERN, where it spawned HTML, and the ODA team didn't realize
 they had been subverted. They tried to keep their project going for another couple of
 years, but it was futile.
I don't think that it was merely the technical superiority of SGML that led to its
 victory over ODA. The ODA developers had started with confidence that they had the next
 great thing. They were, after all, professional standards developers, backed by powerful
 organizations, and they were working on something that would fit into Open Systems
 Interconnect. The SGML developers knew little about standards development; we were just
 end users with a common interest. (As Sharon Adler remarked, If we ever figure
 out how this standards process works, it will be time for us to retire.) In
 the long run, it was probably to the advantage of the SGML developers that they were
 working on something that they wanted and needed themselves, rather than something that
 corporate bodies expected to impose on end users. The design of SGML is
 improvised—sometimes amateurish, sometimes obscure. The resulting application languages
 are nonetheless something that can be seen and used directly by humans. The visibility
 of SGML markup was part of what enabled Bill Tunnicliffe to sell it to the U.S.
 Department of Defense in 1983, and that led to our going public with the GENCODE
 standard later that year. [GENCODE] ODA, with its thousands of
 permutations of options, was much harder to grasp—and to implement. All its advocates
 could do was publish descriptive papers. You can write SGML in a simple text editor. You
 can't do that with ODA. So in the end, the leader of ODA development picked up on the
 utility of HTML and actually used it. Visible markup had won.[1]

Digression on Word Processors and Seeing Coding
WYSIWYG is a seductive concept. The earliest stand-alone word-processing
 systems—expensive, yet limited, behemoths—promoted it. But by the time SGML and its
 offspring really gained traction, the stand-alone devices had been supplanted by
 programs running on general-purpose personal computers. And in the end, the multitude of
 early applications had largely fallen by the wayside while two major competitors fought
 to control the marketplace, Microsoft's Word and
 Corel's Word Perfect. Word was based on work at Xerox PARC, and as a consequence it was
 fundamentally object oriented. It understood units of text such as strings and
 paragraphs and applied properties to them, and it understood generalized structure and
 inheritance of both structure and properties. That meant it could easily support
 stylesheets with inheritable properties and things that depended on structure, like
 outlining. Word Perfect, in contrast, just serialized
 control functions in whatever order the user happened to insert them; there was no
 overall concept of structure. (I thought of it as one damn thing after
 another.) Stylesheets and outlining came only late to Word Perfect and were relatively weak, compared to those in Word.
Conceptually, Word was in closer sympathy with SGML,
 while Word Perfect followed the layout structure of
 ODA. (It is perhaps significant that Corel was one of the very few companies to attempt
 an ODIF export filter for their product.) Word beat
 Word Perfect to full WYSIWYG with Word for Windows (no surprise there), but my observation of
 hundreds of users of these two products showed an interesting phenomenon: serious
 Word Perfect users almost always ran the program in
 split-screen mode, with reveal codes at the bottom of the editing screen.
 Using reveal codes was important because the program enforced no
 discipline about how codes were entered; users could do things in random order, and just
 seeing the cursor in the WYSIWYG screen gave few hints about what was actually going on
 in the procedural coding. Word users didn't need this
 because the program managed the coding in a structured way, always told them what object
 they were in, and could also tell them what its properties were. So in a fully
 structured environment, it was not necessary to look at coding; but in an undisciplined
 one, visibility of coding was essential.

Early Invisibility in SGML
As proud as the hard-core SGML developers were of our ability to bang markup into a
 terminal, we were nonetheless practical—or lazy. Almost from the beginning we had
 markup minimization. In the early days, before we had syntax-directed
 editors designed for SGML, we took it on faith that the SGML Parser
 (whatever that turned out to be) would be intelligent enough to keep track of the
 current context and so save us the trouble of typing full tags. Goldfarb, of course, had
 to generalize that idea into the full scope of minimization options in the final
 standard (see below, Appendix A).
I can remember the first SGML editor I used, from Datalogics: it was basically a text
 editor, with an attached batch parser. I could type tags, attributes and all, and end
 tags; then I could check to see how many mistakes I'd made. Software Exoterica (later
 known by the name of its primary product, OmniMark) came out with
 Checkmark, based on a simple text editor for the Macintosh, but
 with a live parser. The ability to get validation while a document was being created was
 so useful that I, like a number of other people, kept an ancient Mac alive for years
 just to run Checkmark after Exoterica stopped updating it for later
 systems.
XML, hoping to simplify life for the parser writer, decided to drop minimization.
 Ironically, most of the problems with minimization had been solved by then, and
 furthermore we had real SGML editors like SoftQuad's Author/Editor and Arbortext, so the
 problem had ceased to be an issue. With the arrival of real SGML editors, users suddenly
 had the option of deciding how much SGML they wanted to see. They could see full source
 code, they could see schematic block tags, or they could see no tags at all. As I write
 this in <oXygen/>, I'm looking at a page very similar to what I
 saw more than twenty years ago in Author/Editor, and
 I'm switching between visible and hidden tags according to what tasks I'm performing at
 the moment. Even if I were still in Author/Editor,
 there would be no minimization in my output document.
As I've looked at some recent papers on Invisible XML, I've kept
 thinking, We're back where I was about 1983.
What was the state of SGML back then, and how does it lead to Invisible
 SGML, if not to Invisible XML?
By 1982 our image of what an SGML document would look like would be largely
 recognizable to an XML user today. A document would have tags with angle brackets, and
 the elements indicated by the tags would be in a hierarchy. Attributes would be
 specified in start tags. What we lacked then was a formal way to define the tags and
 hierarchy. In short, we needed a way to specify a schema, and developing such a
 specification was harder than forming a basic expectation of what SGML would look like.
 In 1982 we were already thinking about specifications for content models that were
 somehow related to regular expressions, but we did not yet have a settled syntax for
 them. When we did start to develop a syntax for declarations in 1983, one of our first
 drafts was actually a whitespace-delimited table inside a declaration (then called
 STRUC, for structure), with columns for element names and models. Multiple elements
 could be declared in a single table. We'd leave until later the problem of how to parse
 such a table and use the results.
Given this state of development, it was sometime in late 1982 that I inadvertently
 launched an idea that would result in Invisible SGML. I had to do a
 presentation about SGML, and I picked for my example a conventional memo, with
 From, To, Subject, and other such
 fields. Not yet having a real syntax for a schema, I wrote out a series of definitions
 borrowing from regular expressions that included string literals as components of
 content models. I don't have the original any longer, but it was something
 likememo: to, from, subject, date, body
 to: "To: ", #PCDATA
from: "From: ", #PCDATA
etc.

 Afterwards, I showed it to Goldfarb, who fired back that it was all wrong, that wasn't
 what he intended to do at all, that he wasn't using full regular expressions, and so
 there could be no literals in the models. Content models included only element names
 (plus reserved characters for grouping, sequencing, and occurrence indication).
But Goldfarb being Goldfarb, my error gave him a challenge. Rather than drop the idea
 of literal strings in the input as replacements for tags, he decided to implement it,
 and the 1983 version of the STRUC declaration did include some limited cases of literals
 in models for character strings. It also included the first cut at what became the
 DATATAG option in an SGML configuration. [GENCODE] At the cost of adding
 another delimiter role to separate them from element names, string literals came back
 into content models as separators between elements. When a declared literal pattern is
 encountered in the source, it ends one element, forcing the start of the next in the
 model, while at the same time being passed on as part of the source. With the final
 DATATAG syntax of 1986, the
 declaration<!ELEMENT row - o ([cell, ", ", " "], cell)>
describes
 a two-column table row to be made from a row in a comma-separated list, one line per
 implied row, where the comma is followed by a space (", ") and then
 followed by optional padding spaces " ", then by the second cell.
If strings (#PCDATA) can become markup, what about strings that change roles according
 to context? Goldfarb did not stop with simple alternatives to tagging: he went on to
 generalize the concept of recognizing strings in situations such as smart
 quotes. His solution, short references and short reference maps, cost two
 more markup declarations (SHORTREF and USEMAP) and considerable indirection. When a
 string that has been declared as a short reference is encountered, it is replaced by an
 entity, which is resolved to an element name, and whether it is to be used in a start
 tag or an end tag. Furthermore, invoking an element (either by encountering it in text
 or by generating it from a short reference) can change the mapping from a short
 reference to an entity. Thus encountering a quotation mark in text could start an
 element and a new map; encountering another quotation mark under the new map could end
 the element and revert to the original map. (Handling nested quotes or cases like single
 quotes in English, which can have more than one role, requires complex patterns and
 mappings.)
 <!USEMAP textmap p>
 <!-- In normal text, the "textmap" is active. -->
<!USEMAP quotemap quote>
 <!-- In a quotation, the "quotemap" is active -->

<!ENTITY quotetag "<quote>" >
 <!-- The "quotetag" entity is the start tag for a quotation. -->
<!ENTITY endquotetag "</quote>" >
 <!-- The "endquotetag" entity is the end tag for a quotation. -->

<!SHORTREF textmap '"' quotetag>
 <!-- Within the "textmap" a double quote resolves to the "quotetag" entity. -->
<!SHORTREF quotemap '"' endquotetag>
 <!-- Within the "quotemap" a double quote resolves to the "endquotetag" entity. -->

DATATAG and SHORTREF are complementary techniques. DATATAG is a technique for markup
 minimization; SHORTREF is an alternative method for entering markup and potentially
 modifying its meaning. When DATATAG is enabled, a string that matches a pattern serves
 as both data and end tag; the characters of the string are passed through to the output
 at the same time that they cause a parsing event. The start tag that began the element
 is generally assumed to be minimized. A string that matches a SHORTREF pattern is just
 markup in Invisible SGML; it causes an event but is consumed in the
 process.
For all his ingenuity in creating these techniques, Goldfarb still didn't give me
 precisely what I was asking for: I wanted matching a pattern to create an implied start
 tag. In its first draft DATATAG supported both start and end tags, but the final version
 provides implied end tags, or rather it provides element separators that involve an
 implied end tag for one element and a start tag for the next. Perhaps SHORTREF could be
 stretched (Goldfarb seemed not to like long short references), rather than DATATAG, to
 get what I was looking
 for:<!SHORTREF memomap "&#RS;To: " to
 "&#RS;From: " from>
<!ENTITY to "<to>">
<!ENTITY from "<from>">
<!ELEMENT to o o (%text;)>
<!ELEMENT from o o (%text;)>
So
 long as whatever %text; resolved to didn't include the string
 To: or From: , that might work. ("&#RS;" is a
 long-forgotten SGML predefined entity reference to the start of a data record; there was
 a corresponding "#RE" for the end of a record.)
As the SGML standard makes explicit (Appendix C.1.3), one intent of these techniques
 was to capture simple WYSIWYG data, as it was seen in the 1980s. In effect, we were
 trying to capture typewriter-like markup, expressed largely through whitespace and
 punctuation. This was about as much as the stand-alone word processors of the early
 1980s were able to export. Given that the only output devices available to them, such as
 daisy-wheel printers, were only glorified typewriters, that's about as much as could be
 expected. The day of the stand-alone device was ending because they were beginning to be
 supplanted by programs running on personal computers. As laser printers arrived, with
 new output capabilities, the programs also grew in flexibility and also in complexity of
 coding. With the new word-processing programs, it was often possible to extract more
 coding data, though I saw little evidence of SGML users stretching these techniques to
 deal with extended coding. In the period when Word
 Perfect was the dominant program, writing SHORTREF structures would have
 offered even more challenges than dealing with multilingual quotes because there were so
 many codes and no programmatic discipline at all over the order in which they could be
 entered.
By the time I was building real SGML publishing systems, we had separate conversion
 tools and then OmniMark to do the work for us. But the work was
 still nontrivial.
The longest discussions of the DATATAG and SHORTREF techniques that I know, in
 Appendix C the ISO standard (and Goldfarb's annotation of it in The SGML Handbook
 [Goldfarb-1990]) and Martin Bryan's book SGML: An
 Author's Guide, [Bryan-88] concentrate on techniques such
 as turning vertical whitespace into new elements in a sequence, turning comma-separated
 (or TAB-separated) data into tables, and handling quotations and similar constructs.
 These discussions predate the rise of word-processing programs, so they did not deal
 with translation of formatting codes.
All the mechanisms necessary to enable these techniques were dropped from XML:	the SGML DECLARATION, necessary to enable minimization, DATATAG, and
 SHORTREF;

	markup minimization as a concept;

	the SHORTREF and USEMAP markup declarations;

	markup roles declared in ENTITY declarations; and

	predefined entities, especially the #RS and
 #RE, often used in short references for the concepts of
 record start and record end.

These techniques were not heavily used, and implementing them was
 probably too much for the desperate Perl hacker envisioned as the
 potential XML parser writer.
The absence of these features in XML has not prevented enthusiasts from trying to
 reinvent them. Simon St. Laurent had a habit of showing up at the Montréal conference
 that has since become Balisage and suggesting ways of resurrecting
 things lost in XML. In 2001 his target was using textual patterns as markup. [StLaurent]

To Be Seen or Not To Be Seen
So do we want to see markup?

At first glance, the current interest in Invisible XML suggests that we
 don't want to see markup anymore. [Pemberton-2013] But I think that is
 not really the case. Invisibility is not the goal in this effort; markup is. As Steven
 Pemberton has said about his project, Invisible XML is a technique for treating
 any parsable format as if it were XML, and thus allowing any parsable object to be
 injected into an XML pipeline.. [Pemberton-2016] In this
 sense, Invisible XML is like a continuation of Goldfarb's demonstration
 of how to generate SGML out of comma-delimited values, which can be traced back as far
 as the 1983 GENCODE standard.
I think that the greatest differences between Invisible XML
 technologies and SGML technologies are the underlying assumptions and the technologies
 available. In the 1980s we made few assumptions about the data, other than that we could
 find some patterns upon which to operate. The patterns might be complex, as in
 Goldfarb's incomplete attempt to mark up sentences and words (ISO 8879, Appendix C, p.
 106) or Bryan's handling of multilingual quotation marks (Appendix A.3, pp. 274–286),
 but they were derived simply from direct examination of documents. Invisible
 XML, in contrast, treats documents from the beginning as though they were
 expressions of a parse tree, with the expectation that it must be possible to
 describe the data using a context-free grammar [Sperberg-McQueen-2019] and to write out that grammar to drive a
 processor. In the 1980s we had few tools available with which to ingest documents into
 SGML, so Goldfarb built requirements for the tools into the standard itself, hoping that
 some programmer would implement them. Since XML has omitted the basis on which Goldfarb
 improvised his tools, we must now depend on something outside the XML parser.
 Fortunately, we have other tools, many of them XML-aware, and so Sperberg-McQueen can
 propose Aparecium as a library for XSLT or XQuery. The emphasis in
 Invisible XML is, after all, not on Invisible but on
 XML. And this is still the goal we had in the 1980s: How do we get
 our data marked up so we can make further use of it? Invisible XML,
 requiring an external processor, is more complex and more capable than the original set
 of techniques, but the interest it has aroused suggests that we still need something to
 do that work. So Invisible XML is a way of making the invisible
 appear.
The techniques I have described that were built into SGML were originally a way of
 making markup disappear. Everything grew out of minimization, and that started as a way
 of saving effort for users in the days when all the coding would have to be typed in
 manually, not inserted by a syntax-directed editor. While this was a labor-saving
 technology, I suspect there was also an unconscious awareness that this new SGML
 notation for markup was much more verbose that what our team had been used to in
 Script, troff, and other systems. SGML,
 before the final version, was actually much more verbose than we think of it now. There
 were more delimiters and more delimiter roles: one reviewer accused the code of looking
 like chicken tracks! That these techniques turned into a way of
 simplifying the process of getting markup into documents that were being imported was an
 unintended consequence, though a fortunate one.
We put up with SGML because it was what we needed, what we had created, and we didn't
 have much other choice. It was successful in spite of what some saw as flaws. We sold it
 to the Department of Defense, the European Union, CERN, the American Association of
 Publishers, and dozens of other organizations. Major applications that we are still
 discussing at Balisage this year, such as DocBook and TEI, started
 out in SGML. Nonetheless, most of us were glad to see the arrival of applications like
 Author/Editor that disguised the chicken tracks
 and allowed us to forget about minimization. Most of the time what we cared about wasn't
 so much what the markup looked like but that we knew it was there and we could get at it
 as needed. As I write this, most of the time I have tags hidden. I sometimes turn them
 on when I need to know where my selection cursor really is. And on occasion I go into
 full code view because there are some things I just can't do any other way.
There is a difference between working with documents where there is no visible markup,
 yet which you can treat as though they are marked up, and working with documents where
 you make the markup that is present disappear because that helps your creative process.
 Nevertheless, in any case, the goal is to have information identified. Whether I am
 importing data or creating it from scratch, what is important is that the markup is
 applied to the data. What was on my mind in 1998, whether I just said it at a conference
 or wrote it down, was that not only had visible markup helped the success of SGML over
 ODA, but that, having vanquished what we had thought was a mortal threat, we could relax
 and make SGML less overtly visible. [1] Visibility, per se, is
 not a goal. I think that the core issue is connected to the idea of ownership of data.
 Putting your mark on the data (or rather in it) is an effective way of establishing
 that. The SGML/XML model of inline markup has thus been vastly more successful in that
 respect than the ODA approach of binary pointers.
Looking back over more than three decades of working with descriptive markup, I think
 the issue is not just seeing markup but making markup comprehensible by humans. If
 making markup visible is what it takes to do that, I'm all for visible markup.

Appendix A. Markup Minimization
With modern XML editors, markup minimization has ceased to be an issue. XML dropped
 the whole concept as being irrelevant in a time of syntax-directed editors, as well as
 being too difficult to implement in a parser.
But when SGML was under development, minimization was much desired—and debated—in our
 meetings. The final form of the ELEMENT declaration in the 1986 standard had two fields
 for minimization between the element name and its model, one for start tags and the
 other for end tags. Either, or both, could be declared omissible. The STRUC declaration
 in the 1983 GENCODE draft of SGML had several other kinds of minimization, and more than
 one kind of minimization could be specified in each of the two fields (pp. 40–46, 64–65).	-	Tag is required.
	O	Tag can be omitted.
	C	A containing element can end elements within it.
	E	The current element can be ended by its container.
	N	Null tag: the current element type is the same as the previous. There are
 many variants on this, but in general they meant typing only delimiters,
 without including the whole generic identifiers within them.
	D	Data tags: literal strings could serve for either open or close tags.

We eventually realized this was excessively complex. When we created so
 many conditions, we didn't actually have an SGML parser with which to test minimization.
 As we gained experience in parser design, we realized, for example, that ending a
 container element naturally ended any contained elements on the stack. In the end, each
 field became binary: -, required, or O, omissible, in the
 published standard.
Planning minimization for an application required some skill: you had to think like a
 parser and maintain a mental stack of contexts. Consider a document type that required
 the title of a section to be followed by a paragraph and did not allow paragraphs to be
 nested:<!ELEMENT section - - (title, p+) >
<!ELEMENT title - - (#PCDATA) >
<!ELEMENT p O O (%text;) -p >
(For
 those who are not familiar with SGML DTDs, the -p> is an SGML
 exclusion: even if %text; includes p in its
 content model, p cannot appear within another p.) The result
 might look
 like:<section>
<title>A section title</title>
The first paragraph
<p>
A second paragraph
<p>
A third paragraph
</section>
Just
 such a model is what led Tim Berners-Lee to think that the <p> tag was
 just a separator, analogous to a newline in typewriter text and not a
 container for text! The mess that we recognize in HTML is a prime case of why markup
 should not be made invisible.

AT&T Bell Laboratories (and later modifiers). groff_mm man page. https://www.mankier.com/7/groff_mm.
[Bryan-88] Bryan, Martin. SGML: An Author's
 Guide. New York: Addison-Wesley (1988).
[GENCODE] Graphic Communications Association. GCA Standard
 101-1983, GENCODE and the Standard Generalized Markup
 Language.
[Goldfarb-1990] Goldfarb, Charles, and Yuri Rubinski. The SGML Handbook. Oxford: Oxford University Press
 (1990).
[Horak-Kroenert-83] Horak, Wolfgang, and Guenther Kroenert (1983).
 "Techniques for Preparing and Interchanging Mixed Text-Image Documents at
 Multifunctional Workstations", Siemens Forschungs- und Entwicklungsberichte/Siemens
 Research and Development Reports. 12. 61-69. https://www.researchgate.net/publication/282210430_TECHNIQUES_FOR_PREPARING_AND_INTERCHANGING_MIXED_TEXT-IMAGE_DOCUMENTS_AT_MULTIFUNCTIONAL_WORKSTATIONS.
[ODA] International Organization for Standardization/International
 Electrotechnical Commission. ISO/IEC 8613-1:1994, Information
 technology—Open Document Architecture (ODA) and interchange format: Introduction and
 general principles, https://www.iso.org/standard/15928.html.
International Organization for Standardization/International Electrotechnical
 Commission. ISO/IEC 8613-2:1994, Information technology—Open
 Document Architecture (ODA) and interchange format: Open Document Interchange
 Format, https://www.iso.org/standard/23410.html.
[SGML] International Organization for Standardization/International
 Electrotechnical Commission. ISO/IEC 8879:1986, Information
 processing—Text and office systems—Standard Generalized Markup Language
 (SGML), https://www.iso.org/standard/16387.html.
[ASN1] International Telecommunication Union, Abstract Syntax Notation 1, ASN.1, X-680 series, https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One).
[SC34] International Organization for Standardization/International
 Electrotechnical Commission. ISO/IEC JTC1/SC34, Document
 description and processing languages, https://www.iso.org/committee/45374.html, https://en.wikipedia.org/wiki/ISO/IEC_JTC_1/SC_34.
[Marcoux] Marcoux, Yves, and Martin Sévigny. Why SGML? Why
 Now?. Journal of the American Society for Information
 Science
 48, No. 7, July 1997, p. 584.

[Pemberton-2013] Pemberton, Steven. Invisible XML.
 Presented at Balisage: The Markup Conference 2013, Montréal, Canada, August 6–9, 2013.
 In Proceedings of Balisage: The Markup Conference 2013. Balisage
 Series on Markup Technologies, vol. 10 (2013).
 doi:https://doi.org/10.4242/BalisageVol10.Pemberton01.
[Pemberton-2016] Pemberton, Steven. Data Just Wants to Be
 Format-Neutral. Presented at XML Prague, 2016, Prague, Czech Republic.
 Proceedings of XML Prague 2016, pp. 109–120. http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf, https://homepages.cwi.nl/%7Esteven/Talks/2016/02-12-prague/data.html.
[StLaurent] St. Laurent, Simon. Regular fragmentations: Treating
 complex textual content as markup. Paper given at Extreme Markup Languages
 2001, Montréal, sponsored by IDEAlliance. Abstract on the Web at
 http://conferences.idealliance.org​/extreme​/html​/2001​/StLaurent01​/EML2001StLaurent01.html.
[Sperberg-McQueen-2019] Sperberg-McQueen, C. M. Aparecium: An
 XQuery / XSLT library for invisible XML. Presented at Balisage: The Markup
 Conference 2019, Washington, DC, July 30 – August 2, 2019. In Proceedings of
 Balisage: The Markup Conference 2019. Balisage Series on Markup
 Technologies, vol. 23 (2019). doi:https://doi.org/10.4242/BalisageVol23.Sperberg-McQueen01.

[1] I said something about visibility/invisibility in a session at
 SGML/XML Europe 1998 in Paris, where I responded to a
 query by François Chahuneau with a comment that it was perhaps time to
 streamline SGML and that we no longer needed to be attached to the specifics of
 what SGML looked like. I have been convinced for some years that I had published
 somewhere not long afterwards an opinion piece on how visibility/invisibility
 affected the SGML/ODA Wars and what that meant for the future of
 markup. Diligent searching by several people has failed to discover a published
 article, and my wife has declared it to be a Fig Newton of my imagination. So
 now I am committing to text what I should have said then.

Balisage: The Markup Conference

Do we really want to see markup?
James Mason
James D. Mason, originally trained as a mediaevalist and linguist, is
 retired from being a writer, publishing systems developer, and manufacturing
 engineer at U.S. Department of Energy facilities in Oak Ridge, Tennessee. In
 1981, he joined the ISO’s work on standards for document management and
 interchange. He chaired ISO/IEC JTC1/SC34, which was responsible for SGML,
 DSSSL, Topic Maps, and related standards, from 1985 until 2007. Dr. Mason
 has been a frequent writer and speaker on standards and their applications.
 For his work on SGML, Dr. Mason has received the Gutenberg Award from
 Printing Industries of America and the Tekkie Award from the Graphic
 Communications Association. He has also done research in horology and the
 history of pipe organs.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

