[image: Balisage logo]Balisage: The Markup Conference

Eating Your Own Dog Food
Ari Nordström
<ari.nordstrom@gmail.com>

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

© Ari Nordström

How to cite this paper
Nordström, Ari. "Eating Your Own Dog Food." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Nordstrom01.

Abstract
XML and markup technologies are a wonderful thing, but only lately has the author
 had the confidence to really and truly eat his own dog food, trusting entirely on
 the technologies familiar to him. He's learned to ignore the calls for real
 programmers while discovering how to copy and paste from
 Stack Overflow and the like in moderation. XForms, XQuery, XSLT, XSL-FO, and a
 proper XML database might just be all you need, at least if you know how to Google
 and ask for help.
This, then, is nominally about building a conference registration application
 ensuring that we get paid for every delegate, but really all
 about the fact that we can now rule the world without bothering with the
 programmers.

Balisage: The Markup Conference

 Eating Your Own Dog Food

 Table of Contents

 	Title Page

 	Introduction
 	An Itch to Scratch, Pt 1

 	An Itch to Scratch, Pt 2

 	OMG, It's an Eczema!

 	Getting Paid
 	The XForm

 	The Button
 	Version One

 	Version Two

 	Version Three

 	How Do I Know They Paid?
 	You Talk and I Listen

 	Desperation

 	A Simpler Solution

 	Becoming
 	All Together Now

 	Sandbox Vs Live

 	The Admin Page

 	Programming

 	Odds and Ends

 	Getting Cocky

 	But It's Not Just That
 	Declarative (Markup) Languages

 	More!

 	The Community

 	Literally, Future Work
 	Now That I'm a Programmer

 	In Closing

 	About the Author

 Eating Your Own Dog Food

Introduction
If you're a programmer, all kinds of things are available to
 you.
Or that, at least, is how it all appears to me when I peek in from the outside. You
 have a requirement, a list of specs, something, and you use magic
 to invoke that requirement, list of specs, or something. There's the infrastructure to
 do the cool things under the bonnet, there's a graphical user interface that presents a
 selection of those cool things to your end user and allows her to interact with them,
 and there's a processing layer that does all the things the user said your application
 should.
I always found this awesome.
Me, I was always a lowly markup geek. I had the tools to produce the basics of those
 cool things—the schema to govern the input data, the stylesheets to transform that data
 to something else, the queries to locate things—but I could never bring them all
 together to give you, the end user, everything. At least not without becoming a
 programmer.
Until fairly recently. Now, at long last, markup technologies promise, and, in my
 mind, deliver change.
An Itch to Scratch, Pt 1
At Balisage 2012, I presented a paper ([id-xml-for-xml]) where I
 suggested a way to use an XProc pipeline—then a brand-new technology promising to
 bring together all of those cool markup technologies—to generate a customised user
 interface for user-specified XProc task. It wasn't much; it merely demonstrated my
 stated independence from a bunch of programmers at work to
 configure and carry out publishing processes without having to ask them for help. It
 was an eye-opener. I insisted I wasn't a programmer, equating programming with
 C# and Java, but the one thing I
 remember from that presentation is a member of the audience stepping up to the mic
 to say but you are a programmer.

An Itch to Scratch, Pt 2
Fast-forward to April, 2018. I'm in a hotel room in Copenhagen after my very first
 day on a new job, and I'm panicking. Two months earlier, we had announced the very
 first edition of Markup UK, a conference on XML and markup, to
 be held in June, less than two months away. We were a bunch of happy amateurs with
 ideals, so while we had plenty of connections and the promise of a couple of
 interesting papers, we had no way of getting paid.
So I had a think. What would it entail?
	People registering their info.

	People paying.

For #1, I immediately thought XForms and eXist-DB. I had used both
 in the past, the former starting with the 2012 Balisage paper about that XProc-based
 UI and the latter for many clients requiring storage for their XML data. A match
 made in heaven!
For #2, I panicked again—I had no idea of how to connect XForms and eXist-DB to a
 payment service, thinking it took a programmer. Then I realised
 that the other way to do it was to simply send an invoice to the delegate and have
 others worry about the money reaching our bank account.
This I knew how to do: Enter the invoice data in an XForm, store the output in
 eXist-DB, apply XSLT and XSL-FO, both cool XML technologies, on the saved data to
 generate a PDF, and finally use XQuery—another cool XML technology—to email the PDF
 to the delegate, using the email address provided by the form.
My somewhat crude registration app was running just a few short days later. People
 were able to register, we had a successful first conference—and someone else had to
 worry about actually getting paid.

OMG, It's an Eczema!
Surprisingly, the registration problem didn't go away for this year's Markup UK.
 The person worrying about us getting paid complained. Really, he said, this was no
 way to live. I agreed. Getting paid there and then, when registering, seemed like a
 reasonable addition to the app.
Now, how hard could that be?

Getting Paid
While crude, the Markup UK 2018 registration app was a success. We got paid, in the
 end, and the conference was a success. I had proved that the XForms/eXist-DB/XQuery/XSL
 combo worked. Rather than start anew, I figured I would build on the previous
 app.
Having looked at various online payment options, it seemed to me that PayPal was the
 easiest by far. If their site were to be believed, hooking PayPal to our registration
 page was a matter of copying and pasting, a time-honoured way of developing code. A look
 at PayPal's developer documentation suggested the following registration flow:
	The delegate enters her details in the form and hits
 Register. This saves the registration information, and
 generates a web page summary with the registration info and a PayPal
 button.

	The delegate hits the button and PayPal takes over, providing the
 PayPal experience,[1] going through the payment either by logging in or by entering her
 credit card details directly. PayPal provides both options.

	Once done, PayPal confirms the payment and returns the delegate to a
 predefined thank you page. That page also saves the transaction information in
 eXist-DB.

A complicating factor is that we need to charge several different amounts. For
 example, there is an early-bird rate, a student rate, and
 so on, but we also need to be able to define discounts for various purposes such as
 large groups.
The XForm
The registration form is built using XForms and looks like this:[2]
Figure 1: Registration Form
[image:]

It's as simple as they come, really, with a couple of text fields for name and
 address, an email field with a basic email format validation, and a long list of
 countries fetched from an XML lookup file. There is also a mechanism for registering
 VAT for companies, with logic to handle the differing requirements depending on
 country, a drop-down with the available registration types, and a text field for
 entering a discount code. The types are fetched from a config file with prices
 including and excluding VAT, and any entered discount is checked against
 approved codes in the config file (more on this in section “The Admin Page”).
Hitting Register calls an XQuery that saves the registration
 information in eXist-DB and runs an XSLT that produces a summary page with the
 registration information and a PayPal button.

The Button
At first, I toyed with the idea of embedding a PayPal button directly in the
 XForm, but it seemed to me that it was undesirable to mix XForms with HTML Forms[3]. I decided to embed the button on a registration information summary
 page instead.
Version One
The very first version of the PayPal button took me all of fifteen minutes to
 copy, paste, and add to the summary HTML.[4] The code example I grabbed from the PayPal site added
 script tags:
<script src="https://www.paypal.com/sdk/js?client-id=sb"></script>
<script>paypal.Buttons().render('body');</script>
And the form itself:
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="cmd" value="_xclick"/>
</form>
PayPal also suggested adding variables to send more information (currency,
 VAT, etc) to PayPal:
<INPUT TYPE="hidden" NAME="currency_code" value="GBP"/>
Unfortunately, after spending some time trying to add the amount to a hidden
 variable, I decided to read the documentation and realised that was one of the
 things you couldn't add.

Version Two
As an alternative, Paypal offers an online tool that can be used to generate
 custom PayPal button code. All you have to do is define your parameters,
 including amount, currency, etc, hit Generate, and this
 sort of thing will result:
<button id="early-bird-sandbox">
 <form
 action="https://www.sandbox.paypal.com/cgi-bin/webscr"
 method="post"
 target="_top">
 <input
 type="hidden"
 name="cmd"
 value="_s-xclick"/>
 <input
 type="hidden"
 name="hosted_button_id"
 value="PM4DRL6BX3226"/>
 <input
 type="image"
 src="https://www.sandbox.paypal.com/en_US/GB/i/btn/btn_buynowCC_LG.gif"
 border="0"
 name="submit"
 alt="PayPal – The safer, easier way to pay online!"/>
 <img
 alt=""
 border="0"
 src="https://www.sandbox.paypal.com/en_GB/i/scr/pixel.gif"
 width="1"
 height="1"/>
 </form>
</button>
While easy enough to use, this resulted in a fair number of buttons; for
 example, a £150 amount payable would require generating two sets of code, one
 for the sandbox and one for the live environment. Every new amount, then, will
 result in two additional pieces of code, one for testing and one for
 live.
The generated buttons also didn't really solve the problem with custom
 discounts—we'd have to generate a button for each and every discount when the
 need arose. Nevertheless, I wrote some XQuery that used XPath expressions to
 pick the right button element from a button lookup XML document
 containing every possible button type and environment combination. Here, for
 example, are the buttons required for the sandbox:
<buttons>

 <!-- Early-bird sandbox -->
 <button id="early-bird-sandbox">
 ...
 </button>

 <!-- Academic sandbox -->
 <button id="academic-sandbox">
 ...
 </button>

 <!-- PC sandbox -->
 <button id="pc-sandbox">
 ...
 </button>

 <!-- Full sandbox -->
 <button id="full-sandbox">
 ...
 </button>

 ...

</buttons>
This was cumbersome, to say the least. Thankfully, I found a third
 option.

Version Three
In the documentation, there is a reasonably thorough, step-by-step description
 of how to integrate PayPal into your website, complete with code examples in a
 number of languages[5] (see PayPal Checkout - Basic Integration). What tickled my imagination was that the example
 code included an amount:
<script>
 paypal.Buttons({
 createOrder: function(data, actions) {
 // Set up the transaction
 return actions.order.create({
 purchase_units: [{
 amount: {
 value: '0.01'
 }
 }]
 });
 }
 }).render('#paypal-button-container');
</script>
Now, I don't do JavaScript so a lot of what's in there is magic to me,[6] but clearly, it should be possible to express 0.01 as
 a variable. Exciting! Shouldn't it be possible to inject
 some XQuery into that thing, like so:[7]
purchase_units: [{{
 amount: {{
 value: '{$amount}'
 }}
}}]
Following the example, I added return pages (the
 actions.redirect() calls) and various other stuff that made
 testing and deploying the code easier (see section “Sandbox Vs Live” and
 section “The Admin Page”).
 This is what my JavaScript/XQuery end result looks like:
<script>

 paypal.Buttons({{
 createOrder: function(data, actions) {{
 return actions.order.create({{
 purchase_units: [{{
 amount: {{
 value: '{$amount}'
 }}
 }}]
 }});
 }},
 onApprove: function(data, actions) {{
 return actions.order.capture().then(function(details) {{
 // alert('Transaction completed by ' + details.payer.name.given_name);

 actions.redirect('{$muk:config//domain/text()}/exist/rest/db/apps/MUK-reg/xq/thanks.xquery?tmp-file={$registered}');
 // Call your server to save the transaction
 return fetch('{$muk:config//domain/text()}/exist/restxq/paypal-transaction-complete', {{
 method: 'post',
 body: JSON.stringify({{
 orderID: data.orderID,
 custom: {string($uid)}
 }})
 }});
 }});
 }},

 onCancel: function(data, actions) {{
 actions.redirect('{$muk:config//domain/text()}/exist/rest/db/apps/MUK-reg/xq/cancel.xquery');
 }}
 }}).render('#paypal-button-container');

</script>
Note the custom: {string($uid)} key-value pair that sends the
 user ID of the registration as a custom variable to PayPal; this is returned to
 the summary page (thanks.xquery, above) when confirming, along with
 the PayPal transaction ID.
And this is actually most of what we need, except for a tiny little detail
 where we find out if the payment was successful.

How Do I Know They Paid?
The PayPal documentation hints at (well, screams, if you are
 a programmer) ways to find out if the payment went through. The
 basic flow is something like this:
	You click the PayPal button and complete the payment on PayPal.

	PayPal sends a confirmation, known as the IPN (Instant Payment
 Notification).

	A listener catches the IPN, and sends back an empty 200 POST followed by a
 string and a verbatim copy of the IPN.

The rest is really about logging the transaction details in eXist-DB, generating
 an invoice, and sending a confirmation email. I thought that once I get hold of that
 IPN string, the rest should be a matter of writing some XQuery[8] and closing the deal.
So, what's a listener, anyway?
You Talk and I Listen
A listener, apparently, is something that
 listens to incoming calls and, when catching one, does
 things to the call and responds in some predetermined way. A
 call, in this case, is an http POST request that we, after
 acknowledging it with an empty POST, return to the sender just the way we found it.[9]
And this is where my ignorance started to show.
PayPal, it turns out, provides an IPN Simulator, essentially something that
 sends an IPN string to your listener and checks if the response is what it
 should be. It's tremendously useful. The problem was that I had no idea what a
 listener looked like.
I tried a few variants, using this web form:
<form
 target="_new"
 method="post"
 action="http://localhost:8080/exist/rest/db/apps/test/test.xquery"
 enctype="multipart/form-data">

 <input type="hidden" name="payer_id" value="LPLWNMTBWMFAY"/>
 <input type="hidden" name="payment_status" value="Completed"/>

 <!-- code for other variables to be tested ... -->
 <input type="hidden" name="custom" value="my_info"/>

 <input type="submit"/>
</form>
The URL pointed to this test XQuery that would simply echo what it
 caught:
xquery version "3.1";
declare namespace exist = "http://exist.sourceforge.net/NS/exist";
declare namespace xmldb="http://exist-db.org/xquery/xmldb";
declare namespace request="http://exist-db.org/xquery/request";
declare option exist:serialize "method=xml media-type=text/xml indent=yes";

let $post-data := request:get-data()

return
<post-data>
 {$post-data}
</post-data>
I was quickly able to catch whatever the web form sent to the XQuery. However,
 when pointing the IPN Simulator to the XQuery, I registered nothing and the
 simulator reported a fail. No matter what I did, it always failed.

Desperation
In my desperation, I did what people do,[10] I asked for help. Adam Retter, one of the core eXist programmers,
 the inventor of RESTXQ, and an all-around good guy who will forget more about
 XQuery than I will ever know, replied to my email within hours, attaching an IPN
 listener. He didn't have an XQuery parser available but nevertheless provided
 something that, with minor fixes, parsed and worked.
Adam's listener, of course, was RESTXQ-based, and while I knew about the
 concepts behind it, I had never written any myself and it took me a few days of
 testing to understand how it worked.
I hooked up the listener to my eXist-DB test setup and managed to get the IPN
 Simulator to complete successfully. In other words, Adam's listener quite
 clearly responded with the required two messages—an empty POST 200 followed by a
 copy of the IPN message.
However, I still couldn't extract any part of the IPN message locally.

A Simpler Solution
After some (= a lot of) research,[11] it dawned on me that the difference between my form and the IPN
 Simulator is what they send. PayPal sends an
 application/x-www-form-urlencoded POST request, which
 apparently means that the message body is a bunch of parameters, like this:[12]
verify_sign=AtkOfCXbDm2hu0ZELryHFjY-Vb7PAUvS6nMXgysbElEn9v-1XcmSoGtf&
payer_email=gpmac_1231902590_per%40paypal.com&
txn_id=61E67681CH3238416&payment_type=instant&last_name=User&
address_state=CA&receiver_email=gpmac_1231902686_biz%40paypal.com&payment_fee=0.88&
receiver_id=S8XGHLYDW9T3S&txn_type=express_checkout&item_name=&
mc_currency=USD&item_number=&residence_country=US&test_ipn=1&
handling_amount=0.00&transaction_subject=&payment_gross=19.95&shipping=0.00
Now, if I had read up on the subject properly, I might have been able to solve
 the problem earlier. The fact is that the message is a bunch of key-value
 parameters, not a body per se. I'm not that clever, however, and
 so understanding what actually went on took a far longer time than I
 thought.
To test my understanding, I dabbled in ways to read the parameters and
 eventually wrote a minimal listener to catch the PayPal confirmation only,
 ignoring the intricacies of the IPN process and thinking that the reason I
 wasn't able to catch the message was due to the inherent asynchronicity in http
 communication:
declare
 %rest:POST("{$body}")
 %rest:path("/paypal-transaction-complete")
function pay:listener($body) {

 let $json := fn:parse-json(util:base64-decode($body))

 return
 xmldb:store($muk:transactions-collection-uri,concat('uid-',$json?custom,'.xml'),
 <transaction tstamp='{current-dateTime()}'
 orderID='{$json?orderID}'
 userID='{$json?custom}'/>),
 pay:all-good()

};

declare function pay:all-good(){
 (: Reply with an empty 200 response to indicate to paypal the IPN was received correctly. :)
 (
 <rest:response>
 <http:response status="200" reason="OK"/>
 </rest:response>,
 ""
)
};
This is a ridiculously simple listener; all it does is to save the message
 locally in XML (rather than JSON) format and send back a POST OK 200. It is the
 minimum functionality, what I had to have[13], and it tied beautifully to the summary page with the button.

Becoming
(With apologies to Michelle Obama for shamelessly borrowing her book
 title.)
All Together Now
So, now I had a registration summary HTML page[14] that presented the registration information from the XForm and
 integrated a PayPal button with a custom amount and the current user ID as
 input, and also included return pages—functionality to be triggered after
 completing (or cancelling) the transaction.
All I had to do now was to tie it all together:
	Functions to find out the type of registration from the XML from the
 XForm and, from it, calculate the actual amount to be provided to the
 PayPal button. This, basically, involved a lookup to a list of
 registration rates and discount codes, but also to provide the amount
 with or without VAT, depending on the delegate's country of
 residence.

	A thank you HTML page, triggered upon transaction completion, that
 would insert the transaction details and payment confirmation into the
 registration XML and save it with other confirmed registrations.

	Functions to generate a PDF invoice from the registration XML using
 XSL-FO, and to send a confirmation email to the delegate with the
 invoice attached.

Sandbox Vs Live
As it is a really bad idea to develop and test all this in a live environment,
 PayPal provides a sandbox environment, essentially a copy of the live
 environment but with means to create fake sellers and buyers, complete with fake
 credit cards and other means of paying.
Figure 2: The Sandbox Is Making Some Real Money
[image:]

The way to keep the two separate is simply to point the button to two
 different URLs using a variable, $url:
<head>
 ...
 <script
 src="{$url}">
 </script>

 <script>
 <!-- PayPal button JavaScript -->
 </script>
</head>
Locally, I also needed to be able to store the registration data in two
 separate locations in eXist:
Figure 3: Locations for Registration Data
[image:]

When switching between live and sandbox, I had to change the button URL but
 also redirect any read and write operations to the appropriate locations. I was
 willing to bet that I'd forget at least one sooner rather than later, so I added
 a config file that provided paths and settings for both environments,
 parameterising every path in every function so they would always be able to look
 up the currently applicable paths:
<config>
 <!-- This is a MUK Registration app config file -->

 <!-- MUK info -->
 <business>
 <name>Markup UK Conferences Limited</name>
 <email>info@markupuk.org</email>
 <pid>...</pid>
 <bank>HSBC</bank>
 <account>...</account>
 <client-id>
 <sandbox>...</sandbox>
 <live>...</live>
 </client-id>
 </business>

 <!-- eXist-DB Domain -->
 <domain>http://localhost:8080</domain>

 <!-- Data root for MUK-data and subcollections -->
 <data-root>/db</data-root>

 <!-- Collection names in eXist -->
 <collections>
 <root>MUK-data</root>
 <sandbox>sandbox</sandbox>
 <live>live</live>
 <sub>
 <tmp>tmp</tmp>
 <transactions>transactions</transactions>
 <data>data</data>
 <pdf>pdf</pdf>
 </sub>
 </collections>

 <!-- Current env -->
 <current>sandbox</current>

 <!-- The currently *selected* path (live or sandbox, basically) -->
 <data-uri>/db/MUK-data/sandbox</data-uri>

 ...

</config>
Now, all I had to do was to change a single field in the config
 (<current>sandbox</current>; the sharp-eyed reader will
 wonder about the data-uri field in the config fragment, but this is
 changed inline by an XQuery Update instruction, triggered by an update in the
 admin XForm described in section “The Admin Page”).
In the HTML/XQuery in eXist-DB, $url is set like this:
let $clientid := if ($muk:config//current='sandbox')
 then (string($muk:config//client-id/sandbox))
 else (string($muk:config//client-id/live))

let $url := concat('https://www.paypal.com/sdk/js?client-id=',
 $clientid,
 '&currency=GBP&intent=capture&commit=true')

Here $clientid is the ID that PayPal uses to identify where the
 URL points—sandbox or live. $muk:config is the above config file,
 and so, $muk:config//current tells us what environment the app is
 currently running in.
Note
A review correctly pointed out that the above uses LIVE unless the
 appropriate field is set to “sandbox”. So if you accidentally write
 “sanbdox” in the field, you are running live. Oops. The reviewer
 then goes on to suggest that I reverse the logic to avoid that particular
 mishap. This is true and will be fixed for next year, along with other
 fixes. However, I do wish to point out that the field is never entered
 manually, but instead chosen from a drop-down menu in an admin interface,
 described in section “The Admin Page”.

The Admin Page
Yet another complication was that if I wanted to move the application between
 servers—for example, from http://localhost:8080 on my local PC to
 the Markup UK server URL—it also had to go into the config file, and it also had
 to be changed when going live. As shown in the config file fragment, above, the
 domain is set in
 <domain>http://localhost:8080</domain>.
And of course, I also needed the config to include the registration types and
 amounts, as well as any special discounts:
<!-- Pricing -->
<pricing>

 <types>
 <type use="yes" inc="204" exc="170">
 <name>Student (£204 incl VAT)</name>
 <value>academic</value>
 </type>
 <type use="yes" inc="258" exc="215">
 <name>Early Bird (£258 incl VAT)</name>
 <value>early-bird</value>
 </type>
 <type use="yes" inc="336" exc="280">
 <name>Full (£336 incl VAT)</name>
 <value>full</value>
 </type>
 <type use="yes" inc="204" exc="170">
 <name>Programme Committee Member (£204 incl VAT)</name>
 <value>pc</value>
 </type>
 <type use="yes" inc="0" exc="0">
 <name>Speaker (£0 incl VAT)</name>
 <value>speaker</value>
 </type>
 </types>

 <discounts>
 <discount use="yes" inc="243" exc="203">
 <label>PRAGUE2019</label>
 </discount>
 <discount use="yes" inc="1.5" exc="1.25">
 <label>TEST</label>
 </discount>

 </discounts>

</pricing>
Finally, rather than updating the config file directly, I added an XForm for
 the purpose. The following sets the domain, environment and the collection
 names:
Figure 4: Admin Page, Basic Configuration
[image:]

And here's a GUI for setting the pricing:
Figure 5: Admin Page, Pricing Settings
[image:]

Note the buttons that allow us to add and delete custom discounts.

Programming
I still claim I'm not a programmer, but I can't deny I'm leaning more towards
 an, um, developer kind of mentality. For this paper, I was tempted to add a
 section on modularising, testing, and refactoring, all of which I began to
 appreciate in earnest while writing the app, but really, that section would have
 been out of scope for this paper.
You could easily argue that XSLT, XProc, and XQuery are all about programming,
 just as writing schemas is, but the difference to me is about the basic
 paradigm—the core technologies used here are all based on a single paradigm, a
 declarative approach common to pretty much every XML markup technology I
 use.

Odds and Ends
A couple of odds and ends:
	Last year's invoice XSL-FO saw a few tweaks, mainly to better comply
 with limited company regulations and to play nice with the config file
 that governs most things about the app, but most of the publishing end
 was really about making the transform and PDF rendering into XQuery
 functions.

	Similarly, the email code that sent a thank you note and the invoice
 to the delegate stayed pretty much the same.

	The whole registration app is for a single
 delegate registering, which is not always true. Some organisations
 prefer a single invoice for all of their delegates, which is
 understandable but more or less broke my app. I ended up writing a
 registration XML by hand, outside the registration form, tweaking the
 XSL-FO to handle multiple delegates, and finally call directly the
 XQuery that generates the PDF and sends the email with that manually
 created XML as input.

	Speakers attend the conference free of charge, so while they should
 register, they shouldn't have to pay. I ended up bypassing the PayPal
 code again, but this time to never generate the button to begin with,
 skipping straight to the code generating the email.

Getting Cocky
Another hack for 2018 was a registration and voting application for the conference demojam.[15] Usually, voting is done using a sound level (dB) meter, but two days before
 the event, we thought wouldn't it be cool to register the participants using an
 XForm and eXist-DB, and then allow people to vote for their favourite using another
 XForm? I wrote some XQuery and an XForm to add participants to a list, and
 then another XQuery and XForm to register a vote and add that to a total.
Figure 6: Demojam Voting Page
[image:]

As you may have guessed, this is a screen capture of my test voting page, not the
 actual list of participants.
Basically, we shared the voting URL with the audience right before the demojam, and
 people could then vote for their favourites using their mobile phones. This worked
 surprisingly well, with one caveat: you could vote as many times as you liked. The
 Russians couldn't have done it better.
This year, I planned to use my new-found powers to rewrite the application so it
 generated a unique code for every delegate, allowing them to only vote once. In the end,
 however, I decided voting fraud is more fun and opted for further registration app
 improvements instead, adding reporting functionality to the registration app so we could
 easily keep track of registrations, allowing us to speed up bookkeeping and handle
 various special requirements.
See? I am on my way to becoming a real programmer!

But It's Not Just That
So far, this has very much been a story about me realising that I might actually be a
 programmer after all. But really, is that what I am actually becoming?
Declarative (Markup) Languages
The registration app was made possible using XML technologies. Well, almost;
 please ignore the XQuery injections to PayPal's JavaScript examples. It's not just
 about the angled brackets, though. XQuery doesn't use any, it simply ties into the
 mindset, allowing you to use a declarative language to solve your problems.
XSLT, of course, used to be exclusively about angled brackets, but these days, it
 treats JSON as a first-class citizen, too. I'm not really a fan but JSON has its
 uses, for example, when handling those pesky key-value pair POST messages (see section “A Simpler Solution”).
I write a lot of documentation, and these days, when writing a README file or
 producing a simple User's Guide, I tend to use Markdown. It's a brilliant format,
 very intuitive and easy to learn, and it is supported all over the place. However,
 it's too simplistic for most of what I do for my end users—both technical manuals
 and legal documents tend to be far too complex for Markdown and practically require
 XML—but for lighter documentation such as README files and meeting minutes, it is
 perfect!
Another case in point: the last few years, I've avoided the likes of PowerPoint
 and Keynote:
There is the open-source Sozi (see Sozi), an SVG-based
 presentation tool that allows you to zoom, rotate, and track across your SVG, much
 like the commercial equivalent, Prezi. Sozi is a lot of work, though, and all I need
 is something to produce slides with.
For this, I'm now partial to Reveal JS (see Reveal.JS), a Node
 JS-based kit that allows you to write your slides in HTML or even Markdown. The Node
 JS is far beyond me, of course (I'm not THAT kind of programmer), but I don't have
 to actually understand any of it. It's enough to know how to write HTML or Markdown,
 with some minor tweaks to add class attributes to trigger the Node JS
 functionality.
So the cool thing here is that I'm not actually branching out to programming;
 rather, the maturity, stability, and dare I say omnipotence, of markup technologies
 now allow me to do what I want using markup technologies only.

More!
The markup technologies-only approach was something I first started to focus on
 with my 2012 Balisage paper about XProc pipelines to tie together publishing
 processes. XProc, then, was the glue I needed.
XProc 1.0 was somewhat crude, though, and wasn't really in sync with XPath 2. It
 also had a significant learning curve, partly because of that non-sync problem, and
 so it remained a language for markup geeks, first and foremost. You already had to
 be convinced of the usability of XML to bother to learn it. Also, XML was pretty
 much it for XProc 1.0; it couldn't handle anything else flowing through a
 pipeline.
Now, of course, there's an XProc 3.0 on the way (XProc 3.0: A Pipeline Language), with numerous
 improvements allowing me to do more generic manipulation of
 data. Why should I bother with non-XML technologies?
And let's not forget, there is an XForms 2.0 on the way, too (XForms 2.0). Some
 people claim XML is dead. Really?

The Community
Which brings me to an important topic: the markup technologies community. We're
 all part of it, of course, which is why you're reading this and—hopefully—listening
 to my presentation. Today, the community is actually driving much of the development
 of new XML technologies. Both XProc 3.0 and XForms 2.0 are being developed by
 W3C community groups (see XProc Next Community Group and XForms Users Community Group, just to
 pick two). We are keeping it all alive, all of us.
There is also another aspect of the markup community—it's an incredibly helpful
 bunch. Witness, for example, how Adam Retter not only answered my questions but also
 wrote an entire listener module. Adam is also active on the eXist mailing list and
 frequently answers questions on—you guessed it—Stack Overflow.
And he is not alone. A lot of people, too many to list here, have helped me with
 my projects over the years, and I am trying to return the favour whenever I
 can.

Literally, Future Work
So, to sum it all up...
Now That I'm a Programmer
So, now that I am a programmer, how about writing an open-source
 document management system? The proper kind, with proper document
 version management and the works? I've been thinking about this for several years.
 In 2014 at Balisage, I presented a paper on XML-based multi-level versioning
 management (Multilevel Versioning), and, of course, there is the XProc thing I
 spoke about in 2012 (Balisage, [id-xml-for-xml]) and 2014 (XML Prague, [id-proxist], where I
 wanted to use my XProc pipelines to generate a customised user interface for
 carrying out a user-specified XProc task.
This paper is far too long already, but this, really, is what I wanted to end
 with—using markup technologies only to write that open-source document management
 system. My registration app, nominally the subject of this paper, was just the
 beginning. Want to join me?

In Closing
My heartfelt thanks to...
	My friends in the Markup UK organising committee

	My bosses at Karnov Group, who allow me to do all this and actually
 encourage me to do it

	The fantastic XML community, in particular, Adam Retter

	The anonymous Balisage reviewer who spent time copy-editing this
 paper

And, of course, my beta testers, um paying conference delegates. Every time
 someone registers, my heart still skips a beat, both out of worry and because
 it's exciting!

Bibliography
[PayPal Checkout - Basic Integration] PayPal Checkout—Basic Integration [online, fetched on 12 April 2019]
 https://developer.paypal.com/docs/checkout/integrate/#
[Sozi] Sozi [online, fetched on 12
 April 2019] http://sozi.baierouge.fr/
[Reveal.JS] Reveal.JS [online,
 fetched on 12 April 2019] https://revealjs.com/#/
[XProc 3.0: A Pipeline Language] XProc 3.0:
 A Pipeline Language [online, fetched on 12 April 2019] http://spec.xproc.org/

[XProc Next Community Group] XProc
 Next Community Group [online, fetched on 12 April 2019] https://www.w3.org/community/xproc-next/
[XForms 2.0] XForms 2.0
 [online, fetched on 12 April 2019] https://www.w3.org/community/xformsusers/wiki/XForms_2.0
[XForms Users Community Group] XForms
 Users Community Group [online, fetched on 12 April 2019] https://www.w3.org/community/xformsusers/
[Multilevel Versioning] Multilevel Versioning [online, fetched on 12 April 2019] doi:https://doi.org/10.4242/BalisageVol13.Nordstrom01
[id-xml-for-xml] Using XML to implement XML [online,
 fetched on 12 April 2019] doi:https://doi.org/10.4242/BalisageVol8.Nordstrom01
[id-proxist] ProXist—XProc Processes in eXist [online,
 fetched on 12 April 2019] http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf

[1] Yup, that's what they call it.
[2] With apologies for the non-existent CSS.
[3] Also, I'm no Steven Pemberton. I only dabble in XForms.
[4] Generated from the registration information XML using an XSLT.
[5] Not in XQuery, unfortunately.
[6] I always found object-oriented programming to be more magic than
 logic.
[7] The double curly braces are needed so the XQuery engine will read the
 contents as literals rather than text value templates.
[8] A lot of which I wrote last year; the bits that generate the invoice and
 send a confirmation email already exist and work.
[9] Except for a thing appended to the return message.
[10] After consulting Stack Overflow.
[11] Also known as googling on Stack Overflow.
[12] From PayPal documentation.
[13] Adam's listener did a lot more, of course, since the idea with the IPN
 workflow is for PayPal to keep sending the message until confirmed. Mine
 only did a one-time catch of the message, hoping that everything would
 work out during that particular split second.
[14] Actually an XQuery that ran an XSLT to output the summary and injected
 some XQuery code into an HTML fragment featuring JavaScript code for the
 button.
[15] Where participants get five minutes each to present something markup-related
 and a winner is chosen among them by the audience.

Balisage: The Markup Conference

Eating Your Own Dog Food
Ari Nordström
<ari.nordstrom@gmail.com>
Ari Nordström is a Senior Content Architect (fancy speak for "markup geek") at
 Karnov Group, a Scandinavian legal publisher. He is based in Göteborg, Sweden,
 but has been known to provide angled brackets across a number of borders over
 the years.
Ari is the proud owner and head projectionist of Western Sweden's last
 functioning 35/70mm cinema, situated in his garage, which should explain why he
 once wrote a paper on automating commercial cinemas using XML.

Balisage: The Markup Conference

content/images/Nordstrom01-001.png
&

Name [x]

Affiliation

Address Line 1

Address Line 2

Postcode

City

Country 2 <]

Dietary
requirements
Email [x]

Attend QO a
preconference

Preconference venue capacity s limited, so please tick here if you will be
attending.

Mailing list a

Registration type | 0

Prices include UK VAT.

VAT registered a
VAT number a

Businesses and individuals outside the EU do not pay UK VAT.

For VAT-registered businesses within the EU, you must supply a valid VAT
registration number.

Discount code

content/images/Nordstrom01-006.png
Presentations

Vote

Edgar Wallace - Beer Is My Life

John Smythe - Why I Am

Adrian Hubert Rollerblade - The Joy of Money
Charlotte Always - Thinking Fish

Mycroft James - Study in Pink

William Superman - Why My Life Is Ordinary
Antonia Bucket - My Life

Winona Kiefer - Interesting Newspaper

Clippings

Steven Seagal - Romantic Notions
JFK - How I Bit the Bullet
Lyndon B Johnson - Good Times
Mia War - Final Call

A B Letter - Books

Test Again - For Show

test - test

Final - Call

content/images/Nordstrom01-002.png
Recent activity

Ready to send

7 Apr 2019

7 Apr 2019

5 Apr 2019

10 Mar 2019

Payments received Payments sent

Payment from test buyer

Comp

eted

Payment from Mark Up

Compl

eted

Payment from Mark Up

Comp

eted

Payment from Mark Up

Compl

eted

More >

Activity (including balance & fees)

£280.00 GBP

£215.00 GBP

£215.00 GBP

£215.00 GBP

content/images/Nordstrom01-003.png
¢ .. eXist-db localhost
+ @db
- @ apps
+ @ MUK-data
+ @ live
- @ data
- @ pdf
=@ tmp
= @ transactions
+ @ sandbox
- @ data
- @ pdf
=@ tmp
= @ transactions
= @ system

content/images/Nordstrom01-004.png
eXist Domain http://localhost:8080 0

Update

MUK Data Root

Update

MUK Data MUK-data
Collection

Sandbox sandbox
Live live

Temp tmp
Transactions transactions

PDF pdf

Update Collection Names

Environment Sandbox v

Update Environment

content/images/Nordstrom01-005.png
Pricing in GBP Inc VAT

Full 336
Early-bird 258
Academic 204
PC Member 204

Speaker 0

—Current Discounts

PRAGUE2019

243

[TEST

1.5

Add Row | Delete Selected Row

Update Pricing

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

