[image: Balisage logo]Balisage: The Markup Conference

High-Quality Microsoft Word documents from XML: The Wordinator
Eliot Kimber
Senior Solutions Architect
Contrext, LLC

<ekimber@contrext.com>

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 W. Eliot Kimber

How to cite this paper
Kimber, Eliot. "High-Quality Microsoft Word documents from XML: The Wordinator." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020.  In Proceedings of Balisage: The Markup Conference 2020. 
        Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Kimber01.

Abstract
Many products make XML from Microsoft Word, but consider the reverse: making Word
        versions of your XML documents, thus using MS Word as a document composition engine. The
        Wordinator enables automatic creation of high-quality Word documents from XML source. It
        uses an extension of the Word2DITA project’s SimpleWP (Simple Word Processing markup
        language) as the input to an Apache POI-based Java application that generates Word
        documents. XSLT generates the SimpleWP XML, managing the mapping of source XML elements to
        Word constructs and styles. I consider, in particular, the separation of concerns between
        the XSLT that generates the SimpleWP XML and the Java code that generates the Word
        documents.



Balisage: The Markup Conference


      High-Quality Microsoft Word documents from XML: The Wordinator

      
         Table of Contents

         
            	Title Page

            	Problem Statement

            	Solution: Separate The XML Transform from The DOCX Generation

            	SimpleWP to DOCX via POI

            	Authored XML to DOCX Process 

            	Authored XML to SimpleWP XML

            	Conclusions and Future Work

            	About the Author

         

      
   High-Quality Microsoft Word documents from XML: The Wordinator

Problem Statement
The Wordinator is a Java processor the takes as input a simplified XML representation of a
      word processing document and produces as output a Microsoft Word DOCX document. The key
      requirements for The Wordinator are:	Accurately and completely reflect the page layout details and visual rendering
            required for non-trivial documents, initially codified municipal code as published by
            Municode, Inc., including complex tables with horizontal and vertical spans and embedded
            graphics.

	Support the creation of multiple page sequences with different page geometries and
            different running heads and feet.

	Minimize the effort required to configure the mapping from source elements to named
            styles.

	Support local formatting overrides (that is, do not limit styling only to the use of
            named styles)

	Enable the automatic creation of DOCX files for different components of the source
            document as authored ("chunking"), including the ability to create both a single DOCX
            for the complete document as well as individual DOCX files for subcomponents of the
            document in a single processing run.

	Enable ease of integration into a larger XML-based publishing pipeline



The Wordinator also integrates with Saxon in order to provide a one-command process that
      takes as input the document source as authored, generates the intermediate word processing XML
      in memory, and produces the DOCX files as output. See Figure 1.
Figure 1
[image: ]
The Wordinator process schematic



The driving requirements for The Wordinator WORDINATOR come from
      Municode, Inc's need to provide Microsoft Word versions of the municipal codes they publish to
      HTML such that for any chosen section of a municipality's code, the user of the HTML can
      download a high-quality Word version of what they are reading. The Word documents may be
      statically generated as part of the HTML publishing process or generated on demand by the web
      server that provides the HTML versions of the code.[1]
This requirement stems from the fact that the people working on municipal code almost
      invariably do their work in Microsoft Word. Almost without exception, reviews of and revisions
      to muncipal code that are not done on printed paper are done in Word. 
More generally, Microsoft Word is a de facto standard for
      document viewing and printing in many organizations and for many private individuals. For
      example, the U.S. Government Accountability Office uses Microsoft Word for all the drafts of
      its reports (the reports are either published directly from their Word drafts or imported into
      the GAO's authoring management system as XML generated from the Word documents). GAO also uses
      Word as an intermediate format for producing accessible PDFs of their reports.
In many commercial publishing contexts Word is likewise used as the primary or only format
      for drafts of publications as they are developed, even when the publications themselves will
      be put into an XML format for final pre-publication preparation and publishing.
Another general requirement is using Word as a page composition engine. For example, in
      the DITA community the ability to print DITA documents using Microsoft Word would serve the
      needs of many small organizations that do not have the time or resources to customize the DITA
      community’s main open-source pagination tool or cannot afford other commercial tools.
While it is not difficult to generate Microsoft's DOCX format using typical XML processing
      tools, it is a challenge to generate it correctly and with high quality such that the Word
      documents accurately reflect all of the structures and layout features required for a given
      document (to the degree that Word can support those layout requirements).
DOCX is an XML-based format optimized for the representation of the internal structures
      used by word processors, spread sheets, and so on. The XML files are packaged into a Zip file
      that then forms the working DOCX file. DOCX is standardized as ECMA International standard
      ECMA-376 Office Open XML File Formats ECMA-376-1.
As an XML format, it is of course possible to generate Office Open XML directly using XSLT
      and a number of tools do that, including a plug-in for the DITA Open Toolkit ELOVIRTA. However, the markup generated is highly detailed and requires
      managing a number of low-level concerns, such as ID-based references among different files,
      the detailed rules for the construction of specific components, and so on. It is easy to get
      this markup wrong due to the complexity of the markup itself and the vagaries of how it is
      processed by Microsoft Word.
In the context of Municode's requirements, the need was for Word documents that matched,
      as closely as possible, the visual layout of the municipal code as published in HTML and PDF,
      as well as ensuring that all content was correctly reflected, enabling working hyperlinks,
      generated tables of contents, and so on. In addition, the visual style of the generated Word
      documents could potentially vary from municipality to municipality, indicating the need for
      easy-to-configure styling and content organization details.
Municode, like many publishers, was putting in place a general XML-based system for
      producing multiple outputs from a single XML source, meaning that the core XML processing
      tools (in particular the Saxon XSLT engine) were available for use for Word generation as
      well.
In addition to meeting Municode's immediate requirements, I wanted to develop a
      general-purpose XML-to-DOCX tool that could be quickly adapted to other documentation formats,
      in particular DITA. Municode agreed to allow me to develop The Wordinator as an open-source
      project.

Solution: Separate The XML Transform from The DOCX Generation
Transforming directly from arbitrary XML for published documents (DocBook, JATS, DITA,
      HTML5) to DOCX, while possible, does not provide a general solution that could be easily
      adapted to other formats.
As a general design principle, I like to use multi-phase processes that separate different
      concerns as much as possible and as appropriate.
In this case, there are three main concerns:	Defining the visual styling and page layout of the generated Word documents.

	Mapping of source document elements to the appropriate Word structures: paragraphs
            and character runs with specific visual effects or named styles, tables, placed images,
            and other page constructs, such as running heads and feet.

	Generating the DOCX files themselves.



These three concerns are reflected more generally in any XML-based publishing process:	How should the content as published look? (layout and
            styling)

	How is the content as authored mapped to the input to the
            publishing engine? (transformation mapping)

	How are the published artifacts generated? (publishing automation that replaces
            manual artifact creation such as manual page layout) 



Commonly-used XML-based publishing technologies such as XSL Formatting Objects (XSL-FO)
      present the challenge that the layout and styling concern is not easily separable from the
      transformation mapping concern, which makes XSL-FO a challenge to use and more expensive to
      implement and maintain than approaches that keep the design concern separate (for example,
      using CSS pagination).
As a general observation, the more that layout and styling are defined in the
      transformation logic, the harder they are to both develop initially and adapt to new
      requirements, because it usually requires a software engineer to implement any required
      stylistic changes. That is, the styling concern is not in the hands of those who could or
      would otherwise define the styling.
In the case of Word documents, the styling concern is best implemented using Word styles,
      which provide a fairly complete mechanism for defining the visual look and feel of the
      resulting document, including page layout definitions (page geometry, running heads and feet,
      etc.). In addition, Word's existing features for generating tables of contents and reflecting
      layout-specific data (page numbers, paragraph numbers, automatic list numbers, etc.) satisfy
      most, if not all layout definition requirements.
Given a template with a complete set of styles for paragraphs, text runs, tables, and
      objects, as well as page design definitions (page geometry and page headers and footers), the
      mapping from source document elements to their appropriate visual renderings is mostly a
      matter of mapping elements in context to Word component types and style names. This makes the
      source-to-layout transform about as simple as it can be, significantly reducing the
      engineering cost needed to implement the transformation for any given input XML source. The
      mapping is simple enough that it could be mostly or entirely defined through a declarative
      configuration or defined using an interactive mapping tool.
That leaves the generation of the DOCX data itself.
The Apache POI library POI provides a robust open-source Java API
      for reading and writing Office Open documents. This API handles most of the details of the
      Office Open XML format (OOXML) and thus makes the actual generation task both easier to
      implement and more reliable than the equivalent direct OOXML generation using XSLT would be.
      The Apache POI project is actively maintained and provides reasonably frequent updates.
I had prior experience using the POI library to generate Office documents in the context
      of The Slidinator SLIDINATOR, a tool for generating PowerPoint documents from
      DITA-based XML source, so I knew that POI would provide a quick and robust solution for
      generating Word documents.
That left only the question of how to get from the source XML to POI. This requires a Java
      processor that interprets some input source and calls the POI API to produce the result DOCX
      files. In addition, the processor must be able to read a Word template (DOTX) that defines the
      styles and page layouts to which the source XML is mapped.
My solution was to adapt the Simple Word Processing (SimpleWP) markup I originally
      developed for the Word2DITA transformation framework WORD2DITA, which goes
        from DOCX documents to XML for document authoring,
      by adding the information needed to also go from arbitrary XML to DOCX.
The SimpleWP XML is then processed in Java to generate the DOCX content via the POI
      library, which handles generating both the individual XML files that make up a DOCX file as
      well as doing the Zip processing to create the final working DOCX file.
In terms of the above three concerns, the solution is:	Use Microsoft Word to define a normal template document that provides all the named
            styles needed to implement the desired published look and feel, as well as the necessary
            page layout and section definitions.

	Implement an XSLT transform that generates SimpleWP XML from the authored source
            XML. Municode authors in HTML5 so the initial implementation of this concern was a
            relatively simple HTML-to-SimpleWP transform.

	A general-purpose Java component that reads SimpleWP input documents and generates
            the DOCX results using the POI library.



This separation of concerns keeps the styling task in the hands of Microsoft Word experts,
      minimizes the source-to-style mapping XSLT implementation effort, and largely encapsulates the
      details of the DOCX generation in the SimpleWP-to-POI process, which can be treated as a black
      box.
In addition, because The Wordinator comes out of the box with an HTML-to-SimpleWP mapping,
      it means that other documentation source vocabularies can use Wordinator by generating HTML
      rather than going all the way to SimpleWP. As most, if not all, such vocabularies already have
      robust HTML generation transforms, the cost of adapting those to generate HTML for use with
      The Wordinator should be low. 

SimpleWP to DOCX via POI
The Simple Word Processing XML vocabulary (SimpleWP) is a simplified representation of
      typical Word processing formats, but specifically Words structures: paragraphs, inline runs,
      tables, objects (image references, other embedded objects), etc. It provides the minimum
      information need to either capture or generate the essential content and properties of Word
      document content.
The SimpleWP vocabulary was originally developed to enable the transformation of Word
      documents into DITA XML and as such did not reflect layout-specific details such as page
      sequences and what Word calls "sections", which are sequences of pages with the same page
      geometry and running head and foot definitions (what would be page sequences in
      XSL-FO).
To adapt SimpleWP to the needs of DOCX generation I added markup to represent page
      masters, page sequence masters, and page sequences, that is Office Open sections and
      section-specific components. I used terminology that is more reflective of XSL Formatting
      Objects because that is what I'm most familiar with and will also likely be most familiar to
      other XML practitioners who might work with The Wordinator.
A typical SimpleWP document looks like
      this:<document xmlns="urn:ns:wordinator:simplewpml">
  <page-sequence-properties>
    <headers-and-footers>
      <header type="odd">
        <p style="Header" styleId="Header">
          <run><tab/></run>
          <run><tab/></run>
          <run>IFRS 13</run>
        </p>
      </header>
      <header type="even">
        <p style="Header" styleId="Header">
          <run>IFRS 13</run>
        </p>
      </header>
      <footer type="odd">
        <p style="Footer" styleId="Footer">
          <run><tab/></run>
          <run>© IFRS Foundation</run>
          <run><tab/></run>
          <page-number-ref/>
        </p>
      </footer>
      <footer type="even">
        <p style="Footer" styleId="Footer">
          <page-number-ref/>
          <run><tab/></run>
          <run>© IFRS Foundation</run>
        </p>
      </footer>
    </headers-and-footers>
  </page-sequence-properties>
  <body>
    <section type="oddPage">
      <body>
        <p style="IASB Identifier" styleId="IASBIdentifier">
          <run>IFRS 13</run>
        </p>
        ...
      </body>
    </section>
    ...
  </body>
</document>

The full SimpleWP grammar is available from The Wordinator project. It's design is purely
      utilitarian, with the goal of keeping it as simple as possible in order to enable generation
      of all required Word features. In particular, it is not (yet) a full representation of
      everything you could do in a Word document. For example, it does not provide a way to
      represent arbitrarily-placed text boxes.
The Java code that processes SimpleWP XML is implemented as single Java class,
      DocxGenerator, of about 2300 lines, that implements the overall business logic, supported by a
      number of utility classes that abstract some fundamental components, such as measurements and
      table column definitions.
The DocxGenerator class has three inputs:	A SimpleWP XML document.

	The Word template (DOTX) that provides the style and page layout definitions to use
            in the result document.

	The DOCX file to write to.



The code as implemented assumes that all DOCX files are written to the file system--there
      was no requirement to be able to stream the DOCX for output, although of course that could be
      added easily enough.
The DOCX generation process operates on the SimpleWP XML using Apache's XML beans
      XmlCursor object, which parses an XML document into an XmlObject
      instance:XmlObject xml = XmlObject.Factory.parse(inFile);

XmlObject uses a cursor model to step through the XML, including moving up and down the
      document hierarchy. This is the same approach used in the POI code itself to read and write
      the DOCX XML files.
For example, the top-level constructDoc() method looks like
      this:private void constructDoc(XWPFDocument doc, XmlObject xml) throws DocxGenerationException {
    XmlCursor cursor = xml.newCursor();
    cursor.toFirstChild(); // Put us on the root element of the document
    cursor.push();
    XmlObject pageSequenceProperties = null;
    if (cursor.toChild(new QName(DocxConstants.SIMPLE_WP_NS, "page-sequence-properties"))) {
      // Set up document-level headers. These will apply to the whole
      // document if there are no sections, or to the last section if
      // there are sections. Results in a w:sectPr as  the last child 
      // of w:body.
      setupPageSequence(doc, cursor.getObject());
      pageSequenceProperties = cursor.getObject();
    }
    cursor.pop();
    cursor.toChild(new QName(DocxConstants.SIMPLE_WP_NS, "body"));
    handleBody(doc, cursor.getObject(), pageSequenceProperties);      
}

This provides a reasonably simple and natural way to process the XML. The main challenge
      is ensuring that pushes and pops on the cursor stack are balanced.
The main output processing is handled by the handleBody() method, which processes the
      content of the <body> element to which it is applied and returns the last paragraph in the
      section or complete document to which the body
      applies:private XWPFParagraph handleBody(
      XWPFDocument doc, 
      XmlObject xml, 
      XmlObject pageSequenceProperties) 
        throws DocxGenerationException {
  XmlCursor cursor = xml.newCursor();
  if (cursor.toFirstChild()) {
    do {
      String tagName = cursor.getName().getLocalPart();
      String namespace = cursor.getName().getNamespaceURI();
      if ("p".equals(tagName)) {
        XWPFParagraph p = doc.createParagraph();
        makeParagraph(p, cursor);
      } else if ("section".equals(tagName)) {
        handleSection(doc, cursor.getObject(), pageSequenceProperties);
      } else if ("table".equals(tagName)) {
        XWPFTable table = doc.createTable();
        makeTable(table, cursor.getObject());
      } else if ("object".equals(tagName)) {
        // FIXME: This is currently unimplemented.
        makeObject(doc, cursor);
      } else {
        log.warn("handleBody(): Unexpected element {" + namespace + "}:'" + tagName + "' in <body>. Ignored.");
      }
    } while (cursor.toNextSibling());  
  }
  // The section properties always go on an empty paragraph.
  XWPFParagraph lastPara = doc.createParagraph();
  lastPara.setSpacingBefore(0);
  lastPara.setSpacingAfter(0);
  return lastPara;
}

This method simply iterates over the children of <body> and dispatches each child to
      the appropriate handler. 
The XWPF objects are the top-level POI classes that abstract fundamental Office Open
      constructs for Word documents, hide the details of how the actual Office Open XML is
      constructed, and provide appropriate methods for constructing the objects in terms of their
      semantics rather than in terms of the underlying Office Open details. This makes the API about
      as easy to use as it could be for this task.
Where the XWPF classes do not support generation of the Office Open XML details, it is
      (usually) possible construct the underlying XML structures directly using the lower level POI
      APIs. 
In a few cases I found places where I needed to extend the XWPF API to meet the needs of
      The Wordinator. In all of those cases I was able to contribute the enhancement back to the POI
      project for release in the time frame that I needed them for Municode's use of The Wordinator
      or simply produce my own local build of POI, as needed. 
In general, it was clear that most users of POI are reading, but not writing, Word
      documents.
Construction of individual elements, such as paragraphs, gets a little more involved (some
      details omitted for
      brevity):private XWPFParagraph makeParagraph(
    XWPFParagraph para, 
    XmlCursor cursor, 
    Map<String, String> additionalProperties) 
        throws DocxGenerationException {
  
  cursor.push();
  String styleName = cursor.getAttributeText(DocxConstants.QNAME_STYLE_ATT);
  String styleId = cursor.getAttributeText(DocxConstants.QNAME_STYLEID_ATT);

  if (null != styleName && null == styleId) {
    // Look up the style by name:
    XWPFStyle style = para.getDocument().getStyles().getStyleWithName(styleName);
    if (null != style) {
      styleId = style.getStyleId();
    }
  }
  if (null != styleId) {
    para.setStyle(styleId);
  }
        
  // Explicit page break on a paragraph should override the section-level break I would think.
  String pageBreakBefore = cursor.getAttributeText(DocxConstants.QNAME_PAGE_BREAK_BEFORE_ATT);
  if (pageBreakBefore != null) {
    boolean breakValue = Boolean.valueOf(pageBreakBefore);
    para.setPageBreak(breakValue);
  }

  if (cursor.toFirstChild()) {
    do {
      String tagName = cursor.getName().getLocalPart();
      String namespace = cursor.getName().getNamespaceURI();
      if ("run".equals(tagName)) {
        makeRun(para, cursor.getObject());
      } else if ("bookmarkStart".equals(tagName)) {
        makeBookmarkStart(para, cursor);
      } else if ("bookmarkEnd".equals(tagName)) {
        makeBookmarkEnd(para, cursor);
      } else if ("fn".equals(tagName)) {
        makeFootnote(para, cursor.getObject());
      } else if ("hyperlink".equals(tagName)) {
        makeHyperlink(para, cursor);
      } else if ("image".equals(tagName)) {
        makeImage(para, cursor);
      } else if ("object".equals(tagName)) {
        makeObject(para, cursor);
      } else if ("page-number-ref".equals(tagName)) {
        makePageNumberRef(para, cursor);
      } else {
        log.warn("Unexpected element {" + namespace + "}:" + tagName + " in <p>. Ignored.");
      }
    } while(cursor.toNextSibling());
  }
  cursor.pop();
  return para;
}

Again, an iteration over the contents of the incoming paragraphs to dispatch the
      appropriate construction handlers.
The main implementation challenge with paragraphs is applying the appropriate styles. When
      an input SimpleWP paragraph, run, or table specifies a style name the style must be present in
      the input template or there is no way to correctly style the document.
In addition, Office Open XML has the concept of "latent styles", which are styles where
      the style definition is defined entirely in the processing application, i.e., Microsoft Word,
      and is not otherwise defined in the Office Open XML anywhere. References to latent styles are
      thus not resolvable to anything in a general way because they are by definition
      application-defined. The DOCX file lists the names of all latent styles, so you can know if a
      style name is the name of a latent style, but you have no general way of knowing what the
      definition of that style is.
For example, in Microsoft Word, when you select the option to view All Styles, you are
      seeing both styles that are explicitly defined in the document's style catalog as well as all
      latent styles. If you subsequently selected a latent style for use on content in the document
      the latent style is copied into your document's local style catalog. This ensures that a given
      document's style catalog is a small as possible but makes it hard to know, a-priori, what the
      actual definition of a given latent style is as there's no generally-available definition of
      the latent styles that I'm aware of, short of creating a document that uses every latent style
      and then capturing its style catalog.
One missing feature in the XWPF API is access to the list of latent styles to know if a
      given style name is in fact a latent style--the API simply never considered the need because
      it has no relevance to reading DOCX files, only to writing them (or working with styles in
      some way). The challenge for The Wordinator is distinguishing between a style name that does
      not exist at all and a style name that is a latent style so that the user can be accurately
      informed about a bad style name as distinct from a reference to a latent style.
As in all publishing processes, tables are the most challenging structure to generate,
      mostly because of the challenge of handling vertical spans. However, because the SimpleWP
      table markup is already a close match to the Office Open XML table model, the actual
      processing is not that complicated.
Another table generation challenge is relative column widths where relative widths are
      mixed with absolute widths.
Office Open has a mechanism for specifying relative widths as a percentage of the total
      table width but the SimpleWP markup usually will not specify the absolute width of the table
      because that is normally a function of the output rendering. 
Without knowing the width of the table there is no way to determine what fraction of the
      total a given relative-width column is when any other columns have explicit widths.
If all the columns have relative widths then you can calculate the percentage each column
      uses.
The SimpleWP table element provides an attribute for specifying the explicit width of the
      table but most authoring formats to not provide a reliable or general way to know what the
      rendered width of the table should be.
Thus, when the width of the table is not specified, The Wordinator effectively requires
      either all explicit widths or all relative widths and issues a warning if this is not the
      case.
As with similar single-pass composition processes, the DOCX generation process does not
      have access to the formatted DOCX document, so it cannot know what the final rendered size of
      any component is.

Authored XML to DOCX Process 
While the core DOCX generation processor takes as input SimpleWP documents, the normal use
      case for The Wordinator starts with the authored XML as input, producing one or more DOCX
      files as output with all intermediate processing done in memory, as opposed to first
      generating a set of SimpleWP documents and then processing them to DOCX as separate process
      invocations.
To facilitate this use case, The Wordinator integrates Saxon to do the
      authored-XML-to-SimpleWP transform and then immediately generate DOCX from the resulting
      SimpleWP XML.
The Wordinator provides a command-line application that be invoked by specifying the
      authored XML source, the XSLT transform to apply to that source, the DOTX template to use for
      the result DOCX files, and the directory to write the DOCX files to. 
The connection from the Saxon result to the DOCX generator is done using a Saxon-specific
      output URI
      resolver:Processor processor = new Processor(false);
DocxGeneratingOutputUriResolver outputResolver = 
      new DocxGeneratingOutputUriResolver(outDir, templateDoc, log);
processor.setConfigurationProperty(Feature.OUTPUT_URI_RESOLVER, outputResolver);

...
XdmValue result = transformer.applyTemplates(docSource);

The output URI resolver is then used by Saxon for xsl:result-document instructions,
      effectively providing the result SimpleXP output of the XSLT transform to the DOCX builder,
      here from the HTML-to-SimpleWP transform provided with The Wordinator, where $result-uri is
      the URI of the result DOCX
      file:<xsl:template 
    match="xhtml:section[local:is-chunk(.)] | section[local:is-chunk(.)] | 
           xhtml:html[local:is-chunk(.)] | html[local:is-chunk(.)]" priority="10">
  
  ... (generate $swpx-base-result)...
  
  <xsl:result-document href="{$result-uri}" format="swpx" >
    <xsl:apply-templates select="$swpx-base-result" mode="cleanup-swpx">
      <xsl:with-param name="doDebug" as="xs:boolean" tunnel="yes" select="$doDebug"/>
    </xsl:apply-templates>
  </xsl:result-document>
</xsl:template>

The DocxGeneratingoutputUriResolver's resolve() method sets up the Result object, which
      simply provides the result URI to use for the generated DOCX
      file:public Result resolve(String href, String base) throws TransformerException {
  saxHandler = XmlObject.Factory.newXmlSaxHandler();

  Result result = new SAXResult(saxHandler.getContentHandler());
  result.setSystemId(href);
  return result;
  
}

The resolver's close() method does the actual DOCX
      generation:public void close(Result result) throws TransformerException {

  // Do the DOCX building
  try {
    XmlObject xml = saxHandler.getObject();
    String outFilepath = URLDecoder.decode(result.getSystemId(), "UTF-8");
    String filename = FilenameUtils.getBaseName(outFilepath) + ".docx";
    File outFile = new File(outDir, filename);
    File inFile = new File(new URL(result.getSystemId()).toURI());
    log.info("Generating DOCX file \"" + outFile.getAbsolutePath() + "\"");
    DocxGenerator generator = new DocxGenerator(inFile, outFile, templateDoc);
    generator.setDotsPerInch(dotsPerInch);
    generator.generate(xml);
  } catch (Exception e) {
    throw new TransformerException(e);
  }

}

Note that this approach puts the decision of how to chunk the result DOCX files in the
      authoring-to-SimpleWP transform. 
The connection between Saxon itself and the DOCX generator is completely generic.
This use of an output URI resolver to manage the generation of the DOCX files makes the
      use of the DOCX generator as natural as using Saxon to generate XML files and does not require
      any special consideration on the part of the XSLT implementor other than specifying the name
      of the result DOCX file at the result document URI.

Authored XML to SimpleWP XML
The generation of SimpleWP XML involves mapping the authored structures to the appropriate
      word processing structure and mapping content elements in context to the appropriate named
      style or specific formatting effect.
The HTML-to-SimpleWP transform provided with the The Wordinator demonstrates the general technique:	A main processor maps the source XML to the appropriate general SimpleWP structures:
            document, section, paragraph, run, table, etc.

	A "get style name" mode module provides the element-in-context to style name
            mappings.



The main processor is fairly generic for a given input vocabulary because for most
      authoring vocabularies the structural mapping will be the same regardless of the content
      details. For example, for DocBook, each top-level division would probably result in a new
      result section and <para> will almost always result in a SimpleWP paragraph.
For example, the base template for HTML paragraphs and similar block elements
      is:<xsl:template match="
  xhtml:p | p | 
  xhtml:dt | dt | 
  xhtml:dd[empty(xhtml:p)] | dd[empty(p)] | 
  xhtml:pre | pre">
  <xsl:param name="doDebug" as="xs:boolean" tunnel="yes" select="false()"/>

  <wp:p>
    <xsl:call-template name="set-style">
      <xsl:with-param name="doDebug" as="xs:boolean" tunnel="yes" select="$doDebug"/>
    </xsl:call-template>
    <xsl:apply-templates select="." mode="text-before">
      <xsl:with-param name="doDebug" as="xs:boolean" tunnel="yes" select="$doDebug"/>
    </xsl:apply-templates>
    <xsl:apply-templates>
      <xsl:with-param name="doDebug" as="xs:boolean" tunnel="yes" select="$doDebug"/>
    </xsl:apply-templates>
    <xsl:apply-templates select="." mode="text-after">
      <xsl:with-param name="doDebug" as="xs:boolean" tunnel="yes" select="$doDebug"/>
    </xsl:apply-templates>
  </wp:p>
</xsl:template>

The "get style name" module provides the more variable, and easier-to-code, mapping of
      elements in context to style names. 
The get style name module provides three main services:	A literal class- or tag-name-to-style map using an XSLT map.

	A base mapping to Word's default styles for headings, lists, and other common
            structures for which Word provides built-in styles or dedicated OOXML structures.


	Explicit element-in-context mapping to arbitrary style names or format
            overrides.



The design goal is to make the mapping from the authored source (or the HTML generated
      from the authored source) to Word styles as simple as possible to specify so that the easy
      cases are easy, obvious default mappings just work, and special cases can be implemented
      without unnecessary overhead.
The class or tag name mapping is simply a literal XSLT
      map:<xsl:variable name="classToStyleNameMap" as="map(xs:string, xs:string)">
  <!-- Mapping of DITA element types and generated classes to likely 
       style names.
    -->
  <xsl:map>
    <xsl:map-entry key="'b'" select="'bold'"/>
    <xsl:map-entry key="'cite'" select="'italic'"/>
    <xsl:map-entry key="'cmd'" select="'cmd'"/>
    <xsl:map-entry key="'cmdname'" select="'cmdname'"/>
    <xsl:map-entry key="'codeblock'" select="'Codeblock'"/>
    <xsl:map-entry key="'codeph'" select="'codeph'"/>
    ...
    <xsl:map-entry key="'xmlelement'" select="'xmlelement'"/>
    <xsl:map-entry key="'xmlnsname'" select="'xmlnsname'"/>
  </xsl:map>
</xsl:variable>

This syntax is simple enough that anyone should be able to modify it, but of course it
      could be moved to a separate configuration file if that was useful. That level of flexibility
      and convenience was not a requirement for Municode.
One could imagine, for example, an interactive application that reads the style
      definitions from a DOTX or DOCX file and the @class values from an HTML document or the set of
      element type names from an XML document and enables specifying the mapping from class to
      style.
The default "obvious" mappings include mapping hierarchical titles to Word's built-in
      Heading N styles and styles for lists,
      e.g.:<xsl:template mode="get-style-name" as="xs:string?"
  match="
    xhtml:h1 |
    xhtml:h2 |
    xhtml:h3 |
    xhtml:h4 |
    xhtml:h5
  " 
  >
  <xsl:param name="doDebug" as="xs:boolean" tunnel="yes" select="false()"/>
  
  <xsl:variable name="heading-number" as="xs:string"
    select="substring-after(name(.), 'h')"
  />
  <xsl:variable name="headingLevel" as="xs:integer"
    select="xs:integer($heading-number)"
  />
  <xsl:variable name="result" as="xs:string" 
    select="'Heading ' || $headingLevel"
  />
  <xsl:sequence select="$result"/>
</xsl:template>

Note that the result of the template is an optional string, which is the name of the Word
      style to use in the generated DOCX file.
Special case mappings are handled using normal XSLT match templates that return the style
      name:<xsl:template mode="get-style-name" as="xs:string?"
  match="xhtml:article[@class = ('sidebar')]/xhtml:p[1]" 
  >
  <xsl:sequence select="'Sidebar Para First'"/>
</xsl:template>

Even this template, while full XSLT, is simple enough that people who understand XPath
      well enough to construct the correct match expression but are not otherwise XSLT programmers
      could implement this kind of special case mapping.
While the simplicity of this template suggests that there should be a way to capture the
      same mapping in some kind of configuration file, in my thinking on this issue to date (which
      started more than 10 years ago with work I did to implement a similar DITA-to-InDesign
        transformation DITA2ICML), it has always seemed that any such
      configuration file would not be significantly easier to create than this style of simple XSLT
      template and the cost of implementing the processing of such a configuration file would be
      significant, especially if the target audience is not expected to be XML or XSLT experts,
      meaning the configuration file processing has to provide robust error handling with clear
      messages, appropriate convenience features, and so on.
However, that work and thinking was done with XSLT 1 and 2. Newer features in XSLT 3, such
      as the ability to dynamically evaluate XPath expressions and better facilities for error
      handling, might lower the cost of such a configuration mechanism to make the added convenience
      worth the implementation effort if that level of configuration convenience is otherwise a
      requirement. 

Conclusions and Future Work
The Wordinator achieves it's original requirement of producing high-quality Word
      documents, including support for multiple page sequences with different page geometries,
      headers, and footers, complex tables, embedded graphics, and multi-column content.
By leveraging the Apache POI library the implementation cost was kept to a minimum, within
      Municode's limited budget. In addition, the use of POI, with its robust and mature
      implementation of the Office Open XML format, limits the risk of producing bad DOCX
      data.
The implementation demonstrates the utility of separating the three concerns of style and
      layout, authored-content-to-style mapping, and deliverable generation. It also demonstrates a
      useful technique of using Saxon output URI resolvers to post-process the direct output of an
      XSLT transformation into some non-XML format that cannot be generated (or easily generated)
      using XSLT alone.
By using a simple-as-possible intermediate format (Simple Word Processing XML) as the
      input to the DOCX generation process, the complexity of the
      authored-content-to-deliverable-structure is minimized.
The current Wordinator release, 1.0.2, is sufficiently complete to meets the needs of most
      documents that do not require page layouts and typographic effects that can only be produced
      in more sophisticated page layout systems or through manual construction of pages. At this
      level of completeness it is limited mostly by the inherent limitations in Microsoft Word
      itself.
However, Wordinator does not implement all layout features of Word, so there is room for
      improvement, for example, generation of content in floating text boxes.
Another area for investigation is the generation of Word documents with accessibility
      features to be used as input to existing tools that generate accessible PDFs from Word
      documents. The U.S. GAO currently uses Word to create accessible versions of GAO reports but
      the Word is created manually as part of the publishing process. It is likely that Wordinator
      could be used to generate Word documents with the necessary accessibility features, removing a
      manual process without completely rearchitecting the current GAO publishing process.
Additional possible extensions include using CSS to define the Word style details,
      enabling automatic generation of the Word styles from CSS style sheets, enabling the reuse of
      existing CSS style sheets used for web or paged delivery.
The Wordinator could easily be adapted to take non-XML data as input, in particular JSON,
      using XSLT 3's JSON processing features.
While part of my personal motivation for building The Wordinator was to enable the easy
      publishing of DITA content to PDF via Word, I have not actually implemented that process. It
      should be a relatively simple task to extend the existing DITA Open Toolkit HTML
      transformation to produce HTML optimized for use with The Wordinator, along with DITA-specific
      Word Templates that provide named styles corresponding to DITA content elements.

Bibliography
[DITA2ICML] DITA to InDesign project, https://github.com/dita4publishers/org.dita4publishers.dita2indesign.
[ECMA-376-1] ECMA-376-1:2016
          Office Open XML File Formats — Fundamentals and Markup Language
        Reference, https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-376, Fifth Edition, Part
        1 - Fundamentals And Markup Language Reference.zip.
[ELOVIRTA] DITA to Word plug-in, Jarno Elovirta,
        https://github.com/jelovirt/com.elovirta.ooxml/.
[POI] Apache POI - the Java API for Microsoft
      Documents, https://poi.apache.org/.
[SLIDINATOR] The Slidinator project, https://github.com/drmacro/slidinator.
[WORD2DITA] Word2DITA Project, https://github.com/dita4publishers/org.dita4publishers.word2dita.
[WORDINATOR] The Wordinator Project, https://github.com/drmacro/wordinator.



[1] A typical example of Municode's product includes the code for the city of Austin,
          Texas: https://library.municode.com/tx/austin/codes/code_of_ordinances?nodeId=TIT5CIRI_CH5-1HODI_ART2DIHOAIHOACCO_DIV3PRAGDI_S5-1-51DISAREHO. Note that as of 5 July 2020 this site reflects the old Word document creation tooling
          and not the use of The Wordinator.

Balisage: The Markup Conference

High-Quality Microsoft Word documents from XML: The Wordinator
Eliot Kimber
Senior Solutions Architect
Contrext, LLC

<ekimber@contrext.com>
Eliot Kimber is an XML practitioner currently working with a U.S. government agency on
          a new report authoring, management, and delivery system. He has been involved with SGML
          and XML for more than 30 years. Eliot has contributed to a number of standards, including
          SGML, HyTime, XML, XSLT, DSSSL, and DITA. While Eliot's focus has been managing large
          scale hyperdocuments for authoring and delivery, most of his day-to-day work involves
          producing online and paged (or pageable) media from XML documents. Eliot maintains a
          number of open-source projects including DITA for Publishers, The Wordinator, and the DITA
          Community collection of DITA-related tools and other aids. Eliot is author of
            DITA for Practitioners, Vol 1: Architecture and Technology, from
          XML Press. When not trying to retire the technical debt in his various open-source
          projects, Eliot lives with his family in Austin, Texas, where he practices Aikido and
          bakes bread.



Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





content/images/Kimber01-001.png
Authored

L The Wordinator

DoTX
Template





