[image: Balisage logo]Balisage: The Markup Conference

An XML infrastructure
for spell checking with custom dictionaries
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 by the author. Used with permission.

How to cite this paper
Sperberg-McQueen, C. M. "An XML infrastructure." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Sperberg-McQueen01.

Abstract
Spell checking has both practical and theoretical
 significance. The practical connections seem obvious: spell
 checking makes it easier to find some kinds of errors in
 documents. But spell checking is sometimes harder and less
 capable in XML than it could be. If a spell checker could
 exploit markup instead of just ignoring it, could spell
 checking be easier and more useful? The theoretical
 foundations of spell checking may be less obvious, but every
 spell checker operationalizes both a simple model of language
 and a model of errors and error correction. The SCX (spell
 checking for XML) framework is intended to support the author's
 experimentation with different models of language and errors:
 it uses XML technologies to tokenize documents, spell check
 them, provide a user interface for acting on the flags raised
 by the spell checker, and inserting the corrections into the
 original text.

Balisage: The Markup Conference

 An XML infrastructure

 for spell checking with custom dictionaries

 Table of Contents

 	Title Page

 	Introduction

 	An abstract view of spell checking

 	An XML framework for experimentation with spell checking

 	Implementation
 	Tokenizing

 	Checking word forms and proposing alternatives
 	Using an external spell checker

 	Using an internal (XSLT / XQuery) spell checker

 	Building the XForm

 	Making the corrections

 	De-tokenizing

 	Related work

 	Future work

 	About the Author

 An XML infrastructure
for spell checking with custom dictionaries

Introduction

 Spell-checking sometimes seems harder and less useful in XML
 than it ought to be. Conventional open-source
 spell-checkers like ispell, aspell, and hunspell have very
 poor built-in support for XML markup: at best, they know how
 to skip past tags; they don't do well with entity
 references; they do not understand how to tell what
 languages the document is in by consulting the
 xml:lang attribute, let alone how to use the
 markup intelligently to guide the spell-checker. Editing
 software aimed specifically at XML sometimes does better,
 but even those tools do not always make it as easy as
 they might to customize the dictionary or apply specialized
 dictionaries to specific parts of the document.

 Users of XML in the digital humanities have additional
 problems. Many digital humanities projects produce
 transcriptions of pre-existing material (whether manuscript
 or published), but few use spell-checking technology to
 check their transcripts for transcription errors. This is
 due partly to the factors already mentioned, but also partly
 to the absence of appropriate dictionaries for
 under-resourced languages and for older forms of languages,
 and partly to a conceptual difficulty: many projects will
 normally wish to reproduce misspellings in the exemplar, and
 not to correct them, and it is not immediately obvious that
 spell-checking software can be used in such contexts. With
 some effort, however, both the practical and the conceptual
 difficulties could be overcome and spell-checking tools
 could usefully be deployed in DH projects Sperberg-McQueen / Huitfeldt 2019.

 In seeking ways in which spell checking could be more
 convenient and more useful to users of XML, it would be
 helpful to be able to experiment simply with
 alternative approaches to the task. This paper reports on
 a framework for spell checking of XML documents developed
 in order to support such experimentation. Its possible
 interest to the document markup community is three-fold:
 it makes it easier to experiment with ideas for improving
 spell checking of XML documents; it provides a concrete
 framework for illustrating the difference made by a change
 in underlying models of language; and it illustrates some
 applications of XML technologies that may be of interest
 to practitioners of those technologies.

 In the next section, a simple
 abstract view of spell checking is presented; this view suggests
 several areas in which experimentation could be fruitful, and
 conversely several operations which every experimental spell
 checker must support. The following
 section describes the implementation of a framework
 intended to separate the process of spell-checking into
 model-dependent and model-independent parts, and provide a
 reusable implementation of the model-independent parts. The
 final two sections of the paper discuss related work and future developments of the framework.

An abstract view of spell checking
When the first computer-based spell checking programs were
 developed, attention was focused primarily on the technical
 challenges of managing word lists which were rather large by
 contemporary standards; considerable ingenuity was spent on ways
 to compress the word list (or dictionary, as it is typically
 called in spell checking). Later, as interactive spell checkers
 superseded batch operation and found ways to propose corrections
 for misspelled words, attention was focused on the user interface
 and pragmatic concerns. Very little overt attention went to any
 theory underlying the process, and indeed some people have
 expressed surprise at the idea that any theory is involved at
 all.
At a first approximation, what are here referred to as
 conventional spell checkers operate
 roughly as described by Douglas McIlroy [McIlroy 1982]:
 The modern spelling checker consists of a sequence
 of processes:
 	Split out the words of the document, one per
	 line. ...

	Cull the words for duplicates by sorting them,
	 preserving case distinctions.

	Look up the words in the stop list. If a word,
	 or a stem obtained by stripping prefixes and suffixes, is
	 found on the stop list, attach a stop flag.

	Look the words up in the spelling list. If
	 the word has a stop flag, accept (that is, discard) it
	 only if it appears verbatim in the spelling list.
	 Accept a word with no flag if it, or any stem obtained
	 by stripping prefixes and suffixes, appears in the
	 spelling list.

	Print all remaining words as potential spelling
	 errors.

Although some things have changed, McIlroy's description
 was until fairly recently not far from the state of the art,
 and it remains a useful point of reference for understanding
 spell checkers and identifying variations in practice.
Among the most important variations are these:
 	Most spell checkers today operate interactively,
	not in batch mode. Step 2 is consequently
	dropped.

	Most spell checkers propose corrections for words
	flagged as potential misspellings. Step 5 is consequently
	replaced by interaction with the user. In the course of
	this interaction, the user typically has the opportunity to
	add word forms to a local dictionary so that repeated
	occurrences will not be flagged.

	Some modern spell checkers use more sophisticated
	affix analysis than McIlroy describes; this affects how
	steps 3 and 4 operate.

	Some but not all contemporary programs use a more
	sophisticated model of language for detecting potential
	errors than dictionary lookup; for such programs, steps 2-5
	will be replaced by other processes.

	Some but not all contemporary programs do not ask
	the user how to correct flagged forms but change them
	automatically (and in some cases correctly).

It should be obvious that several kinds of malfunction are
 in principle possible in such a system. A correctly spelled
 word may be flagged because it is missing from the dictionary;
 the obvious solution to this is to make the dictionary larger.
 Or an incorrect spelling may not be flagged because it happens
 to be the correct spelling of another word
 (e.g. intension when
 intention is meant); these are often
 referred to as real-word errors. The obvious solution
 to real-word errors is to make the dictionary smaller by
 eliminating correct forms, when their appearance in the input
 is more likely to be an error for a common word than a correct
 spelling of a comparatively rare one. The tradeoff between
 minimizing erroneous flags and minimizing unflagged errors has
 been a concern for decades; McIlroy discusses the tradeoffs at
 some length. Since users are apt to be irritated by erroneous
 flags and may never notice unflagged errors, the general
 tendency seems to favor larger and larger dictionaries.
But no adjustment in the size of the dictionary can help
 programs built on the model described to deal with errors like
 there for their
 or they're; for that some understanding
 of the grammar of the text appears to be necessary. Tools
 with some grammatical awareness are often called grammar
 checkers to distinguish them from spell checkers. Comparing
 what grammar checkers do and how they resemble and differ from
 conventional spell checkers, it is easier to see that both
 kinds of software follow the same abstract pattern, differing
 in how the pattern is instantiated.
The common abstract pattern seems to the author to involve
 four salient parts:
 	A statistical theory of language, which assigns
	probabilities to specific tokens or utterances.
Conventional spell checkers model language as a sequence
	of equiprobable known word forms.[1] The probability of any word form not in
	the dictionary is estimated at zero.
Other more complex statistical models are of course
	possible (Charniak 1993). Grammar checkers, for
	example, clearly have such a model, though the nature of
	that model is not obvious. It might be a conceptually
	straightforward Markov model on word forms or parts of
	speech, or something very different.

	A threshold value for reporting errors; tokens or
	utterances whose probability falls below this threshold are
	flagged as likely errors.
In conventional spell checkers, the rule is simple: flags
	are thrown when p = 0.
If the language model assigns
	different probabilities to different tokens, variations in
	the threshold will allow a choice between a high threshold
	(which should minimize erroneous flags) and a low one (which
	should minimize unflagged errors).

	A theory of errors which, given a pair of word
	forms, provides an estimate of the probability that one is
	an error for the other.
A common and easily understood model is that errors
	consist in the omission or insertion of letters, the
	substitution of one letter for another, or in the
	transposition of letters. Damerau reports that in a
	retrieval system, 80% of the descriptors rejected by the
	system as unknown were misspellings were due to a single
	insertion, deletion, substitution, or transposition of
	letters (Damerau 1964). Accordingly, many spell
	checkers use edit distance to measure similarity between the
	input form and forms in the dictionary. Other checkers (for
	example Aspell [Atkinson 2017]) translate the
	input word into a phonetic representation in the style of
	Soundex, and suggest words with similar phonetic
	representations; the translation from orthography to a
	representation of word sound of course makes the correction
	model language-specific. It is clear on reflection that
	edit distance will work fairly well when the most common
	cause of errors is errant fingers on a keyboard (though a
	model which accounted for adjacency on the keyboard might be
	more helpful), while phonetic distance is likely to provide
	more useful help for bad spellers. A different model based
	on visual similarity of character sequences might be helpful
	for detecting OCR errors.

	A threshold value for reporting suggestions: if the
	similarity between the input word and a dictionary word
	exceeds the threshold, the dictionary word will be suggested
	to the user as a possible correction.
Conventional spell checkers often provide suggestions
	whose edit distance from the input word is one. Suggestions
	based on an edit distance of two are also possible, with
	sufficiently clever data structures (Garbe 2012, Garbe 2015).
	

It seems clear that by varying any of these four factors
 one can change the behavior of a spell checking system. A
 simple language model that pays attention to the preceding
 and/or following word (an n-gram Markov model,
 to give it a technical name) might be able to detect at least
 some real-word errors. A language model based on character
 sequences might be able to distinguish between word forms
 which look normal for the language in question and word forms
 which do not — though it cannot, of course, reliably
 determine whether the statistically less probable word forms
 are foreign words, intentionally deviant spelling, or the
 result of a cat walking across an unattended keyboard.[2] And error models
 based on the observed frequency of particular letter
 substitutions might be able to do a better job of suggesting
 corrections for OCR errors than current methods.
For these reasons, it seems that it might be interesting
 and worthwhile to experiment with different language and error
 models, with an eye toward finding ways to make spell checking
 more helpful and more powerful in an XML context.
To experiment with different models, however, it does not
 suffice to implement new ways to assign probabilities to
 tokens and to calculate similarity measures for possible
 corrections; it will be necessary to perform the other tasks
 needed in a full spell checker: tokenize the text, present
 flagged forms to the user for action, and follow the user's
 instructions about what to do with the flagged form. For the
 most part, these seem at this point unlikely to vary much with
 different language and error models, and building a new user
 interface for each experiment with a different language model
 is likely to be an excellent way of bogging things down and
 making experiment more difficult.
That is the motivation for the framework presented
 here.

An XML framework for experimentation with spell checking

 What is desired is an analysis of the spell-checking process
 into a set of modules with clean interfaces, such that the
 model-dependent modules can easily be swapped out and
 replaced with modules based on different models, while the
 model-independent modules continue working in the same way.

The first iteration of our design is simple. We are working
 with small, arcane (or at least highly specialized), non-trivial
 datasets encoded in XML (SANDs, to use the term introduced for
 such datasets by Josh Lubell [Lubell 2014]), so it is
 convenient to handle the user interaction through an XForm. A
 suitable customization of an XML editor could also be used. At
 this level of abstraction, our workflow looks like this:
 Figure 1
[image:]

 XForms provide specialized user interfaces for interacting
 with XML documents; in this case,
 the interface presented to the user will show the spelling
 error in context in a formatted display, with a distinct
 user-interaction widget for every flagged word.
 Figure 2
[image:]

 The only changes the user can make will be through interaction
 with these widgets.
 The user can correct the word, confirm that the word
 is correct as it stands, or take other actions; details will
 be given below.

Two limitations of the framework described here should be
 borne in mind. First, its primary aim is to make it simpler
 for the author and others to experiment with different models
 of language, different thresholds for error signaling, and
 different strategies for identifying possible corrections.
 The framework is intended to make that experimentation more
 convenient by separating user interface concerns from the
 actual identification of errors and possible corrections, so
 that the same interface can be used with different back ends.
 In consequence, convenience for swapping out back ends has
 been valued more highly than efficiency or polished user
 interfaces. Simplicity of implementation has similarly been
 decisive in many design choices.
Second, one class of users for whom alternative forms of
 spell checking are expected to be useful are projects working
 to transcribe a body of material, in which spell checking is a
 distinct step in the quality assurance process, and in which
 it is desirable to be very careful with the data.
 In some cases (including the kinds of experiments the
 author is interested in making), it may be desirable either to
 keep a log of all changes made to the text, or to enable
 review of proposed changes before they are made. In these
 cases, it will be useful to have the XForm modify not the main
 text but a separate list of proposed changes, which can be
 checked, modified as necessary, and then applied to the XML in
 a batch process. With this refinement, the workflow looks
 like this:
 Figure 3
[image:]

The workflow shown makes sense in projects for which a
 certain amount of overt process and record-keeping is
 appropriate, and where keep a log of all spelling corrections
 made sounds like possibly a good idea, rather than a crazy
 notion of no imaginable interest. For casual use — if
 for example one wants a quick spell check on the minutes of a
 meeting, before sending them out — the process shown
 would be far too cumbersome. It is possible, of course, that
 experiments with this framework might show ways in which
 spell-checking could be more effective and useful in XML
 contexts, and that might motivate the development of more
 convenient interfaces for lighter-weight spell checking. But
 that is a faint possibility for the future, not something that
 will appear on anyone's desk soon.

Implementation
To keep the implementation simple, and to allow manual
 intervention at multiple points in the work flow, both the
 path from native XML to the XForm and the path from the XForm
 to the corrected native XML have been subdivided into
 pipelines of relatively simple processes.
The initial refinement is to split the preparation of the
 XForm into three steps:
 	A tokenizer identifies the tokens which should be
	treated as words and spell-checked; it marks those
	tokens for the use of later steps.

	A batch spell-checker checks the tokens indicated in
	the input, ignores everything else, and flags any tokens
	it identifies as likely errors. It may optionally also
	propose possible corrections and supply annotation of
	various kinds (e.g. a probability that the token indicated
	is in fact an error, or similarity scores for the possible
	corrections).

	A form generator translates the tokenized and flagged
	text into an HTML+XForms document. If there is already a
	stylesheet for rendering the input vocabulary into HTML,
	it is convenient to import it so the document rendering in
	the XForm is as much like the usual form as possible.
	Some adjustments will of course be needed if the
	introduction of new markup in the document causes problems
	for the stylesheet. The form generator handles the markup
	specific to spell checking and provides the required
	XForms infrastructure.

 This workflow is straightforward to implement and will suffice
 for simple cases; for polyglot texts — or more
 generally, any text in which some portions of the document
 have specialized language or require a dictionary of their own
 — further refinement may be useful.

Tokenizing
The task of the tokenizer is to identify each word of the
 text, without disturbing any existing element markup.[3] Concretely, the
 tokenizer should retain the existing markup as is, replacing
 some or all text nodes with sequences of
 application-specific elements denoting words and non-words,
 interleaved with whitespace. It is a requirement that
 information about the location of whitespace in the input be
 retained, so that a de-tokenizer can
 reverse the process and restore the original XML — or
 rather, in view of the necessary disturbances to entity
 structure, to create output equivalent to the input from
 which the tokenizer started, except for any corrections and
 related changes.
A generic tokenizer which breaks words at whitespace and
 separates words from adjacent punctuation will work
 reasonably well on documents written in conventional
 alphabetic scripts, in which all words to be checked are in
 the text nodes of the documents and all language shifts are
 recorded using the xml:lang attribute; in many
 cases, however, it will be desirable to make some
 data-specific modifications to the tokenization algorithm.
 Simply substituting a tokenizer written for a particular
 body of material is a simple approach; less drastic methods
 of customization would be desirable, but it is not currently
 clear what they should be. Importing the default tokenizer
 and overriding its variables and templates is of course an
 obvious possibility.

The initial proof-of-concept tokenizer makes some
 simplifying assumptions:
 	Any element boundary coincides with a word boundary.
	 Or equivalently: no word crosses any element
	 boundary, and no word contains word-internal markup.

	All word tokens are delimited by whitespace or
	 element boundaries, and any whitespace constitutes a
	 token boundary. Equivalently: no words contain
	 whitespace, and no whitespace-free character sequence
	 contains multiple words.[4]

	Any whitespace-delimited token containing only
	 punctuation characters is a non-word. For practical
	 purposes punctuation characters may be defined as
	 characters in the Unicode punctuation class, matched by
	 the XSD regular expression \p{P})
	 Equivalently: all words contain at least one
	 non-whitespace, non-punctuation character.[5]
	

	In a token containing both punctuation and
	 non-punctuation characters, leading and trailing
	 punctuation is not part of the word but a word-adjacent
	 non-word. Internal punctuation, however, forms part of
	 the word to be spell-checked.[6]

	Every text node may contain words to be checked;
	 every text node should be tokenized.

	All words to be checked appear in text nodes; there
	 are no words in attribute values, comments, or
	 processing instructions that need to be checked.

 Handling cases in which these assumptions do not hold will
 be left for later refinements of the tokenizer.
The initial tokenizer replaces text nodes with sequences
 of the following elements (the prefix scx is
 assumed bound to the appropriate application-specific
 namespace):
 	
 scx:w for words

	
 scx:pc for sequences of punctuation characters

	
 scx:pcw for words with internal punctuation
	 (this makes it very slightly simpler to provide special
	 handling for them in later steps)

	
 scx:s for whitespace, translated using
	 string-to-codepoints() into a
	 whitespace-delimited sequence of decimal numerals
	 representing the sequence of Unicode code points in the
	 input

 The code presented here makes an effort to preserve the
 whitespace of the original, but in order to make it easier
 to handle the data even if the whitespace is normalized in
 some way (e.g. for easier reading of the XML, as in the
 example output shown below), the join attribute
 proposed by Bański, Haaf, and Mueller 2018 is used whenever
 any of the elements listed abuts an adjacent token without
 whitespace.
A simple example may be helpful. As test data, entries
 from Liam Quin's web edition of Alexander Chalmers's
 Biographic Dictionary of 1811-1817 are
 used.[7]
 In the source XML,
 one article in the test data reads, in part:
<entry id="gainsborough-thomas"
 born="1727"
 died="1788"
 vocation="an admirable English artist"
><title><csc>Gainsborough, Thomas</csc></title>
<body><p>, an admirable English
artist, was born in 1727, at Sudbury, in Suffolk, where
his father was a clothier. He very early discovered a <!--
-->propensity to painting. Nature was his teacher, and the
woods of Suffolk his academy, where he would pass in <!--
-->solitude his mornings, in making a sketch of an antiquated
tree, a marshy brook, a few cattle, a shepherd and his
flock, or any other accidental objects that were presented.
...
Finding the danger of his
situation, he settled his affairs, and composed himself to
meet the fatal moment, and expired Aug. 2, 1788. He
was buried, according to his own request, in Kew Churchyard.
</p>
<p>Mr. Gainsborough was a man of great generosity. If he
selected for the exercise of his pencil, an infant from a
cottage, all the tenants of the humble roof generally <!--
-->participated in the profits of the picture; and some of them
iVequently found in his habitation a permanent abode.
His liberality was not confined to this alone: needy <!--
-->relatives and unfortunate friends were further iucumbrances
on a spirit that could not deny; and. owing to this <!--
-->generosity of temper, that affluence was not left to his family
which so much merit might promise, and such real worth
deserve. ... </p>
...
</body></entry>

 Here and elsewhere I have shortened some lines
 to simplify the display, by introducing line
 breaks inside tags and comments with line
 breaks inside text nodes. After tokenization
 with the simple tokenizer, the beginning of the article
 has the following form:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="../src/chalmers-html.xsl" ?>
<entry xmlns:scx="http://blackmesatech.com/2020/ns/scx"
 id="gainsborough-thomas"
 born="1727"
 died="1788"
 vocation="an admirable English artist">
 <scx:s n="1">10 32 32 32 32</scx:s>
 <title>
 <scx:s n="1">10 32 32 32 32 32 32</scx:s>
 <csc>
 <scx:w join="both">Gainsborough</scx:w>
 <scx:pc join="left">,</scx:pc>
 <scx:s n="2">32</scx:s>
 <scx:w join="right">Thomas</scx:w>
 </csc>
 <scx:s n="1">10 32 32 32 32</scx:s>
 </title>
 <scx:s n="1">10 32 32 32 32</scx:s>
 <body>
 <scx:s n="1">10 32 32 32 32 32 32</scx:s>
 <p>
 <scx:pc join="left">,</scx:pc>
 <scx:s n="2">32</scx:s>
 <scx:w>an</scx:w>
 <scx:s n="4">32</scx:s>
 <scx:w>admirable</scx:w>
 <scx:s n="6">32</scx:s>
 <scx:w>English</scx:w>
 <scx:s n="8">10</scx:s>
 <scx:w join="right">artist</scx:w>
 <scx:pc join="left">,</scx:pc>
 <scx:s n="10">32</scx:s>
 <scx:w>was</scx:w>
 <scx:s n="12">32</scx:s>
 <scx:w>born</scx:w>
 <scx:s n="14">32</scx:s>
 <scx:w>in</scx:w>
 <scx:s n="16">32</scx:s>
 <scx:w join="right">1727</scx:w>
 <!-- ... -->
 </p>
 </body>
</entry>

 Since the whitespace of the original has been
 preserved using scx:s and the join
 attribute, there is no information loss in indenting
 this document to show the XML structure.

Checking word forms and proposing alternatives
The actual checking of words and the identification of
 possible corrections depends crucially on the language and
 error models chosen; for the framework to make
 experimentation with different models possible, therefore,
 it must be simple to swap out implementations of this step.
 The only requirement is that they accept as input documents
 in arbitrary XML vocabularies with embedded scx:w,
 scx:s, and scx:pc elements, and produce as
 output a near-identical copy of the input in which some
 scx:w elements have been wrapped in
 scx:flag elements, whose structure is described
 below.
To ensure that models are relatively easy to swap in and
 out, two different implementations of this step are being
 prepared at the outset. (In the course of the planned
 experimentation, of course, more should follow.) One uses a
 pre-existing external spell checker, augmented with XSLT
 steps; the other (full disclosure: not yet implemented at
 paper submission time) uses XQuery and XSLT to do the same
 job in a different way.
Using an external spell checker
To use an off-the-shelf spell checker like ispell (Kuenning 2018), aspell (Atkinson 2017), or
	hunspell (Németh 2018), it is only necessary to
	provide it with a stream of checkable tokens, and then to parse
	its output and integrate it into the XML document.
		From the tokenized text create an alpha text.
	 Following Huitfeldt 2006, an alpha-text is a
	 set of strings derived from a transcription
	 according to a language-specific procedure with
	 the expectation that each such string should be a
	 well formed and thus correctly spelled word in the
	 language. An XSLT stylesheet that reads the flagged
	 input document and dumps the contents of the
	 scx:w elements, one per line, is an
	 acceptable way to do this.

	Use any off-the-shelf spell checker that can be
	 invoked in batch mode to identify the
	 not-in-dictionary forms and the corresponding
	 suggestions.
Hunspell, ispell, and aspell all have batch modes
	 in which they accept input and signal, for each
	 word, whether they believe it is correctly spelled
	 or not.[8]

	Parse the report in XSLT / XQuery and
	 merge the information into the tokenized version
	 of the document.

	
For the Chalmers article on the painter Thomas
	Gainsborough, the hunspell output includes the following
	two flags (for the text shown above in the image of an
	XForm):
	& iVequently 1 6695: equivalently
& iucumbrances 2 7822: encumbrances, encumbrance

	
The leading ampersand signals that the word is not
	found in the dictionary, but some similar words are, so
	hunspell has suggestions. The input word form is followed
	by the number of suggestions made, the position of the
	word in the input, a colon, and the suggestions found
	by hunspell.[9]
	
After the hunspell report is parsed and integrated
	into the XML document, the two words and their immediate
	context have the following form.
	
 <scx:s>10</scx:s>
 <scx:flag id="f-009" src="hunspell">
 <scx:w>iVequently</scx:w>
 <scx:raw>& iVequently 1 6695:
 equivalently</scx:raw>
 <scx:bogon>iVequently</scx:bogon>
 <scx:alt>equivalently</scx:alt>
 </scx:flag>
 <scx:s>32</scx:s>
 <scx:w>found</scx:w>
 ...
 <scx:w>further</scx:w>
 <scx:s>32</scx:s>
 <scx:flag id="f-010" src="hunspell">
 <scx:w>iucumbrances</scx:w>
 <scx:raw>& iucumbrances 2 7822:
 encumbrances, encumbrance</scx:raw>
 <scx:bogon>iucumbrances</scx:bogon>
 <scx:alt>encumbrances</scx:alt>
 <scx:alt>encumbrance</scx:alt>
 </scx:flag>
	

	It may be seen that the original word is retained
	(scx:w) and has been augmented with
	the full matching line of output from hunspell
	(for debugging purposes),
	the word form as reported by hunspell
	(scx:bogon) — these will normally
	be the same —
	and hunspell's suggested alternatives
	(sxc:alt).	
	

Using an internal (XSLT / XQuery) spell checker
An alternative implementation of this step uses
	XSLT and XQuery to perform the spell checking. To
	implement a more or less standard word-out-of-context
	check against a word list, the following steps
	suffice:
		Load one or more dictionaries; these can
	 take the form of simple whitespace-delimited
	 word lists and be dealt with in XDM 3.0 programming
	 as a sequence of xs:string*,
	 or they may be constructed more elaborately
	 to speed search.
	

	Look up each scx:w token in the
	 dictionaries. If the word form is found,
	 move on; if not, flag it.

	If it is desired to propose alternative
	 forms as possible corrections, search the
	 dictionary for similar forms. (This is likely
	 to require an index of some kind. See
	 Garbe 2012 and
	 Garbe 2015 for a helpful
	 approach.)

	Emit the flags in the form shown above.

	
	

Building the XForm
Many variations are possible, but the initial version
 of the SCX framework seeks to construct an XForm for
 working with the flags thrown by the spell checker that
 is as simple to use (and as simple to construct!) as
 possible.
The basic display of the document should be an HTML
 rendering with which the intended users are familiar and
 comfortable; for that reason, where possible the form
 generator should import a data-specific XSLT stylesheet
 that produces appropriate HTML.
A sample entry in the test data, for example (the article
 on Gainsborough), might look like this in a default HTML
 rendering. (It should be noted however that this is not the
 standard rendering in Quin's edition of the text.)
 Figure 4
[image:]

	Within the XForm itself, the text of the document
	(in the running example: the entry on Gainsborough)
	is displayed read-only. The XML instance on which
	the form operates contains a wrapper and the flags
	found in the spell-checker output, as seen in the next
	example.
	
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8"/>
 <title>Gainsborough Thomas</title>
 <xf:model id="xf-model">
 <xf:instance id="flaglist">
 <scx:flaglist>
 <scx:wordform id="wordform-f-012" action="undecided">
 <scx:raw>& Sudbury 1 32: Bradbury</scx:raw>
 <scx:bogon>Sudbury</scx:bogon>
 <scx:alt>Bradbury</scx:alt>
 <scx:flag id="f-012" action="follow-wordform"
		 src="hunspell">
 <scx:w join="right">Sudbury</scx:w>
 <scx:bogon>Sudbury</scx:bogon>
 </scx:flag>
 <scx:flag id="f-095" action="follow-wordform"
		 src="hunspell">
 <scx:w join="right">Sudbury</scx:w>
 <scx:bogon>Sudbury</scx:bogon>
 </scx:flag>
 </scx:wordform>
 <scx:wordform id="wordform-f-107" action="undecided">
 <scx:raw>& Gravelot 4 32: Grave lot,
 Grave-lot, Gravel, Cotgrave</scx:raw>
 <scx:bogon>Gravelot</scx:bogon>
 ...

		 	
	As may be seen, the scx:flag elements in the
	input all been given IDs for ease of reference and grouped
	by word form. Both the word form and the individual flags
	have an action attribute to record the user's
	instructions about handling the case; two levels are
	needed because user instructions may relate either to the
	word type or to the individual tokens of that type.

In the running text, each flag in the input produces an
 xf:output element that links to the appropriate
 flag in the XForms instance document and displays the value
 of the scx:w element there. CSS styling is used to
 signal the presence of the flag, as shown above.
The flags also produce an XForms interaction widget
 to allow the user to signal their wishes with respect to
 each flagged token. As already shown, these widgets
 have buttons labeled Accept and
 Change.
In the example shown, the place name
 Kew
 is correct, not a misspelling. When the user clicks on
 Accept, several different actions are offered,
 each of which accepts the form in a different way:
 Figure 5
[image:]

 	Add the form Kew to the
	 dictionary. Since the form is capitalized, only
	 capitalized occurrences of the form will be accepted.[10]

	Add the lower-case form
	 kew to the dictionary. Both
	 lower-case and initial-capital forms will be
	 accepted.

	Mark this token as not to be corrected but do not
	 add the word type to the dictionary.

	Mark this word type as not to be corrected but
	 do not add it to the dictionary).

	Mark this token as not to be corrected and also
	 as not to be spell checked in future. Do not add the word
	 type to the dictionary.

 With the exception of the last, these options correspond
 directly to the actions offered by conventional spell
 checkers. If the user vocabulary allows it, the last
 option allows the token to be marked with an appropriate
 element (e.g. TEI sic) which will signal on
 future runs of the spell checker that this form is not
 expected to conform to conventional spelling and should
 not be spell checked. (The de-tokenizer will be responsible
 for taking appropriate action and producing appropriate
 markup.)

Once the user has clicked the button to Add
 Kew
 to dictionary, the menu of options is closed (it may
 be reopened by clicking on the remaining Reconsider
 button) and the display of the word in the text changes
 to show that it has been accepted as correctly spelled.	
 Figure 6
[image:]

The words iVequently and
 iucumbrances, on the other
 hand, are OCR errors and should be corrected. Clicking
 on Change opens a menu with a different set of options.
 Figure 7
[image:]

 	A text input area allows the user to specify
	 the correct spelling. As shown in the figure, it
	 initially has the current incorrect spelling.
The first button in the menu instructs the system
	 to accept the spelling currently in the text input
	 area.

	Further buttons offer the corrections suggested
	 by the spell checker; in the example, the word
	 equivalently.

 Again, these options correspond directly to the actions offered
 by conventional spell checkers.

As the user types the correct spelling into the text
 input area, the label on the first button changes to match:
 Figure 8
[image:]

	Clicking on the appropriate button, and going through an
	analogous process for the other flag[11]
	produces a screen in which the corrections made are
	recorded visually: Figure 9
[image:]

The result of these interface actions may be seen
 in the corresponding scx:flag elements in the
 XML instance being edited by the form:

 <scx:wordform id="wordform-f-385" action="add">
 <scx:raw>& Kew 15 19: Sew, New, Dew, Mew,
 Few, Pew, Hew, Yew, Kev, Lew, Jew,
 Chew, Skew, Knew, Ken</scx:raw>
 <scx:bogon>Kew</scx:bogon>
 <scx:alt>Sew</scx:alt>
 <scx:alt>New</scx:alt>
 <scx:alt>Dew</scx:alt>
 <scx:alt>Mew</scx:alt>
 <scx:alt>Few</scx:alt>
 <scx:alt>Pew</scx:alt>
 <scx:alt>Hew</scx:alt>
 <scx:alt>Yew</scx:alt>
 <scx:alt>Kev</scx:alt>
 <scx:alt>Lew</scx:alt>
 <scx:alt>Jew</scx:alt>
 <scx:alt>Chew</scx:alt>
 <scx:alt>Skew</scx:alt>
 <scx:alt>Knew</scx:alt>
 <scx:alt>Ken</scx:alt>
 <scx:flag id="f-385" action="follow-wordform"
 src="hunspell">
 <scx:w>Kew</scx:w>
 <scx:bogon>Kew</scx:bogon>
 </scx:flag>
 </scx:wordform>
 <scx:wordform id="wordform-f-428" action="undecided">
 <scx:raw>& iVequently 1 19: equivalently</scx:raw>
 <scx:bogon>iVequently</scx:bogon>
 <scx:alt>equivalently</scx:alt>
 <scx:flag id="f-428" action="replace"
 src="hunspell">
 <scx:w>frequently</scx:w>
 <scx:bogon>iVequently</scx:bogon>
 </scx:flag>
 </scx:wordform>
 <scx:wordform id="wordform-f-451" action="undecided">
 <scx:raw>& iucumbrances 2 19:
 encumbrances, encumbrance</scx:raw>
 <scx:bogon>iucumbrances</scx:bogon>
 <scx:alt>encumbrances</scx:alt>
 <scx:alt>encumbrance</scx:alt>
 <scx:flag id="f-451" action="replace"
 src="hunspell">
 <scx:w>incumbrances</scx:w>
 <scx:bogon>iucumbrances</scx:bogon>
 </scx:flag>
 </scx:wordform>

Careful inspection will show the reader that the
 only changes are to the action attribute,
 where the value undecided has been
 replaced by add (i.e. add to dictionary)
 and replace (i.e. change the text),
 and to the scx:w element, which now contains
 the form to be inserted in the document to replace
 the flagged form. (In case the flagged form must be
 referred to, it is still present as the value of
 scx:bogon.)

Making the corrections
The first electronic spell checkers were batch
 programs: the user invokes the checker on a document, and
 the checker produces a list of word forms that are likely in
 error. Guided by this list, the user can then open the
 document in the editor of choice, find the offending forms,
 and correct them. But as soon as it was feasible, spell
 checkers began working interactively, within text editors,
 checking word forms, offering corrections interactively, and
 making corrections immediately.
In the majority of cases, it would be technically
 unproblematic to make changes interactively in the XForms
 interface. But in any multi-year editorial project, the
 moment will arrive when someone looks at some part of the
 material and says How on earth did that get
 into the data? At such times it is convenient to have
 records of changes that have been made. And in order to
 minimize the number of such what-on-earth moments, it may
 be thought convenient to have the XForm produce not a
 modified version of the input text but a list of changes to
 be made, with enough contextual information to enable
 systematic review by a second (or third, or
 nth) pair of eyes. In such a case, it
 will be only after such review that the changes are made.
So our XForm does not edit the document itself; it
 edits a list of change proposals.
And the real work is done by a batch editor.
We make it easy for ourselves: we are not implementing a
 generic batch editor along the lines of sed for text files,
 but only an editor capable of reading (a) the XML document
 with tokens marked (and supplied with IDs) and (b) a change
 list that identifies which tokens to replace, and how.
 Since the scx:flag elements in the change list have
 IDs corresponding to specific scx:flag elements in
 the output of the spell checker (from which they were, after
 all, copied in the first place) it is easy to match
 instructions in the edit list to flags in the document being
 processed, and when appropriate to replace the
 scx:w elements. At the same time, the corrector
 can remove the flags, which have now served their purpose,
 leaving only the corrected text, and in some cases an
 attribute to signal that a particular token should be
 tagged as non-checkable.

De-tokenizing
The output of the batch corrector is, except for the
 corrections and the occasional attribute-value specification
 scx:note="non-checkable", essentially the same
 as the tokenized text used as input to the spell checker.
In order to produce a document in the original
 markup with the desired corrections, then, all that remains
 is to strip out the spell-checking markup, and optionally
 to mark some tokens as non-checkable. This simple task
 is performed by the de-tokenizer, which also strips out the
 scx:pc elements marking punctuation and
 reconstitutes the whitespace-only nodes of the original
 input from the scx:s elements of the tokenized
 document.
The technique of reifying the whitespace of the original,
 in order to use conventional indentation in the intermediate
 texts and make them more legible, before restoring the
 original whitespace in this final step, may be
 applicable in other tools as well. Certainly, it made it
 much easier to preserve the whitespace of the original
 at the same time as preserving the sanity of the programmer
 deciphering intermediate document forms, than a constant
 struggle with the whitespace-handling options of the
 XSLT and XQuery processors would have been.
After the elaborations described, the workflow now
 takes the following form:

 Figure 10
[image:]

Related work
On the earliest spell checkers, see Earnest 2011;
 for the influential spell checker of the Unix system, see
 McIlroy 1982.
 A relatively early overview of the state of the art is given by
 Peterson 1980.
 Damerau 1964 introduced the Damerau/Levenshtein
 measure of edit distance still widely used to find possible
 corrections for misspelled words.
 Accessible discussions of the basic ideas of spell checking
 may be found in Bentley 1986 and
 Norvig 2007.
 For the notion of alpha-text used here,
 see Huitfeldt 2006 (who developed the concept
 in connection with spell checking work on the notebooks
 of Wittgenstein).
 Useful ways of quantifying the performance of spell checkers
 are offered by
 Van Huyssteen, Eiselen, and Puttkammer 2004 (though they are engaged in a
 quixotic search for quantitative measures that will
 remain constant across different texts, which means their
 concrete measurements don't, for the most part, involve looking
 at the specific errors and non-errors in any actual texts,
 which gives the discussion a slightly surreal quality).
 For many users, the current state of the art in conventional
 (word out of context) spell checking is represented by the
 venerable program ispell (internationalized spell,
 a direct descendant of McIlroy's spell checker
 [Kuenning 2018]),
 the newer program aspell, intended as a drop-in replacement
 for ispell (Atkinson 2017), and the competing
 program hunspell (the hun signals that the original
 motivation for its creation was to improve affix checking
 and morphological analysis for Hungarian
 [Németh 2018]).

Two examples of work involving more elaborate models of
 text are Choudhury et al. 2018 and Dashti et al. 2018; many more could be cited.

Future work
In the immediate future, work on the framework will
 focus on improving its capabilities and using it with
 a wider variety of test material. Points of concern
 include the following.
	
	 When shifts of language are signaled by the
	 xml:lang attribute, the spell checking step
	 must be able to use a dictionary for the appropriate
	 language. (This is already the way spell checking works
	 in Oxygen.)
	

	
	 More generally, different kinds of material may require
	 different dictionaries. A TEI encoding of an
	 eighteenth-century English text may want an
	 eighteenth-century dictionary for the transcribed text
	 (or, quite likely, a project-specific dictionary built
	 to track the author's spelling habits) and a dictionary
	 of current English for the notes and metadata. In the
	 case of Chalmers, it's clear that many abbreviated forms
	 are used in bibliographic references which do not appear
	 in the main text; it would probably be useful to build a
	 specialized dictionary for bibliographic references, to
	 avoid having entries for those specialized abbreviations
	 cluttering the main dictionary (and possibly causing
	 actual errors to be missed).
	

	
	 Conventional spell checkers allow the use of multiple
	 dictionaries for the same language: a main system
	 dictionary with common words, and specialized domain
	 dictionaries for words common in particular kinds of
	 document. The framework presented here should make that
	 practice similarly easy.
	

	
	 Some spell checkers (e.g. hunspell) allow the user's
	 personal dictionary to contain
	 negative entries, identifying forms
	 which should always be flagged. The framework should
	 support such entries.
	

	 A user might for example include the forms
	 use and
	 sue, or the form
	 manger; the latter is a perfectly
	 reasonable English word, but if the form occurs in
	 contemporary business documents it is likely to be a
	 typo and should be flagged. Individual forms which are
	 frequent errors for a particular typist or a particular
	 data flow can also be flagged in this way.
	

	
	 For projects whose goals are the accurate transcription
	 of a particular source text, as distinct from the
	 production of orthographically conventional texts, it
	 will be convenient to allow the user, when considering
	 what to do about a particular flag, to consult an image
	 of the page being transcribed. It would also be
	 convenient to be able to consult a list of passages
	 where the form in question, and competing forms, are
	 found in the current version of the text corpus. The
	 frequency of a particular form, and the relative
	 frequencies of its being a correct or an incorrect
	 transcription, can affect the decision on whether to add
	 it to the dictionary or not.
	

	For long-running projects, examination of the change
	logs may help show patterns of error in the uncorrected
	data, which could in principle be used to guide the
	assignment of probabilities to corrections: if (as in some
	OCR) the sequence cl is a
	common misreading for d (or
	vice versa, or both ways), then a distance measure on word
	forms could assign a smaller distance to that pair of
	sequences than to others. Such
	elaborate weightings may be too expensive for interactive
	spell checkers, where response time is important, but in a
	batch process a better ranking of proposals may be worth
	the extra run time for the batch spell checker.
Tools for aggregating edit lists, gathering appropriate
	statistics, and calculating such variant versions of edit
	distance should be developed.

	In spell checking aimed specifically at XML documents,
	it would also make sense to consider possible errors in
	markup. When a word in Chalmers's Biographical
	Dictionary is not recognized as correctly spelled
	English, the reason may be that it is in fact correctly
	spelled Latin, French, or Italian. The correct way to
	handle it may be a change to the markup: insertion of an
	appropriate xml:lang value, and if necessary a
	phrase-level element to carry it. Erroneous omission of
	such markup for changes of language may mean, for example,
	that a Latin phrase like Comtnentaria in Libros
	Feudorum is checked against an English dictionary and
	the correctly spelled words libros
	and feudorum are wrongly flagged.
	(For the word Comtnentaria,
	meanwhile, a spell checker is more likely to find a
	plausible correction in a Latin than in an English
	dictionary.)
An XML-aware spell checker might be written to propose
	such corrections. If for example an element has a high
	rate of errors against the dictionary for the language of
	the surrounding text, the spell checker might propose
	supplying an xml:lang attribute-value pair on
	the element. A sufficiently aggressive checker might try
	the contents of the element against dictionaries for the
	other languages known to be in the document and propose a
	specific language value. (At the moment, this remains
	speculation.)

	Even if the spell checker does not make an appropriate
	suggestion, it is desirable to provide the user with the
	ability to make corresponding changes, or failing that to
	add a note describing a change to be made manually.
	

	It appears to be impossible to show a sufficiently
	large quantity of text to a user in read-only form without
	having the user notice something that needs correction.
	For pragmatic reasons, therefore, it would be helpful if
	the XForm included a way to attach arbitrary notes or
	comments either to arbitrary locations in the text or to
	individual paragraphs or text nodes.

The main point of the framework presented here is to make
 it easier to experiment with alternative instantiations of the
 spell checking process: alternative statistical models of
 text, alternative thresholds for likely errors, alternative
 ways of finding candidate correction proposals and measuring
 their distance from the form present in the input, and
 alternative distance thresholds for choosing which
 alternatives to present.
So the most interesting future work is not the further
 development of the framework, but its use in exploring
 alternative language models (character n-grams,
 word n-grams, part-of-speech tagging, ...)
 and alternative word-similarity measures (for finding
 plausible corrections: Levenshtein distance,
 Damerau/Levenshtein distance, phonetic distance measures,
 other distance measures).

References
[Atkinson 2017]
 Atkinson, Kevin.
 GNU Aspell.
 http://aspell.net
 (Last rev. 30 January 2017).

[Bański, Haaf, and Mueller 2018]
 Bański, Piotr,
 Susanne Haaf,
 and
 Martin Mueller.
 2018.
 Lightweight grammatical annotation in the
 TEI: New perspectives.
 In proceedings of
 LREC 2018.
 On the web at
 http://www.lrec-conf.org​/proceedings​/lrec2018​/pdf/422.pdf

[Bentley 1986]
 Bentley, Jon.
 1985.
 A spelling checker.
 In
 Programming Pearls.
 Reading, Mass.: Addison-Wesley, 1986, pp. 139-150.
 Reprinted from
 Communications of the ACM
 May 1985.

[Charniak 1993]
 Charniak, Eugene.
 Statistical Language Learning.
 Cambridge, Mass.: MIT Press, 1993.

[Choudhury et al. 2018]
 Choudhury, Ranjan, Nabamita Deb, and Kishore Kashyap.
 Context-Sensitive Spelling Checker
 for Assamese Language.
 2018.
 In
 Recent Developments in Machine Learning
 and Data Analytics,
 ed. Jugal Kalita, Valentina Emilia Balas, Samarjeet
 Borah, Ratika Pradhan
 (= Advances in Intelligent Systems and Computing 740).
 New York, etc.: Springer, 2018, pp. 177-188.

[Damerau 1964]
 Damerau, Fred J.
 1964.
 A technique for computer detection and correction of spelling errors.
 Communications of the ACM
 7.3 (March 1964): 171-176. doi:https://doi.org/10.1145/363958.363994.

[Dashti et al. 2018]
 Dashti, Seyed MohammedSadegh,
 Amid Khatibi Bardsiri,
 and Vahid Khatibi Bardsiri.
 Correcting real-word spelling errors:
 A new hybrid approach.
 2018.
 Digital Scholarship in the Humanities
 33.3 (2018): 488-499. doi:https://doi.org/10.1093/llc/fqx054.

[Earnest 2011]
 Earnest, Les. The three first spelling checkers.
 Unpublished sketch, May 2011.
 On the Web at
 https://web.archive.org​/web​/20121022091418​/brhttp:​/​/www.stanford.edu​/~learnest​/spelling.pdf,
 archived from
 http://www.stanford.edu​/~learnest​/spelling.pdf.

[Garbe 2012]
 Garbe, Wolf.
 2012.
 Fast 1000x Faster Spelling Correction algorithm.
 Blog post originally posted at
 http://blog.faroo.de​/2012​/06​/07​/improved-edit-distance-based-spelling-correction/
 and now at
 https://medium.com​/@wolfgarbe​/1000x-faster-spelling-correction-algorithm-2012-8701fcd87a5f

[Garbe 2015]
 Garbe, Wolf.
 2015.
 Fast approximate string matching with large edit
 distances in Big Data.
 Blog post originally posted at
 http://blog.faroo.de/2015/03/24/fast-approximate-string-matching-with-large-edit-distances/
 and now at
 https://medium.com/@wolfgarbe/fast-approximate-string-matching-with-large-edit-distances-in-big-data-2015-9174a0968c0b

[Gazdar/Mellish 1989a]
 Gazdar, Gerald,
 and
 Chris Mellish.
 1989.
 Natural language processing in LISP:
 An introduction to computational linguistics.
 Wokingham, et al.: Addison-Wesley, 1989.

[Gazdar/Mellish 1989b]
 Gazdar, Gerald,
 and
 Chris Mellish.
 1989.
 Natural language processing in PROLOG:
 An introduction to computational linguistics.
 Wokingham, et al.: Addison-Wesley, 1989.

[Huitfeldt 2006]
 Huitfeldt, Claus.
 2006.
 Philosophy Case Study.
 In
 Electronic Textual Editing,
 ed. Lou Burnard, Katherine O´Brien O´Keeffe, and John
 Unsworth.
 New York: MLA 2006, pp. 181-96.

[Van Huyssteen, Eiselen, and Puttkammer 2004]
 Van Huyssteen, Gerhard B.,
 E. Roald Eiselen, and
 Martin J. Puttkammer.
 2004.
 Re-evaluating evaluation metrics
 for spelling checker evaluations.
 Proceedings of First Workshop
 on International Proofing Tools and Language
 Technologies.
 Patras: University of Patras, 2004, pp. 91-99.

[Kuenning 2018]
 Kuenning, Geoff.
 International ispell [v 3.4.00].
 https://www.cs.hmc.edu/~geoff/ispell.html
 (Last rev. 26 March 2018).

[Lubell 2014]
 Lubell, Joshua.
 2014.
 XForms User Interfaces for Small Arcane
 Nontrivial Datasets.
 Presented at Balisage: The Markup Conference 2014,
 Washington, DC, August 5 - 8, 2014.
 In
 Proceedings of Balisage: The Markup
 Conference 2014.
 Balisage Series on Markup
 Technologies,
 vol. 13 (2014). doi:https://doi.org/10.4242/BalisageVol13.Lubell01.

[McIlroy 1982]
 McIlroy, Douglas.
 Development of a spelling list.
 IEEE Transactions on Communications
 30.1 (January 1982): 91-99. doi:https://doi.org/10.1109/TCOM.1982.1095395.

[Németh 2018]
 Németh, László.
 2018.
 Hunspell.
 http://hunspell.github.io
 (Last rev. 6 July 2018).

[Norvig 2007]
 Norvig, Peter.
 How to Write a Spelling Corrector.
 Blog post Feb. 2007 (with periodic revisions to August 2016).
 http://norvig.com/spell-correct.html

[Peterson 1980]
 Peterson, James L.
 Computer programs for detecting and correcting
 spelling errors.
 Communications of the ACM
 23.12 (December 1980): 676-687. doi:https://doi.org/10.1145/359038.359041.

[Quin 2020]
 Quin, Liam, ed.
 2020.
 The General Biographical Dictionary:
 Containing an historical and critical account of
 the lives and writings of the most eminent persons
 in every nation; particularly the British and Irish;
 from the earliest accounts to the present time.
 A NEW EDITION,
 Revised and enlarged by
 Alexander Chalmers, F. S. A.
 1812 - 1817.
 A majority edition created by running
 multiple OCR engines over the text, with fairly extensive
 post-editing. On the web at
 https://words.fromoldbooks.org/Chalmers-Biography/

[Sperberg-McQueen / Huitfeldt 2019]
 Sperberg-McQueen, C. M., and
 Claus Huitfeldt.
 Bootstrapping Project-specific
 Spell-checkers.
 Talk given at DH 2019 Utrecht,
 July 2019.
 On the web at
 https://dev.clariah.nl/files/dh2019/boa/0961.html

[1] There are exceptions; hunspell offers to
	flag rare words, which suggests that its internal model can
	distinguish at least two levels of probability for known
	forms.
[2] The idea of a spell checker based on the frequency of
 different character sequences is not new; it was suggested as an
 exercise in Gazdar/Mellish 1989a and Gazdar/Mellish 1989b.
[3] Since XSLT is used to implement the
 tokenizer, any existing entity structure will be lost; this
 would have horrified or at least disappointed many SGML
 users, but XML users are so used to using XSLT that there is
 rarely any non-trivial entity structure in the first place.
 So we can sigh and move on.
[4] The
	 whitespace assumptions mentioned are usually true for
	 many languages including English and other widely spoken
	 languages written in alphabetic or syllabic scripts;
	 they do not, however, match reality perfectly. It is
	 well known, for example, that some widely spoken
	 languages, including Chinese, Japanese, and Korean, are
	 conventionally written without whitespace between
	 words.Even English has some common
	 forms which violate these whitespace assumptions:
	 segments which serve linguistically as single words may
	 be written with segment-internal whitespace
	 (e.g. in spite of, which
	 does not accept otherwise normal transformations: the
	 superficially similar in lieu
	 of can incorporate its object, taking
	 the form in lieu thereof;
	 cf. *in spite thereof).
	 Conversely, multiple words may be written together
	 without whitespace (e.g. you're
	 outtasite, in which two tokens are used
	 to write five lexical words). Of course, for pragmatic
	 reason a spell checker may choose to treat
	 in spite of as three words
	 and outtasite as one, if
	 only because when words are written together in this way
	 their orthography often changes, so
	 outtasite will in any case
	 require its own entry in the word list.

[5] For some data, it may be preferable to
	 assume that all words contain at least one
	 letter (\p{L}); this
	 will matter for numerals and may matter for text
	 prepared by optical character recognition.
[6] The assumptions concerning leading, trailing, and
 word-internal punctuation work reasonably well with most
 punctuation, with contractions like
 can't, and with words
 with required word-internal hyphens; they work less well for
 syntactically determined hyphens (like the hyphen between
 word and
 internal in the
 preceding clause), and forms with required leading or
 following punctuation (e.g. the leading apostrophe in
 'tis for
 it is, or the trailing
 full stop in standard abbreviations like
 e.g. and
 i.e.). Spell checkers
 may vary in how they treat forms like
 Dr. or possessives,
 though the ones consulted for this paper appear mostly to
 strip trailing full stops and possessive forms.One motivation for allowing internal punctuation is
	 that in the test data used here, internal punctuation is
	 often an OCR error for a letter; treating it as forcing
	 a word boundary, as standard spell-checkers often do,
	 will complicate the search for corrections.

[7]
	The author is grateful to Liam
	Quin for allowing the use of the data, for his help
	understanding the data, and for many discussions on spell
	checking and other topics.

[8] All three also have
	 run-time flags to make them ignore XML markup, which
	 will work reasonably well for monolingual texts but
	 offers no good way to exclude some elements from
	 spell checking.
[9] The example shows
	clearly, for what it is worth, that hunspell does not
	limit its suggestions to dictionary forms within an edit
	distance of one from the input form.
[10] The rules for handling capitalization can
	 of course vary from spell checker to spell checker, but
	 the behavior described is common.
[11]
	 For the form iucumbrances,
	 hunspell not implausibly suggests
	 encumbrances. In this case,
	 however, Chalmers uses what is now regarded as an archaic
	 spelling:
	 incumbrances.
	

Balisage: The Markup Conference

An XML infrastructure
for spell checking with custom dictionaries
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and
	principal of Black Mesa Technologies, a consultancy
	specializing in helping memory institutions improve
	the long term preservation of and access to the
	information for which they are responsible.
He served as editor in chief of the TEI
	Guidelines from 1988 to 2000, and has also served
	as co-editor of the World Wide Web Consortium's
	XML 1.0 and XML Schema 1.1
	specifications.
	

Balisage: The Markup Conference

content/images/Sperberg-McQueen01-008.png
ene < [im] o 0 a
Gainsborough Thomas i
than a swelling in the glands of the throat, which it was expected would subside in
a short time, but it was '*|”"* soon discovered to be a cancer, which baffled the
skill of the first medical professors. Finding the danger of his situation, he settled
his affairs, and composed himself to meet the fatal moment, and expired Aug. 2,

1788. He was buried, according to his own request, in Kew ¢/ Kew &
Churchyard. —

* His last prices in London, were forty guineas for a half, and one
hundred for full length.

Mr. Gainsborough was a man of great generosity. If he selected for the exercise of
his pencil, an infant from a cottage, all the tenants of the humble roof generally
participated in the profits of the picture; and some of them Change

found in his habitation a permanent abode. His | Vequently to:

liberality was not confined to this alone: needy relatives and frequently

unfortunate friends were further ‘jucumbrances change 1o
on a spirit that could not | | accept frequently

deny; and. owing to this generosity of Change Change to

temper, that affluence was not left to his — “equivalently”

family which so much merit might promise, and such real
worth deserve. There were other traits in his personal character | | Cancel
less amiable. He was very capricious in his manners, and rather

content/images/Sperberg-McQueen01-007.png
e0e < [in]

Gainsborough Thomas

o

a

than a swelling in the glands of the throat, which it was expected would subside in

a short time, but it was

soon discovered to be a cancer, which baffled the

skill of the first medical professors. Finding the danger of his situation, he settled
his affairs, and composed himself to meet the fatal moment, and expired Aug. 2,

1788. He was buried, according to his own request, in
Churchyard.

Kew &

* His last prices in London, were forty guineas for a half, and one

hundred for full length.

Mr. Gainsborough was a man of great generosity. If he selected for the exercise of
his pencil, an infant from a cottage, all the tenants of the humble roof generally

participated in the profits of the picture; and some of them
found in his habitation a permanent abode. His

liberality was not confined to this alone: needy relatives and

unfortunate friends were further T T

on a spirit that could not | | pccept

deny; and. owing to this generosity of

temper, that affluence was not left to his

family which so much merit might promise, and such real

worth deserve. There were other traits in his personal character

less amiable. He was very capricious in his manners, and rather

Change

Change
iVequently to:
ivequently

Change to
ivequently

Change to
“equivalently”

Cancel

+

content/images/Sperberg-McQueen01-006.png
ene < [im] o 0 a
Gainsborough Thomas -

than a swelling in the glands of the throat, which it was expected would subside in

a short time, but it was '*|”"* soon discovered to be a cancer, which baffled the

skill of the first medical professors. Finding the danger of his situation, he settled

his affairs, and composed himself to meet the fatal moment, and expired Aug. 2,

1788. He was buried, according to his own request, in
Churchyard.

Kew &

* His last prices in London, were forty guineas for a half, and one
hundred for full length.

Mr. Gainsborough was a man of great generosity. If he selected for the exercise of
his pencil, an infant from a cottage, all the tenants of the humble roof generally
participated in the profits of the picture; and some of them iVequently

found in his habitation a permanent abode. His Accept
liberality was not confined to this alone: needy relatives and
unfortunate friends were further iucumbrances ® [jucumbrances
on a spirit that could not deny; and. owing to this | | accept
generosity of temper, that affluence was not left to
his family which so much merit might promise,
and such real worth deserve. There were other traits in his personal character less
amiable. He was very capricious in his manners, and rather fickle and unsteady in
his social connections.* This was sufficiently evinced by his general conduct

Change

Change

content/images/Sperberg-McQueen01-005.png
e0e < [in]

Gainsborough Thomas.
than a swelling in the glands of the throat, which it was expected
a short time, but it was *1*"

o h a

‘would subside in

soon discovered to be a cancer, which baffled the

skill of the first medical professors. Finding the danger of his situation, he settled
his affairs, and composed himself to meet the fatal moment, and expired Aug. 2,

1788. He was buried, according to his own request, in
Churchyard.

* His last prices in London, were forty guineas for a
half, and one hundred for full length.

Mr. Gainsborough was a man of great generosity. If he selected
for the exercise of his pencil, an infant from a cottage, all the
tenants of the humble roof generally participated in the profits
of the picture; and some of them iVequently ® [{Vequently
found in his habitation a permanent abode. His | | accept

Accept Kew

Add “Kew” to
dictionary

Add “kew”
(lower-case)

Accept here

Accept for
session

Mark as non-
checkable

Cancel

liberality was not confined to this alone: needy
relatives and unfortunate friends were further
on a spirit that could not deny; and. owing to
this generosity of temper, that affluence was not left to his family|
which so much merit might promise, and such real worth
deserve. There were other traits in his personal character less

Change

iucumbrances
Accept

Change

amiable. He was very capricious in his manners, and rather fickle and unsteady in

+

content/images/Sperberg-McQueen01-004.png
e0e < [im] o 0 a

Gainsborough, Thomas. -

GAINSBOROUGH , THOMAS, an admirable English artist, was

born in 1727, at Sudbury, in Suffolk, where his father was a clothier. He very carly
discovered a propensity to painting. Nature was his teacher, and the woods of Suffolk
his academy, where he would pass in solitude his mornings, in making a sketch of an
antiquated tree, a marshy brook, a few cattle, a shepherd and his flock, or any other
accidental objects that were presented. From delineation he got to colouring; and after
painting several landscapes from the age of ten to twelve, he quitted Sudbury, and
came to London. Here he received his first instructions from Gravelot, and was then
placed under the tuition of Mr. Hayman, with whom he staid but a short time. After
quitting this master, he for a short time resided in Hatton-garden, and practised
painting of portraits of a small size, and also pursued his favourite subject, landscape.
During this residence in London, he married a young lady, who possessed an annuity
of 200L; and then retired to Ipswich, and from thence to Bath, where he settled about
1758. He now began painting portraits at the low price of five guineas * for a
threequarter canvas, and was soon so successful s to be encouraged to raise his price
to cight guineas. In 1761, for the first time, he sent some of his works to the
exhibition in London. In 1774, he quitted Bath, and settled in London in a part of the
duke of Schomberg’s house in Pail-Mall. In this situation, possessed of ample fame,
and in the acquisition of a plentiful fortune, he was disturbed by a complaint in his
neck, which was not much noticed upon the first attack, nor was it apprehended to be
more than a swelling in the glands of the throat, which it was expected would subside
in a short time, but it was *1*** soon discovered to be a cancer, which baffled the
skill of the first medical professors. Finding the danger of his situation, he settled his
affairs, and composed himself to meet the fatal moment, and expired Aug. 2, 1788.
He was buried, according to his own request, in Kew Churchyard.

* His last prices in London, were forty guineas for a half, and one hundred
for full length.

Mr. Gainsborough was a man of great generosity. If he selected for the exercise of his
pencil, an infant from a cottage, all the tenants of the humble roof generally
participated in the profits of the picture; and some of them iVequently found in his
habitation a permanent abode. His liberality was not confined to this alone: needy

content/images/Sperberg-McQueen01-003.svg

 workflow1

 native0

 Native XML

 prep

 Prepare XML

 native0->prep

 bex

 Batch corrector

 native0->bex

 xform

 XForm

 browser

 XForms processor
 (Web browser)

 xform->browser

 corrections

 Corrections list

 corrections->bex

 native1

 Native XML
 (corrected)

 uibrowser

 User interaction

 uibrowser->browser

 prep->xform

 bex->native1

 browser->corrections

content/images/Sperberg-McQueen01-002.png
ene < [im] o 0 a
Gainsborough Thomas -

than a swelling in the glands of the throat, which it was expected would subside in

a short time, but it was '*|”"* soon discovered to be a cancer, which baffled the

skill of the first medical professors. Finding the danger of his situation, he settled

his affairs, and composed himself to meet the fatal moment, and expired Aug. 2,

1788. He was buried, according to his own request, in Kew ® Kew
Churchyard. Accept
Change

* His last prices in London, were forty guinas for a half, and
one hundred for full length.

Mr. Gainsborough was a man of great generosity. If he selected for the exercise of
his pencil, an infant from a cottage, all the tenants of the humble roof generally
participated in the profits of the picture; and some of them iVequently

found in his habitation a permanent abode. His Accept
liberality was not confined to this alone: needy relatives and
unfortunate friends were further iucumbrances ® [jucumbrances
on a spirit that could not deny; and. owing to this | | accept
generosity of temper, that affluence was not left to
his family which so much merit might promise,
and such real worth deserve. There were other traits in his personal character less
amiable. He was very capricious in his manners, and rather fickle and unsteady in
his social connections.* This was sufficiently evinced by his general conduct

Change

Change

content/images/Sperberg-McQueen01-001.svg

 workflow1

 native0

 Native XML

 prep

 Prepare XML

 native0->prep

 xform

 XForm

 browser

 XForms processor
 (Web browser)

 xform->browser

 native1

 Native XML
 (corrected)

 uibrowser

 User interaction

 uibrowser->browser

 prep->xform

 browser->native1

content/images/Sperberg-McQueen01-010.svg

 workflow1

 native0

 Native XML

 tokenizer

 Tokenizer

 native0->tokenizer

 tokens0

 Tokenized XML

 spellcheck

 Batch spell checker

 tokens0->spellcheck

 flags

 Tokenized XML
 with flags

 genx

 XForm generator

 flags->genx

 bex

 Batch corrector

 flags->bex

 xform

 XForm

 browser

 XForms processor
 (Web browser)

 xform->browser

 corrections

 Corrections list

 corrections->bex

 tokens1

 Tokenized XML
 (corrected)

 detokenizer

 De-tokenizer

 tokens1->detokenizer

 dictupdates

 Dictionary
 updates

 native1

 Native XML
 (corrected)

 userxsl

 Native -> HTML
 stylesheet

 userxsl->genx

 uibrowser

 User interaction

 uibrowser->browser

 spellcheck->flags

 tokenizer->tokens0

 genx->xform

 bex->tokens1

 bex->dictupdates

 detokenizer->native1

 browser->corrections

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Sperberg-McQueen01-009.png
ene < [im] o 0 a

Gainsborough Thomas +
than a swelling in the glands of the throat, which it was expected would subside in
ashort time, but it was *””* soon discovered to be a cancer, which baffled the
skill of the first medical professors. Finding the danger of his situation, he settled
his affairs, and composed himself to meet the fatal moment, and expired Aug. 2,
1788. He was buried, according to his own request, in Kew ¢/ Kew &
Churchyard. —

* His last prices in London, were forty guineas for a half, and one
hundred for full length.

Mr. Gainsborough was a man of great generosity. If he selected for the exercise of
his pencil, an infant from a cottage, all the tenants of the humble roof generally
participated in the profits of the picture; and some of them
found in his habitation a permanent
abode. His liberality was not confined to this alone: needy relatives and unfortunate
Poe—— - [
spirit that could not deny; and. owing to this generosity of
temper, that affluence was not left to his family which so much
‘merit might promise, and such real worth deserve. There were other traits in his
personal character less amiable. He was very capricious in his manners, and rather
fickle and unsteady in his social connections.* This was sufficiently evinced by his

general conduct towards the royal academy, and by his whimsical behaviour o sir

ivequently ¢

iucumbrances
¢

