[image: Balisage logo]Balisage: The Markup Conference

XSLT 3.0 on ordinary prose
Norman Walsh

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 Norman Walsh

How to cite this paper
Walsh, Norman. "XSLT 3.0 on ordinary prose." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Walsh01.

Abstract
You work with text and documents for a living, and XSLT 3.0
comes out. You hear it’s great and really want to try it, so you read
about some features (streaming, maps, arrays, higher order functions)
and when you look at some applications, you first think “that’s for data
not text”. But maybe 3.0 is for you too, really. Using DocBook as a
prototypical text-application, I will demonstrate why XSLT 3.0
solutions are just better and easier than anything that’s been
possible before.

Balisage: The Markup Conference

 XSLT 3.0 on ordinary prose

 Table of Contents

 	Title Page

 	Background

 	How did I get here?

 	The plan

 	The paper

 	Value templates

 	Better debugging

 	Better messages

 	Exception handling
 	Raise exceptions

 	Default modes

 	Evaluate XPath expressions dyamically

 	Parse XML and JSON

 	Performance

 	Maps and Arrays
 	Solving programlistingco

 	xsl:iterate

 	New operators

 	What else?

 	Appendix A. Appendix

 	About the Author

 XSLT 3.0 on ordinary prose

Background
I started working on XSLT 1.0 Stylesheets for DocBook well before
 XSLT 1.0 was a Recommendation. I had worked with DSSSL, one of
 XSLT’s precursors before that, and a variety of other formatting
 systems, including one that I wrote myself. I started working on the
 XSLT 2.0 Stylesheets for DocBook not long before XSLT 2.0 became a
 Recommendation. I wrote most of DocBook xslTNG
 (DocBook XSLT Stylesheets: The Next Generation)
 just a month or so before the third anniversary of the XSLT 3.0
 Recommendation.

Why did it take so long?

To answer that question, we need to reflect for a moment on XSLT and
 its place in the XML ecosystem. When XSLT arrived on the scene, we
 were near the peak of XML enthusiasm. Not only was XML supported
 everywhere, it was possible to imagine XSLT everywhere as well.
 Certainly, the presence of XSLT in the browser felt significant at
 the time.

The ubiquity of XML and the fact that XSLT was “just an XML
 vocabulary” may have contributed to another significant phenomenon:
 lots of users who did not self identify as programmers were learning
 to use XSLT and doing significant things with it.

There were other tools available for transforming markup at the
 time, and arguably some of them were better than XSLT, but they were
 programming languages and you had to be a programmer to use them.
 They were also mostly commercial applications not widely available
 to casual users.

XSLT was free, it was everywhere, and it was used by everyone, not
 “just” programmers. It was the clear winner than and remains the
 clear winner today in terms of markup transformation.

You could do a lot of things with XSLT 1.0. You could do a lot more
 things than you might at first even have thought possible. (In fact,
 you could do all things, but the
 Turing complete nature of XSLT isn’t relevant here.) Some very
 common tasks, like grouping, were possible but difficult. Lots of
 very useful things were either not possible or required extensions:
 regular expressions, functions, date and time formatting, creating
 special characters in the output, to name just a few.

XSLT 2.0 solved all of these problems (and more). Significantly, I
 think, all of these new features appealed directly to almost all
 users of XSLT 1.0. Everyone had encountered a grouping problem
 (building an index, for example). Everyone had wanted regular
 expression matching or date formatting. Lots of users wanted to
 write more sophisticated predicates (and many were willing to learn
 how to use functions to achieve that result).

[XSLT30] arguably introduces larger and
 more dramatic features than XSLT 2.0 did. There are a bunch of new
 features designed to enable streaming processing; there are
 significant software engineering improvements: packaging, exception
 handling, and assertions; there are common programming language
 constructs like maps and arrays. There is also a selection of
 features inherited from updates to XPath (new functions, a subset of
 let syntax, and support for higher order
 functions, for example).

What’s curious, I think, is that many of these features are probably
 less immediately appealing to many (most?) current users. XSLT 2.0
 doesn’t feel constraining in the same way that XSLT 1.0 did, and the
 features in XSLT 3.0 don’t immediately and obviously solve problems
 that most users have.

Streaming, for example, is incredibly powerful and it’s an important
 and significant milestone in markup processing. It makes it possible
 to solve whole classes of problems that were previously impossible
 to solve or required enormously expensive hardware. But my laptop
 will quite easily process a book full of complex markup that runs to
 hundreds of pages. I don’t have any problems that require a
 streaming processor.

Likewise, packaging is useful and important. The DocBook
 xslTNG stylesheets should absolutely be a package. But
 that’s not true of a lot of stylesheets. There might be software
 engineering benefit in making a package even for stylesheets that
 you don’t intend to distribute, but that’s more likely to appeal to
 people who think of what they’re doing is programming.

Nevertheless, there are lots of good reasons to use XSLT 3.0 even if
 you are “only” transforming documents and even if you don’t think of
 writing transformations as programming.

How did I get here?
This story begins, as many stories do, with a bug and a coincidence.
 The bug is this presentation:

Figure 1: Callouts, badly rendered
[image:]

which should be more like this:

Figure 2: Callouts, correctly rendered
[image:]

This bug arises in the DocBook XSLT 2.0 Stylesheets’ failed attempt
 to process programlistingco, an element with
 quite complex semantics.

The coincidence is that just a few days before I found this bug, I
 had been thinking about whether or not it was time to consider
 upgrading the DocBook stylesheets that I maintain to XSLT 3.0 (and
 specifically, what I should call them if I did that since putting
 “XSLT 2.0” in the name had some pretty significant implications).

It had been a long while since I worked on
 programlistingco in the XSLT 2.0 stylesheets, but
 having some idea of how tricky it was to implement gave rise to the
 question, “would it be much easier in XSLT 3.0?” After a brief
 exploration, I concluded that the answer was “yes”. With one foot
 solidly down the slippery slope, I began to explore other questions.
 Before long, I was undertaking to reimplement the entire stylesheet
 from scratch in XSLT 3.0.

The plan
The DocBook XSLT 1.0 stylesheets grew organically over many years
 and from DSSSL stylesheets that preceded them. They support a wide
 range of output formats, some now moribund, and have hundreds of
 parameters.

The DocBook XSLT 2.0 stylesheets very definitely started as an
 attempt to upgrade the XSLT 1.0 stylesheets. Although some
 simplification was possible, a good deal of complexity was carried
 forward. In principle the goal was to produce both HTML and XSL FO,
 although the XSL FO stylesheets never really got the attention they
 needed.

The DocBook xslTNG stylesheets are a complete
 rewrite, mostly from scratch, with the following goals:

	A full set of tests

	A full set of documentation

	Designed for HTML5 on modern browsers

	Designed for accessibility

	Paged media output through HTML+CSS with customization and/or
 post-processing

	EPUB output through customization and/or post-processing

The paper
Despite having served on the XSLT Working Group at the W3C and
 having read and reviewed the specification countless times, it had
 been about three years since I thought about XSLT 3.0. There’s also
 an enormous gulf between reading a specification and actually
 writing in the language it specifies.

In my mind, XSLT 3.0 was an incremental improvement on XSLT 2.0. Its
 big ticket items (streaming, packaging, maps, arrays, higher-order
 functions) were cool, but they didn’t seem immediately useful in
 “ordinary” XSLT use cases.

As I started working on the new stylesheets, I kept coming across
 features that made doing ordinary XSLT easier and better. By the
 time I’d come across a half-a-dozen or so of these features (large
 and small), I was firmly convinced that it was time to embrace XSLT
 3.0 wholeheartedly.

This paper sets out to describe the features I found and hopes to
 persuade you that XSLT 3.0 is something you should embrace now, if
 you haven’t already. This paper does not attempt to provide a
 comprehensive survey of XSLT 3.0 features: I’ve specifically chosen
 the features that seemed most immediately applicable to transforming
 an “ordinary” markup vocabulary.

I’ve tried to organize the features in order of increasing
 complexity, but what seems simple and what seems complex will vary
 depending on the reader’s background. A passing familiarity with
 XSLT 2.0 features (functions, in particular) is assumed.

As noted above, XSLT 1.0 is Turing complete. Nothing described here
 as an XSLT 3.0 feature is impossible to achieve with XSLT 2.0 (or
 even 1.0). Some of the features may even seem “obvious” to the
 reader. That’s ok. The goal is to present the surface area of XSLT
 3.0 as useful and inviting.

Value templates
If you’ve used XSLT at all, you’ve almost certainly used attribute value templates.
That’s the feature that allows you to put an expression in curly braces in an
attribute value and have that expression evaluated by the processor:
<xsl:template match="someElement">

 <xsl:value-of select="3+4"/>

</xsl:template>
That template will produce “7”. XSLT 3.0 allows value
templates to appear in text content as well. There’s a flag,
[xsl:]expand-text, to control whether or not you want this
behavior:
<xsl:template match="someElement" expand-text="yes">
 {3+4}
</xsl:template>
In that template, the expression “3+4” in curly braces will
also be evaluated and the string value of the
result inserted into the result tree.

Better debugging
Developing software in an interactive IDE may be the easiest way to
 debug it, but eventually your software runs “in the wild.” One
 common approach for debugging outside an IDE is to add
 xsl:message statements that print out useful
 debugging information:

<xsl:template match="*" mode="someMode">
 <xsl:param name="option" select="()"/>

 <xsl:message>
 <xsl:value-of select="local-name(.)"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="$option"/>
 </xsl:message>

 <xsl:text>Transformation</xsl:text>
</xsl:template>

That’s fine, except if you do that a lot, you end up with a lot of
 messages. And if you’re providing stylesheets to other users, they
 may find the debugging messages confusing or even intimidating.

How many readers have stylesheet that looks like this?

<xsl:template match="*" mode="someMode">
 <xsl:param name="option" select="()"/>

 <!--
 <xsl:message>
 <xsl:value-of select="local-name(.)"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="$option"/>
 </xsl:message>
 -->

 <xsl:text>Transformation</xsl:text>
</xsl:template>

That’s fine too, except that the stylesheet has to be edited to
 enable the debugging messages when something goes wrong.

Static parameters offer a much cleaner and nicer solution. Declare a
 static top-level “debug” parameter:

<xsl:param name="debug" select="''" static="yes"/>

Then in your template, you can use use-when:

<xsl:template match="*" mode="someMode">
 <xsl:param name="option" select="()"/>

 <xsl:message use-when="$debug = 'someMode'">
 <xsl:value-of select="local-name(.)"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="$option"/>
 </xsl:message>

 <xsl:text>Transformation</xsl:text>
</xsl:template>

If the $debug parameter isn’t “someMode”, the
 XSLT compiler will discard that message, it won’t incur any runtime
 overhead or potentially introduce any sorts of errors.

But if you set the $debug parameter to “someMode”
 when you run (technically, compile) the stylesheet, then you’ll get
 debugging output. This is a significant improvement over comments
 and a performance and correctness improvement over using
 xsl:if to evaluate the test conditions
 dynamically every time.

By declaring a parameter (or variable) static, you’re asserting that
 its value can be determined without reference to the source
 document. This means you can’t, for example, use this technique to
 enable debugging only in documents that satisfy some XPath
 expression. For that, you’ll still have to use dynamic tests.

The DocBook xslTNG stylesheets use this
 technique frequently, defining a whole list of potential debug flags
 that can be enabled for a particular run.

Better messages
In XSLT 3.0, the xsl:message instruction has a
 select attribute. The message example in the
 preceding section can be further simplified to:

<xsl:message use-when="$debug = 'someMode'"
 select="local-name(.) || ' ' || $option"/>

Notice also, || as a string concatenation
 operator. In this context, we could have used commas because a
 sequence of values is fine, but in other places, you’ll find
 || a significant convenience over
 concat().

Exception handling
Errors, as the popular expression observes, happen. Dealing with
 them can be tedious and introduces complexity that may obscure the
 function of our code, introduce errors, or both.

Consider a stylesheet that reads some optional configuration from an
 external file. It may be that in the overwhelming majority of cases,
 the file exists and simply reading it will succeed:

<xsl:variable name="accounts"
 select="doc('accounts-' || @id || '.xml')"/>

But on the rare occasion when the file does not exist, the
 stylesheet will fail and processing will stop. To avoid this, we
 have to check if the file exists before we attempt to read it:

<xsl:variable name="acct-table">
 <xsl:choose>
 <xsl:when test="doc-available('accounts-' || @id || '.xml')">
 <xsl:sequence
 select="doc('accounts-' || @id || '.xml')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:document/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:variable>

The new try/catch mechanism gives us a better approach. The
 semantics of try/catch are that the processor attempts to evaluate
 the code in the “try”. If it succeeds, that’s the result of the
 try/catch. If that code raises an error, the error is ignored and
 the following “catch” (or catches) are attempted. If one of them
 succeeds, that’s the result of the try/catch. (If none succeed or no
 relevant catches were present, the whole try/catch fails and its
 error propagates to where it was called.)

(The name “catch” arises from the metaphor of errors (that is to
 say, exceptions to normal processing) being “thrown”. “Thrown,” in
 turn, arises from the fact, as we’ll see, that exception handling
 may be moved quite a distance from the location where the error
 arises.)

Here’s the try/catch version:

<xsl:variable name="acct-table" as="document-node()?">
 <xsl:try>
 <xsl:sequence select="doc('accounts-' || @id || '.xml')"/>
 <xsl:catch errors="err:FODC0002" select="()"/>
 </xsl:try>
</xsl:variable>

There’s less redundancy in the code, so fewer opportunities for
 error, and less processing in the normal case where the document
 exists.

Note also the use of an error code on the
 xsl:catch. Error err:FODC0002
 is the error code for “file not found”. What this means is that the
 try/catch will successfully recover from a missing file but will
 still raise an error if some other problem arises (such as a
 permissions problem on the file).

You can provide multiple xsl:catch instructions
 for different error codes. Best practice is to catch the specific
 errors that you are anticipating. Overly broad catch instructions
 can obscure bugs later on.

Raise exceptions
Not only can you catch exceptions, you can raise them. In fact,
 the ability to raise them has existed since XPath 1.0, but it’s
 much more useful now. In the context of the DocBook stylesheets,
 for example, this can arise in processing CALS tables ([TR9502]).

Tables are complex structures and errors can arise that aren’t
 easily captured during validation with either grammar or rule
 based validators. Where previous versions of the stylesheets
 simply threw up their hands with an xsl:message
 that terminated the stylesheet, the DocBook
 xslTNG stylesheets raise an exception.

In ordinary usage, this has much the same effect. If you run the
 stylesheets directly, the exception won’t be caught and processing
 will terminate.

But consider the case where the stylesheets are part of a larger
 work flow. Perhaps you’re building a system that transforms Word
 documents into XML and then further transforms them in some way.
 If you’re relying on the DocBook stylesheets for part of the table
 processing, the fact that table processing raises an exception
 means that you can use try/catch to detect and potentially recover
 from the errors.

The DocBook xslTNG stylesheets define a
 collection of standard error codes in an errors namespace so that
 users can predict what errors might occur.

Default modes
Modes allow a stylesheet writer to process elements in different
 ways. One common use is to process some content in different ways.
 The chapter and section hierarchy, for example, appears in both the
 main, narrative flow of the document and in the table of contents.
 That can be accomplished with modes.

In the case of DocBook, there are also a number of elements that
 need to be processed differently depending on stylesheet options and
 sometimes document content. The function synopsis elements, for
 example, can be rendered in “K&R style,” the format used by
 Kernighan and Richie in their original documentation for the C
 programming language, or in “ANSI style” which is a slightly
 different presentation of the same information. Modes can be used
 here as well.

Modes are very easy to use: you simply put a mode
 attribute on the templates in that mode and a
 mode attribute on the
 xsl:apply-templates that calls them.

Except for that one time where you leave off a
 mode attribute and either the template is in the
 default mode or the xsl:apply-templates jumps you
 back into the default mode.

Using default-mode on the
 xsl:stylesheet element (or
 xsl:transform element, if you prefer) makes that
 mode the default mode for the scope of that stylesheet. Put all your
 table-of-contents processing in toc.xsl, set the
 default mode, and never worry again about forgetting a mode
 attribute.

It’s worth mentioning that this can lead to the
 opposite problem: failing to place a mode
 attribute where you need one. In particular, if you customize a
 stylesheet that uses a default mode (by importing it into your
 stylesheet), you either need to use the same default mode in your
 stylesheet or remember to add mode attributes to the templates
 you’re overriding. It took me a good few minutes to work that out
 the first time I made that mistake.

Evaluate XPath expressions dyamically
The XPath expressions that you write in your stylesheet (in
 select attributes, in match
 attributes, etc.) are evaluated by the processor. You can use
 variables and functions in those expressions to introduce a degree
 of flexibility, but the expressions themselves are determined at
 compile time.

The xsl:evaluate instruction allows you to
 construct an XPath expression at runtime and evaluate it. This
 turned out to be useful in lots of different places in the DocBook
 stylesheets.

There are lots of different ways to format a document and the
 DocBook stylesheets have always tried to be flexible. In the early
 days of XSLT 1.0, when XSLT experience was uncommon, making a
 stylesheet option or parameter to control some aspect of behavior
 put it within the reach of users who weren’t prepared to write their
 own custom driver stylesheet with a few override templates.

XSLT experience is a lot more common now, but there’s still a desire
 to make the amount of customization necessary as small as is
 practical.

One feature of the stylesheets that always pushed the limits in this
 regard is the ability to break a document into different files or
 “chunks”. Instead of producing a single, large HTML document for a
 book, we might wish to produce a small web of documents linked
 together.

Lots (and lots) of options would be necessary to cover even a subset
 of the possible behaviors: chunk preface, chapter, appendix? Chunk
 sections? To how many levels? Chunk articles? Chunk parts? Chunk
 reference pages?

Even assuming you could cover a substantial subset of the problem
 space with options, and assuming the relationships between the
 options is comprehensible, invariably special cases arise: chunk on
 first-level sections, unless the chapter contains only a single
 section, in which case keep that section in the chapter chunk.

Practically speaking, the stylesheets have to stop adding options at
 some point and push the burden onto the user to write a stylesheet
 that answers the chunking questions. This is a doubly burdensome on
 the user because not only does it require moving from the “I just
 have to set options” level of skill to the “I have to write
 templates” level of skill, the templates that need to be written
 aren’t simple. They have to fit into the intricate framework that
 determines chunk boundaries.

Evaluating XPath expressions at runtime greatly simplifies this
 problem. Now we can say there are two parameters: the first is a
 list of XPath expressions that identify what elements are included
 in chunks. The second is a list of XPath expressions that identify
 what elements to exclude.

The default values for the DocBook xslTNG
 parameters look (roughly) like this:

<xsl:param name="chunk-include" as="xs:string*"
 select="('parent::db:set',
 'parent::db:book',
 'parent::db:part',
 'parent::db:reference',
 'self::db:section')"/>

<xsl:param name="chunk-exclude" as="xs:string*"
 select="('self::db:partintro',
 'self::*[ancestor::db:partintro]',
 'self::db:section
 [parent::db:chapter
 and not(preceding-sibling::db:section)
 and not(following-sibling::db:section)]'"/>

The first parameter define all of the children of
 set, book,
 part, and reference as chunks
 and all section elements as chunks. The second
 parameter makes an exception for the partintro
 element (which is a child of part) and any of its
 descendants, and any section of a chapter if it’s the only section.

You may be wondering how this addresses the question of chunking at
 multiple levels of section and how much complexity that introduces.
 After all, while it may be easier to write these parameters than it
 is write a stylesheet module, it still requires a fairly solid
 understanding of XPath and the structure of DocBook.

The short answers are: “it doesn’t” and “quite a bit”. Determining
 the level of section at which to chunk is so common, and it would
 introduce significant complexity in the patterns, so there’s still a
 simple $chunk-section-depth parameter to handle
 that.

Other places where it’s convenient in the DocBook stylesheets to use
 xsl:evaluate include formatting title pages,
 formatting titles, and formatting cross-references to titles,

Parse XML and JSON
Like dynamic XPath evaluation, the ability to parse XML and JSON
 dynamically can be useful. In the context of the DocBook
 xslTNG, this is used for syntax highlighting program
 listings.

The stylesheets use an external program, [Pygments], to add
 syntax highlighting to program listings that have a
 language attribute. If a program listing claims
 to be C source code (or Python or XML or any of a very wide variety
 of other languages), the listing is sent off to Pygments for
 highlighting.

Pygments returns the listing decorated with inline HTML markup and
 classes that add colors to strings, literals, keywords, variables,
 etc. Or it would if shipping markup around was a first class
 operation. What it actually returns is a bunch of text that happens
 to have angle brackets in the right places.

The XPath parse-xml function means the
 stylesheets can interpret that markup without relying on an
 extension function to parse it. The same would be true of externally
 generated JSON or markup extracted from a quoted string somewhere,
 for example.

Performance
XSLT 3.0 introduces caching, a means by which the stylesheet author
 can identify functions which would benefit from being evaluated only
 once. Consider:

<xsl:function name="lookup-tag" cache="yes">
 <xsl:param name="tag" as="xs:string"/>
 …
</xsl:function>

Enabling caching is an assertion on the stylesheet author’s part
 that the result of the function depends solely on its parameters,
 and that if the processor has calculated the return value for a
 particular set of parameters once it can return that value
 immediately if the function is called again with the same set of
 parameters. Critically: it does not have to evaluate the body of the
 function a second time.

The reference documentation for DocBook, DocBook: The
 Definitive Guide, contains many (many, many) uses of the
 tag element. For example:

<para>Paragraphs of prose in DocBook are identified
with the <tag>para</tag> tag unlike the more familiar
<tag>p<tag> tag of HTML.</para>

The formatting expectation is that the word “para” will become a
 link to the reference page for the para element.
 It isn’t explicitly authored as a link because it would have been
 incredibly tedious to do so. As you can see, tag
 is used for its semantic purpose (this is a tag in a markup
 vocabulary) and the special processing for DocBook elements only
 applies to some uses.

This means that every time the stylesheets encounter a
 tag element they have to determine if the named
 element is a DocBook element. That isn’t a difficult operation, but
 a little profiling revealed that it was being performed almost
 300,000 times (There are more than 63,000 occurrences of
 tag in the book.)

Simply adding cache="yes" to the lookup
 function reduced processing time by a factor of four. Formatting the
 book used to take almost 20 minutes, now it takes less than five.

Maps and Arrays
XSLT 3.0 introduces two common programming language features: maps
 (or dictionaries or
 hashes: they go by a variety of names) and
 arrays. If you’re already familiar with them from some other
 programming language, there are no surprises here. The good news, if
 you don’t think of what you do with XSLT as programming, is that
 most XSLT users already have some experience with map-like and
 array-like structures, even if they never thought of them in those
 terms.

Maps have a lot in common, at least conceptually, with keys. Given a
 key, they return the value associated with that key. If you’ve used
 xsl:key, you’re ready to use maps. Whereas
 xsl:key only allows you to lookup nodes in a
 document, maps allow you to construct arbitrary key/value pairs.

Arrays have a lot in common, again, at least conceptually, with
 sequences. One of the significant distinctions between arrays and
 sequences is that arrays can be nested. You can put an array inside
 an array and it isn’t collapsed into a single array the way a
 sequence collapses into another sequence. You can put arrays inside
 arrays (inside arrays, if you wish) to make two and three and higher
 dimensional structures.

You can even combine the two and it is often useful to do so: you
 can have an array of maps and you can have an array as the value of
 a key in a map.

Solving programlistingco
This brings me back to the bug that started it all. The element
 that the XSLT 2.0 stylesheets were failing to process is called
 programlistingco: program listing with
 callouts. Here’s what it looks like:

<programlistingco>
<areaspec>
<area xml:id="gs1-d1" coords="4 50" units="linecolumn"/>
<area xml:id="gs1-n1" coords="6 50" units="linecolumn"/>
</areaspec>

<programlisting
><xi:include parse="text" href="examples/custlayer.rnc"/
></programlisting>

<calloutlist>
<callout arearefs="gs1-d1" xml:id="list_gs1-d1">
 <para>Start by importing the base DocBook schema.</para>
</callout>
<callout arearefs="gs1-n1" xml:id="list_gs1-n1">
 <para>Then you can add new patterns or augment existing
 patterns.</para>
</callout>
</calloutlist>
</programlistingco>

The critical observation here is the callout marks, ① and ②,
 are applied to the program listing after it’s
 loaded from an external file with XInclude. The program listing
 doesn’t contain any markup and can be run and validated as a
 working example independent of its use in the document. This is
 very powerful, if a considerable challenge to implement.

The coords describe where the marks should go.
 There are various options for the marks, but Unicode characters
 are the default. To place the “①” on line 4 at column 50, the
 processor has to break the listing into lines and then break the
 lines into characters. It then has to find the 49th character,
 adding extra blanks to the line if necessary, and insert the
 callout (which might involve markup, such as an image) into the
 line. It then has to repeat the process for the next callout.

This is, in principle, a problem that can be solved with
 sequences, but it’s much easier with arrays. Part of the problem
 with using sequences has to do with the fact that sequences don’t
 nest: you can’t, for example, use the empty sequence to mark a
 special point and you can’t put two consecutive items in the
 sequence without putting a wrapper around them so that they’re a
 single item.

If you didn’t have arrays, or didn’t want to use arrays, and you
 wanted to avoid the complexities involved in using sequences, one
 of the first ideas you might have is to use markup. It’s not too
 difficult to see that “listing” document containing “line”
 elements containing “char” children could represent the lines and
 columns with complete fidelity. In fact, the power of XPath would
 make navigating around in the XML structure even easier than using
 arrays.

The big problem with that approach is node identity. If you stick
 the nodes in another tree structure, they aren’t the same nodes
 you started with. This can be problematic if you want to use
 key() to find them or if you want to test their
 ancestors. Maps and arrays preserve the identity of the nodes you
 put in them.

The other place where this kind of array-based processing really
 shines is another really complicated bit of markup: CALS tables. The
 DocBook xslTNG stylesheets take a two-pass
 approach to processing tables. The first pass decomposes all of
 the complexities of rows and spans into a flat array of arrays.
 The second pass processes the markup inside the cells. Node
 identity is even more critical here as there are more likely to be
 ID/IDREF links to other parts of the document and there are rich
 structures like footnotes and nested tables to be handled.

xsl:iterate
The xsl:iterate instruction was a late addition
 to this paper. If you’ve worked on substantial XSLT 2.0 stylesheets,
 you’ve probably already worked out how to accomplish what
 xsl:iterate does without it. On the other hand,
 if recursive functions are something you’ve struggled to understand,
 you are likely to be very pleased.

In most (non-functional) programming languages, dealing with a task
 like searching for a value in a list or iterating over a sequence
 until some condition occurs are handled with loops and mutable
 variables. XSLT doesn’t have mutable variables. Variables in XSLT
 are “single assignment”: a single value is assigned to them when
 they’re created and that can never be changed.

Luckily, we have a very powerful query language, XPath, and so we
 can very often make selections without ever explicitly iterating
 over a list. But sometimes the operation you need to perform is too
 complicated to express in XPath or requires operations that XPath
 queries can’t perform.

The traditional answer to this kind of problem in functional
 programming languages is recursive functions (ignoring special cases
 where map and fold operations will suffice).

The xsl:iterate instruction basically takes the
 structure of this particular kind of recursive function and
 expresses it declaratively.

In DocBook, numbered lists can be nested and those nested lists can
 be mixed together with other elements (so a list item might consist
 of two paragraphs followed by a sub-list).

Consider the problem of working out the numeration for a list item.
 If the context list item is a third-level item that is the first
 item of a list that is in the second item of its parent list that is
 in the fifth item of its parent list, then its numeration of that
 item is (5, 2, 1). You would need this, for example, to construct a
 cross reference to that item: “5.b.i”.

One way to work out the numeration is to begin with an empty list
 and walk up the tree from the initial context item:

	If the item you’re at is a list item in a numbered list, then
 add its number to the beginning of the numeration list and
 continue.

	If the item is anything else, it has no effect on the
 numeration, just continue with the current list.

“Begin with an empty list” and “add its number” both sound like
 mutation, but they don’t have to be. You can solve this problem with
 a recursive function that builds up the values as it goes and
 returns them all when it finishes.

It’s much more straightforward to do this with
 xsl:iterate:

<xsl:function name="f:orderedlist-number" as="xs:integer+">
 <xsl:param name="node" as="element(db:listitem)"/>
 <xsl:iterate select="reverse($node/ancestor-or-self::*)">
 <xsl:param name="number" select="()"/>
 <xsl:on-completion select="$number"/>
 <xsl:choose>
 <xsl:when test="self::db:listitem[parent::db:orderedlist]">
 <xsl:next-iteration>
 <xsl:with-param name="number"
 select="(count(preceding-sibling::db:listitem)
 + f:orderedlist-startingnumber(parent::db:orderedlist),
 $number)"/>
 </xsl:next-iteration>
 </xsl:when>
 <xsl:otherwise>
 <xsl:next-iteration>
 <xsl:with-param name="number" select="$number"/>
 </xsl:next-iteration>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:iterate>
</xsl:function>

	Iterate over the list of our ancestors (reversed so that we’re
 walking “up” the tree, not down it).

	Start with an initially empty list of numbers.

	Return that list when we’ve completed all the iterations.

	If the current item is a list in a numbered list, construct a
 new list that consists of the number of this item followed by
 all the other numbers we’ve seen so far. Pass that value to the
 next iteration.

	Otherwise, pass the current list to the next iteration.

It’s still passing a context forward as it goes, but it doesn’t
 require understanding function recursion directly and it actually
 prevents you from making a mistake in your function that prevents it
 from being tail recursive. (Tail recursion is a specific property of
 some recursive functions and if a function is tail recursive, the
 processor can optimize it in ways that it can’t optimize a function
 that isn’t provably tail recursive.)

New operators
XPath 3.0 introduced the “||” and “!” operators, XPath 3.1
introduced the “=>“ operator. These operators provide syntactically
compact alternatives for behavior available in other ways. For the examples that follow,
assume $doc is a variable initialized this way:
<xsl:variable name="doc" as="element(doc)">
 <doc>
 <p>one</p>
 <p>two</p>
 <p>three</p>
 </doc>
</xsl:variable>
The double vertical bar operator performs string concatenation.
This expression:
<xsl:sequence select="concat('count: ', count($doc/*))"/>
can be written like this with the “||” operator:
<xsl:sequence select="'count: ' || count($doc/*)"/>
The exclamation mark is a simplified form of loop. A loop like this one:

<xsl:for-each select="$doc/p">
 <xsl:sequence select="string-length(.)"/>
</xsl:for-each>

Can be written as:
<xsl:sequence select="$doc/p ! string-length(.)"/>
The expression on the left hand side of the exclamation mark is
evaluated. Then, for each item that results, the expression on the right hand
side is evaluated with the item from the left as the context item.
Finally, we have “=>“ which may be a little easier to explain
after an example. Suppose you have $path which contains the fully
qualified name of a file, such as /Users/ndw/Documents/test.xml.
For some applications, you might like to get the “base name” of the file, that is, the part
after the path and before the extension. There are a number of ways to do this.
For this example, we’ll use substring before and after:

<xsl:sequence
 select="substring-before(substring-after($path, '/Documents/'), '.xml')"/>
With the “=>” operator, you can chain the calls together like this:
<xsl:sequence select="$path => substring-after('/Documents/')
 => substring-before('.xml')"/>
The expression on the left hand side of the operator is applied to the function
on the right hand side as the first argument to the function.
All of these operators allow you to write more compact
expressions. Whether this is an aid to comprehension or a hindrance is
going to depend partly on the experiences of the folks who read your
code, even if that’s only you in six months.

What else?
There are other features in XSLT 3.0 that are going to make some
 stylesheets simpler and easier to write: there are facilities for
 splitting and merging sequences, functions for transforming between
 XML and JSON, more flexible ways to copy content, and more. Higher
 order functions greatly simplify some kinds of problems, especially
 for developers of stylesheet frameworks. And, as noted in the
 introduction, this paper ignores both the wide range of new
 streaming features and packages. There’s a lot in there!

Appendix A. Appendix
This should all be done in XProc. The DocBook XSLT 2.0
 Stylesheets perform a series of transformations in XProc
 1.0. The DocBook xslTNG stylesheets also
 perform a series of transformations but there wasn’t time to
 complete this paper, the stylesheets, and my XProc 3.0
 implementation before the conference.

I wasn’t motivated to do the XProc implementation in XProc 1.0, so
 I’ve taken the expedient approach of tying together the series of
 transformations in XSLT. This works, but it does have some odd
 consequences. Partly, perhaps, because I want users to apply the
 stylesheets in what I consider the usual way: apply the stylesheet
 to a document.

There are other ways to begin transformations in XSLT 3.0. It’s
 possible, for example, that requiring the user to specify
 the global context item and the initial template explicitly would simplify the
 interface. But that would require even causal stylesheet users to be
 familiar with these concepts and how to use them in their processing
 environments.

The approach taken is this:

	There are two templates in no mode: one for *
 and one for /. The one for
 * immediately defers processing to the one
 for /; it exists mostly because some of the
 XSpec tests begin at an element so the template for the document
 root doesn’t match.

	This first template runs the input document through a series of
 normalizing transformations: cleaning up the logical structure
 (removing insignificant syntactic variation from the source
 DocBook documents), dealing with transclusion, profiling,
 annotations, and XLink linkbases.

	This normalized document is passed on to the “main” template
 which makes several more transformations in different modes.

It’s all a bit messy. Suggestions for improvement most welcome.

References
[TR9502]
CALS Table Model Document Type Definition
(https://www.oasis-open.org/specs/tm9502.html).
SGML Open Technical Memorandum TM 9502:1995. Table Interchange
Subcommittee. Harvey Bingham, editor.
[Pygments]
Pygments: Python Syntax Highlighter
(https://pygments.org/). Version 2.6.1.
[XSLT30]
XSL Transformations (XSLT) Version 3.0
(http://www.w3.org/TR/xslt-30/). Michael Kay, editor.
W3C Recommendation. 8 June 2017.

Balisage: The Markup Conference

XSLT 3.0 on ordinary prose
Norman Walsh
Norm Walsh is a Senior Software Developer at Saxonica. He has also been an active participant in international standards efforts at both the W3C and OASIS. At the W3C, Norm was chair of the XML Processing Model Working Group, co-chair of the XML Core Working Group, and an editor in the XQuery and XSLT Working Groups. He served for several years as an elected member of the Technical Architecture Group. At OASIS, he was chair of the DocBook Technical Committee for many years and is the author of DocBook: The Definitive Guide. Norm has spent more than twenty years developing commercial and open source software.

Balisage: The Markup Conference

content/images/Walsh01-001.png
namespace db = "http://docbook.org/ns/docbook"
perhaps other namespace declarations

include "docbook.rnc"

new patterns and augmented patterns

Start by importing the base DocBook schema.

Then you can add new patterns or augment existing patterns.

content/images/Walsh01-002.png
namespace db = "http: //docbook. org/ns/docbook”
perhaps other namespace declarations

include "docbook. rnc” @
new patterns and augmented patterns @
@ Start by importing the base DocBook schema.

@ Then you can add new patterns or augment existing patterns.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

