[image: Balisage logo]Balisage: The Markup Conference

Serving IIIF and DTS APIs specifications from TEI data via XQuery with support from a
 SPARQL Endpoint
Pietro Maria Liuzzo
Wiss. Mitarbeiter
Universität Hamburg

<pietro.liuzzo@uni-hamburg.de>

Balisage: The Markup Conference 2021
August 2 - 6, 2021

Copyright ©2021 by the author. Used with permission.

How to cite this paper
Liuzzo, Pietro Maria. "Serving IIIF and DTS APIs specifications from TEI data via XQuery with support from a
 SPARQL Endpoint." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Liuzzo01.

Abstract
This paper presents two modules, one serving the IIIF presentation API, and another the
 three Distributed Text Services API specifications (Collection, Navigation and Document), as
 well as an additional experimental Web Annotation and indexes API. These are all served from
 XML TEI data with a RESTxq XQuery module within an exist-db application which also benefits
 from direct access to a SPARQL Endpoint containing a serialization in RDF of some of the
 information in the XML. The setup is not uncommon: we have our data collaboratively edited
 in GitHub, indexed from there into exist-db and transformed with XSLT to RDF-XML. The
 RDF-XML is passed on to Apache Jena Fuseki on the same server and is indexed there as well,
 as RDF, so that the two datasets are parallel and updated synchronously. What I want to
 argue is that the setup itself and the code involved are integrating part of the knowledge
 being served. They make assumption on the existing data based on knowledge which is not in
 the data itself and build the additional representation using that with an additional set of
 inferences. I conclude the contribution with some examples of use of these modules and their
 functions.

Balisage: The Markup Conference

 Serving IIIF and DTS APIs specifications from TEI data via XQuery with support from
 a
 SPARQL Endpoint

 Table of Contents

 	Title Page

 	State of things

 	The IIIF and DTS specifications and their importance for Beta maṣāḥǝft

 	The challenges and their solutions
 	International Images Interoperability Framework (IIIF) Presentation API

 	The Distributed Text Services API specifications (DTS)
 	Architecture: not all is in one TEI file

 	Multiple hierarchies of citation

 	Joining in one dataset the information which can only queried from the XML

 	Indexes and clients
 	Beta maṣāḥǝft text navigation

 	Web Annotation indexes

 	Alpheios Alignment

 	Conclusion

 	About the Author

 Serving IIIF and DTS APIs specifications from TEI data via XQuery with support from a
 SPARQL Endpoint

State of things
We want to build our resources on json-LD based APIs so that we can use them and others
 can do the same we do. We want these to be based on the XML TEI data we collaboratively edit.
 As we build an API we build also clients using it. The construction of APIs and their clients
 within the same XQuery database (exist-db) may look redundant,[1] but the re-presentation of the data in this way, standardizing access routes and
 expected results of queries, provides additional information, not directly accessible without
 the filter of the API, so that the API implementation itself has an heuristic and
 content-building impact on the data, it is not just another visualization of the same for
 machines but delivers a representation which benefits from layers of logic and inferences
 which enrich the data, not only its representation. This paper presents two modules, one
 serving the IIIF presentation API, the second serving the three Distributed Text Services API
 specifications (Collection, Document and Navigation), as well as an additional
 experimental Web annotation and indexes API. These are all based on XML TEI data and
 implemented with a RESTxq XQuery[2] module within exist-db which also benefits from direct access
 to a SPARQL Endpoint containing a serialization in RDF of some of the information in the XML.
 The two modules are - iiif.xql and related modules - dts.xql and related modules.
The setup is not uncommon. We have our data collaboratively edited in GitHub, indexed
 from there into exist-db and transformed with XSLT to RDF-XML. The RDF-XML is passed on to a
 Apache Jena Fuseki on the same server and is indexed there as well, as RDF so that the two
 datasets are parallel and updated synchronously. Both the XSLT transformation and the Reasoner
 in Apache Jena Fuseki add information by inferencing it from the script or from the ontologies
 used in the triplestore.

The IIIF and DTS specifications and their importance for Beta maṣāḥǝft
Before getting into the details of some aspects of the modules, let me briefly introduce
 for those who may not be familiar with them, the two target API specifications in question.
 The International Image Interoperability Framework Presentation API specification[3] provides a model for describing a set of images giving the minimal necessary
 information to retrieve and display them. It uses jsonLD as a syntax and allows images
 providers to present their collections of images with a linked-open-data description, so that
 they can be navigated not just in the provider's viewer, but in any viewer which supports this
 specification and can read it. The change this standard and the others in its family have
 brought in the world of manuscript studies and indeed in the provision of images in general,
 for art works, books, etc. is enormous. It is only logical that a project like Beta
 maṣāḥǝft: Manuscripts of Ethiopia and Eritrea (Schriftkultur des christlichen Äthiopiens und
 Eritreas: eine multimediale Forschungsumgebung)[4] presenting manuscript descriptions (collaboratively encoded in XML) and the images
 of many of these manuscripts, may follow this standard to present the sets of images of the
 manuscripts, since also other major institutions holding manuscripts and offering them to the
 public do the same. Take for example the Digital Vatican Library and the Bibliothèque
 nationale de France. In practice, loading the stable URL to a Manifest produced following the
 IIIF specification, like https://betamasaheft.eu/api/iiif/ESum035/manifest into any IIIF-able
 viewer will show the correct sequence of images served from our server with their metadata.
 This Manifest is a URI for a resource described by a label and other properties,
 like in the following example

{
 "label" : "Bǝḥerāwi Kǝllǝlāwi Mangǝśti Tǝgrāy, ʿUrā Qirqos, UM-035",
 "@type" : "sc:Manifest",
 "@id" : "https://betamasaheft.eu/api/iiif/ESum035/manifest",
 "description" : "An Ethiopian Manuscript.",
 "attribution" : "Provided by Ethio-SPaRe project."
}

In the following image (Figure 1) I have loaded the above Manifest from its URL into the demo
 page of the Mirador viewer.
Figure 1: Images of Bǝḥerāwi Kǝllǝlāwi Mangǝśti Tǝgrāy, ʿUrā Qirqos, UM-035 loaded in the demo
 Mirador viewer (https://projectmirador.org/).
[image: Images of Bǝḥerāwi Kǝllǝlāwi Mangǝśti Tǝgrāy, ʿUrā Qirqos, UM-035 loaded in the Demo
 Mirador viewer (https://projectmirador.org/).]

Similarly the Distributed Text Services API Specifications describe ways to present
 information in jsonLD about collection of texts, which can be literary works, canonical
 collections of works, inscriptions, letters, papyri or any other type of text.[5] It defines a specification for the presentation of such collections, one for the
 navigation of the structure of such text (chapters, lines, pages, etc.) and one to retrieve
 the correct section of a text from a specific reference to a part of it. The Collection API
 allows a consumer of the API to find out what collections of texts are served by the provider.
 The navigation API, for a given resource in that collection will tell which possible
 references are available and how the text is structured. With the Document API, if a client
 asks for Chapter 1 of the Iliad in a given edition presented by the provider, it will be
 returned the corresponding text. The three specifications are closely related, but do not need
 to be all implemented.
If, for example, I ask for the portion of a text in a manuscript running from folio 1
 verso, column 2, line 5 to folio 34 recto, column 1 line 15, using references in a format like
 1vb5-34ra15, the existence of which I have learned from a request to the navigation API, I
 will be returned from the document API that portion of the transcription of the text on the
 manuscript. The navigation API lists possible passages, the document API resolves passages to
 the actual text. This provides a way to standardise and make usable collections of texts which
 are not reducible to a hierarchy of authored works and whose structure cannot be adapted
 always to books, chapters and paragraphs, while exposing in an explicit and standard way,
 their structure.
The contents of manuscripts are one such type of text, for which the possibility to refer
 unequivocally and unambiguously to that structure, that is to say, to point to the text, or
 the feature of the object occurring at folio X and line Y, is paramount to the description of
 the manuscript as object, as well as to all the philological and historical work which may be
 carried out using those descriptions, e.g. the critical edition of one of a specific portion
 of the content. Serving both these kinds of data, text of the transcription of manuscripts, as
 well as of edited literary works attested from the manuscript tradition, beside the images of
 the objects, via standard APIs, using linked data formats, is yet another way to give
 visibility and enhance accessibility of the manuscript culture of Ethiopia and Eritrea, now
 more then ever put in jeopardy by the current state of war.[6] Both implementations of these API specification, in the context of the Beta
 maṣāḥǝft collaborative research environment are based on two parallel presentations of the
 data entered by the community of collaborators, the source in TEI XML and a derived RDF
 representation.

The challenges and their solutions
Even if the RDF representation is the result of a transformation from the XML TEI data,
 it is already quite different from it and contains not only structures which can provide
 different information, it contains in some respects more information. Consider the following
 example (@xml:base = https://betamasaheft.eu/).

<relation name="snap:SonOf" active="PRS10626ZaraY" passive="PRS3429DawitII"/>

When transformed by a rudimentary XSLT, making use of the prefixes defined in
 <prefixDef>
 (data2rdf.xsl)
 in RDF this becomes

 <rdf:Description rdf:about="https://betamasaheft.eu/PRS10626ZaraY">
 <snap:hasBond rdf:resource="https://betamasaheft.eu/bond/snap:SonOf-PRS3429DawitII"/>
 </rdf:Description>
 <rdf:Description rdf:about="https://betamasaheft.eu/bond/snap:SonOf-PRS3429DawitII">
 <rdf:type rdf:resource="http://data.snapdrgn.net/ontology/snap#SonOf"/>
 <snap:bond-with rdf:resource="https://betamasaheft.eu/PRS3429DawitII"/>
 </rdf:Description>

The SNAP Bond is inferred and materialised by the XSLT. So, the XSLT makes reasonable
 assumptions on the XML data and infer triples, necessary for the target specification (in this
 case the SNAP-DRGN model).[7] When these triples are stored, if a reasoner is active (which it is not yet in our
 current setting), this may allow to infer even more, for example transitive relations, so that
 for example "the grandson of" can be queried from a chain of transitive relations like "the
 son of the son of" without an explicit "GrandsonOf" relation being injected in the data from
 the XSLT, which would not be possible since the source XML only contains that one statement
 and does not know if there are others to be related or if the relation itself is a transitive
 property (which the ontology would know). Here SNAP is also smart in as far as snap:hasBond
 may be declared as a transitive property thus linking in all possible ways and deferring the
 type of such relation to the Class to which the bond is assigned. This highlights some abuse
 of the @name attribute in <relation> and of the Class name instead of the property within
 it which is only justified by the existence of the XSLT performing the transformation to the
 above RDF.
Without a reasoner benefiting from the ontology declarations I could access a more complete list of relations with an Xpath like the following.

//t:relation[starts-with(@name, 'snap:')][(@active|@passive)='PRS3429DawitII']

Running this Xpath on my collection of documents would not be different from running on the parallel dataset the following SPARQL query

 PREFIX snap: <http://data.snapdrgn.net/ontology/snap#>
 PREFIX bm: <https://betamasaheft.eu/>
 SELECT DISTINCT ?p2
 WHERE {
 {bm:PRS3429DawitII snap:hasBond ?b1 .
 ?b1 snap:bond-with ?p2.}
 UNION
 {?p2 snap:hasBond ?b2 .
 ?b2 snap:bond-with bm:PRS3429DawitII}
 }

I could then access the type of bond by getting the actual value of @name, in the Xpath or the Class of the Bond in the SPARQL. I get to know all the first level relations, and only those, and only because they are declared.

 I could similarly do an Xpath on a collection of files to get to know if a text contains another or is contained by another.

//t:relation[@name='saws:contains'][(@active|@passive)='LIT2072NewTes']

This would be able to tell me that the New Testament is contained in the Bible and that it contains the Gospels.
 I would find this out from the RDF data as well, or generically get to know about all texts which are contained and at the same time contain other texts with a SPARQL query like the following.

 PREFIX saws: <http://purl.org/saws/ontology#>
 PREFIX bm: <https://betamasaheft.eu/>
 SELECT ?text2
 WHERE {
 ?text1 saws:contains ?text2 .
 ?text2 saws:contains ?text3 .
 }

But expanding the Xpath, or an XQuery to look for more than this would be tedious, while, If I had declared in my ontology
 that for us saws:contains is a transitive property, and told a reasoner about it, I could run a SPARQL query like

 PREFIX saws: <http://purl.org/saws/ontology#>
 SELECT *
 WHERE {
 ?text1 saws:contains+ ?text2 .
 }

This query would know and return in the results, that the Bible contains the Gospels although there is no such statement explicitly made, but the encoders only said that the Bible contains the New Testament
 and that the New Testament contains the Gospels. The query would also know that the Bible contains the Gospel of Luke, for example, because if a contains b and b contains c than a contains c and so on.
But let's imagine the reality: people do things in different ways. Let us say for example that one of the users said that the Bible contains the Gospel,
 but another said that the Gospel of Luke forms part of the Gospel, which is the same as saying that the Gospel contains the Gospel of Luke, but in a declarative word, is not the same.

 In my Xpath I would have to know that this can happen and my query would grow and grow with exceptions and possibilities.
 In my SPARQL query I would not have to care about the fact that while some of these
 relations are in the 'contains' directions, others are declared as 'forms-part-of' direction. To do this
 I would only have to declare the relevant properties as inverse (owl:inverseOf) and I would get the same list.
We do not do this yet, but the implementation already benefits from this setup. The reason
 why we are not yet exploiting this obvious advantage is on one side individual (I did not know
 how to set a reasoner) and on the other side is related to the implications of making this
 statements. Inferences are so easy to declare in an ontology that they are not to be taken
 lightly, there is a lot that we do not actually want to infer, so we are redesigning our
 ontology to be sure it infers only what we actually want to infer. Moving the logic into the
 data (after all, an OWL file for the ontology can be treated just like data using a special
 vocabulary, and can be written in XML) especially if this logic is part of the knowledge
 recorded so that it can become explicit when needed is a better idea than relying on the code
 to know things. On the other side the necessary knowledge of such ontology and of the query
 language makes the use of standardized APIs better and more usable compared to the provision
 of an endpoint only.[8]
International Images Interoperability Framework (IIIF) Presentation API
In providing IIIF Manifests based from TEI description of medieval manuscripts from
 Ethiopia we are also producing RDF, serialized as json-LD to present a set of images with
 relation to the TEI description of the manuscript depicted in these images. Consider the
 following example from Bǝḥerāwi Kǝllǝlāwi
 Mangǝśti Tǝgrāy, ʿUrā Qirqos, UM-035, where the collation of the manuscript,
 encoded as a simple list of <item>s child of the TEI element
 <collation> is transformed to a IIIF Range

<collation>
<list>
<item xml:id="q1">
<dim unit="leaf">7</dim>
<locus from="1r" to="7v"/>
I(7/fols. 1r-7v; s.l.: 1, no stub)
<note>The structure of quires can not be established with certainty due to the condition of the present Ms.</note>
</item>
<item xml:id="q2">
<dim unit="leaf">4</dim>
<locus from="8r" to="11v"/>
II(4/fols. 8r-11v).
</item>
</list>
</collation>

 {
 "label" : "Collation",
 "ranges" : ["https://betamasaheft.eu/api/iiif/ESum035/range/q1", "https://betamasaheft.eu/api/iiif/ESum035/range/q2"],
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/ESum035/range/quires"
 }

The @xml:ids are used to construct URIs and the @id for the
 IIIF Range labelled 'Collation' is made up and is consistent and existent only within this
 context, generated on the fly and not materialized anywhere or stored in a triplestore. The
 same consideration affecting the XSLT above, applies here to a XQuery, which, doing the
 reasoning that maps the TEI to the json-LD infers and injects in the presented data the URIs
 and is in fact their sole guarantee of existence. Here is an example, the bit of the RESTxq
 module which produce the Range above.

declare function iiif:rangetype($iiifroot as xs:string, $name as xs:string, $title as xs:string, $seqran as xs:anyAtomicType+){
map {
 "@id":$iiifroot ||"/range/"|| $name,
 "@type":"sc:Range",
 "label": $title,
 "ranges" : if(count($seqran) = 1) then [$seqran] else $seqran
 }
};

Overlooking for a second my attempt to work around the serialisation as an array of a
 single value,[9] having this in the code means that if one day I wake up and change that
 /range/ string to /r/ all my URIs will have lost persistence,
 and yet the IIIF Manifest in the production environment will still be consistent and usable,
 because in that close world all URIs for ranges will change accordingly. Indeed this is a
 great advantage of serving API specifications with linked data built on the fly, compared to
 the almighty SPARQL Endpoint relying on data which stored somewhere.[10] A SPARQL query may have
 expectations on the URIs format and may stop to work if this change is made in data which
 can be queried only in that way. Instead, leaving the construction on the fly of the URIs to
 the script makes the responses to a standard API request always consistent and the client
 will not have to care about their persistence either. This is one way in which, making
 stable the format of the request instead of the URIs it contains, the vain claims of
 'persistence' of any URI may be abandoned, at least in same respects, in favour of a more
 realistic 'eternal ephemerality'.
The code however, although in this case it does not produce any new statement and it
 simply reorganizes existing data, cannot be said to be zero-impact, it constructs the data
 and if that single point fails or breaks in any way, even where the data is entirely safe
 and correct, it will impact access on all sides, an issue which is multiplied by the
 extensive usability of the produced presentations demonstrated above. But this is no news,
 it is a statement of the obvious affecting all code and all data in any context. It is in
 fact not only one or two identifiable lines which build the logic and inferences, it is the
 structure of the code itself which makes assumptions and works with them for a result.
Needless to say, this IIIF representation is an entirely different matter from that of
 the declaration of <surface>s and <zone>s within the
 TEI. This is a declarative list of areas on a specific set of images, while the IIIF
 Manifest is a presentation of that set of images. The content of attributes of a zone may be
 used to compute the URI pattern for a request to an IIIF Image API, which must be present to
 serve images.
Each TEI description of a manuscript and encoding of its text in our project is itself a highly collaborative effort. The example
 above, to date, involved at least seven persons, only counting the contributors to that
 single file and not those who edited related entities, bibliographic entries, etc. The file
 containing the manuscript description is edited by several contributors, and refers to
 several other entities in the database edited each by many contributors. Any presentation of
 that data will include some of that related information and thus exponentially increase the
 number or involved edits and contributors which are involved in the data presented in any
 given output.
This challenge is augmented in those cases where we may wish to link to an external set
 of images. We may match a collaborative description with a set of images which is
 potentially elsewhere not bound to this description, so practically writing metadata for a
 resource out there. Consider for example Vatican City, Biblioteca Apostolica Vaticana, Aeth. 1. The images of this
 manuscript are hosted and served via IIIF with a Manifest by the Digital Vatican Library at
 https://digi.vatlib.it/iiif/MSS_Vat.et.1/manifest.json. All we do is pre-load this known
 manuscript's Manifest into the Mirador viewer for the user of our description of the
 manuscript. This Manifest cannot include any information which we have encoded in our TEI
 description. We know that a particular quire is at a particular position within the manuscript, but the viewer
 does not allow to navigate to that location, because the Manifest does not have a range for
 that, since it is not created starting from our description, which has been enriched with that information. We could potentially build
 another Manifest which points to the images at the Vatican library but is directly based on our TEI description of the manuscript, but we do
 not. One reason is, that we cannot make assumptions on the image set and its actual structure. We
 cannot do this even on the images and Manifests which we serve ourselves, actually, because
 curating the images in the first place is not an easy task, but in that case we take our
 chances. It would need regular human checking to be sure we keep being aligned to an
 externally served resource, so we gave up the enriched alternative Manifest. Still, using a
 @facs we can directly point to the relevant image or area of it from the
 manuscript description.
Adding those attributes is, to say the least, tedious for any editor who does not want
 to give up the freedom of encoding directly, without any form-like interface.
Fortunately, the king of elements for manuscript description,
 <locus> can be made to reason in terms of what is available in the TEI
 file. A simple placement information like

<locus target="#27v1">

will have to be parsed and resolved to point to the correct <lb>

<pb n='27v'/>
...
<lb facs='#facs_15_line_1606762008880_11923' n='1'/>

This is achieved by regulating the content of the @target in the encoding
 guidelines (referencing) as well as that of @from and @to so that
 they match a referencing system, and parsing that consequently (locus.xqm).
The @facs in the corresponding placement reference will point to a
 <zone> and from there all necessary bits of information to retrieve the
 relevant part of the image will be available.

<surface xml:id="f27v" ulx="0" uly="0" lrx="2464" lry="1641">
 <graphic url="https://betamasaheft.eu/iiif/Ham/1993/Eri_1993_025.tif/full/full/0/default.jpg" width="2464px" height="1641px"/>
 <zone ulx='434' uly='186' lrx='1185' lry='1640' rendition='TextRegion' xml:id='facs_15_r1'>
 <zone ulx='476' uly='191' lrx='1041' lry='301' rendition='Line' xml:id='facs_15_line_1606762008880_11923'/>
 </zone>
</surface>

I have not even tried to convince anyone, my self in the first place, to type this
 down. We get it instead from Transkribus after running a Layout Analysis and fixing it with
 human input.[11]
To be able to offer a 'simple' functionality, namely, clicking on a placement
 information and seeing the relevant image, eventually moving to a viewer where this is in
 its context, requires not only curated data but also curated and controlled scripts which
 make assumptions which cannot be ignored by the users. Programming that in XQuery or XSLT
 may be one way to make it more readable to the same users of the data and its visualization.[12] XQuery (and indeed also XSLT and XPath, and X-languages in general) are readable
 enough and familiar enough to large communities of practice in the humanities, if not
 explicitly designed for these users.[13]

Rarely we only want to see the images. We want to navigate a set of images coming from
 a description of an artefact or get from that description straight at an image of interest
 without having to page through in the viewer until we reach it. To do this we need the XML,
 we need the IIIF Images and Presentation API and the XQuery producing these presentations
 and making the connection, we need a client application supporting this, like Mirador.
 Alone, neither the data or the Manifest, or the API, or the application achieve the task.
It may be more obviously useful to implement and use an API for images than it is for
 texts. After all, we have HTTP protocol and eventually XML and HTML just for that... but
 there is a lot more to be gained by applying the same models of implementation to the
 presentation of features of the structure of texts. And that may be part of what a TEI
 encoded text has to say for the structure of a text, but not for the structure of a
 collection of texts, which remains often a matter of organization of the system where the
 TEI files are organized, stored, and indexed.

The Distributed Text Services API specifications (DTS)
Architecture: not all is in one TEI file
What 'texts' to serve? The 'diplomatic' transcription of the manuscript? The edition?
 Of which version? Some relations among textual units in a corpus of ancient literature cut
 across several languages, periods and interests making the organization efforts of a
 'library' clash with reality. Ancient translations, versions of the same 'work' which had
 their own independent history, collections of smaller units varying in size and scope,
 summaries, etc. The ancient idea of text was just very different from our own. It is not
 possible to order ancient texts by title or by author. It is not possible to organise them
 in a fixed hierarchies without forcing them. What is available instead is a network of
 relations. Establishing explicit and individual relationships between variously identified
 units allows to organise ancient literature the way we know it without adding on it the
 hierarchies which are instead more typical of printed literature. And if we do not know
 and cannot say anything, we can just do so and let an unidentified text be such without
 needing to enter a group of other 'similar' items.
For example, a textual unit, that is to say a work, in a more generic sense,[14] may form
 part of several other textual units, like in the following example, retrieved searching
 for records with two <relation> elements with a
 @name='saws:formsPartOf'

<listRelation>
<relation name="saws:formsPartOf" active="LIT4615Salam" passive="LIT1968Mashaf"/>
<relation name="saws:formsPartOf" active="LIT4615Salam" passive="LIT3575Mashaf"/>
</listRelation>

In an HTML view as well as in another type of output, we can play with this and
 present the information, relying on the accessibility for our scripts of the information
 linked. The script will know what to do with 'LIT1968Mashaf'. Also the TEI consumer will
 be able to resolve with @xml:base to https://betamasaheft.eu/LIT1968Mashaf
 and will be redirected to the landing page for that item. But the script knows more and
 given knowledge of what to expect in that context, namely the identifier of a textual unit
 may be able to fetch its canonical title for example.
Figure 2: Forms part of...
[image: Literary works and their relation displayed in the HTML]

The XQuery doing this knows a great deal about the database structure, its indexes,
 the desired output. What about the poor client who does not have all these modules and
 does not want to scrap the HTML to rebuild this information? We could enrich our RDFa
 support, that is one thing. However, passing on this type of information in the response
 to a standard request to an API, allows the machine as well as the human to follow those
 links and allow them to structure the navigation of the collection. This is what the DTS
 Collection Specification also supports. We have rather some code to expose that in the
 same way in which the above HTML view is produced, to serve those clients.
Because these XML tags are passed on to the RDF as described above, the graph of
 relations can be queried from the XQuery building the response to the API request
 specified by the DTS API, and they can be included in the output json-LD. A function
 (here) will loop through a list of relations and query for them the triplestore.

declare function dts:sparqls($id, $property){
let $querytext := $config:sparqlPrefixes || "SELECT ?x
WHERE {bm:" || $id || ' '|| $property||" ?x }"
let $query := dts:callfuseki($querytext)
return
$query//sr:binding[@*:name='x']/sr:*/text()
};

The dts:callfuseki() function here will simply send an HTTP request to
 the port where Apache Jena Fuseki is running with the SPARQL query constructed, and
 iteratively populate a map, for example:

"dts:extensions" : {
 "saws:formsPartOf" : "https://betamasaheft.eu/LIT2384Taamme"
 }

If this extension is exposed by the client of the API, The browsing of the relations between textual units, which are listed by the collection API as a flat list, becomes an actual way to pass from one to the other textual unit without any additional organizational filters. We stick to a plain list and this relations to give it depth and structure, so that the machine client may have at least the same ways to distinguish a link from another link as the human has.

Multiple hierarchies of citation
As well as multiple relations and hierarchies of texts, there are also multiple
 'canonical' citations, multiple editions, and multiple citations structure which,
 depending on the type of context will be resolved by a human reader to a portion of a
 given text. The example above, of a transcription of a manuscript involves only one such
 structure, articulated with <pb>, <cb>, and
 <lb>, but consider the following example.

<div type="edition" xml:lang="gr" resp="#frisk">
<head>
<surplus>ΑΡΡΙΑΝΟΥ</surplus>
ΠΕΡΙΠΛΟΥΣ ΤΗΣ ΕΡΥΘΡΑΣ ΘΑΛΑΣΣΗΣ
</head>
<div type="textpart" subtype="chapter" n="1" xml:id="chapter1">
<ab>
<pb n="1" corresp="#frisk"/>
<pb n="51" corresp="#casson"/>
<pb n="257" corresp="#mueller"/>
<pb n="9r" corresp="#L"/>
<pb n="40v" corresp="#P" facs="https://digi.ub.uni-heidelberg.de/diglit/iiif/cpgraec398/canvas/0084.json"/>
Τῶν ἀποδεδειγμένων ὅρμων τῆς
<placeName ref="pleiades:39290">Ἐρυθρᾶς θαλάσσης</placeName>
καὶ τῶν περὶ αὐτὴν ἐμπορίων πρῶτός ἐστιν λιμὴν
...
</ab>
</div>

Here I have encoded several page breaks of editions (the @corresp points
 at the @xml:id of a <bibl>). I may certainly refer to this
 as 'chapter 1' or '1', but I may also refer to page 51 of Casson's edition of page 257 of
 Muller's to refer to the same passage. Another similar issue is that of the way in which a
 given part of a work is referred to. The first paragraphs of a liturgical text may contain
 a commemoration for a certain Saint to be done on a given day of a month. I may refer to
 this as the commemoration for that Saint, that for the Day or as the first paragraph,
 depending on the audience or simply on convenience.

<div type="textpart" subtype="chapter" n="1" xml:id="Maskaram">
 ...
 <div type="textpart" subtype="chapter" xml:id="MaskIntroduction">
 ...
 </div>
 <div type="textpart" subtype="chapter" xml:id="Mask1">
 <div type="textpart" xml:id="Mask1Beginning">
 ...
 </div>
 <div type="textpart" subtype="commemoration" xml:id="Mask1Job">
 ...
 </div>
 <div type="textpart" subtype="commemoration" xml:id="Mask1Bartolomewos" corresp="NAR0017SBartalomewos">
 ...
 </div>
 ...
 </div>
 ...
</div>

a reference to 'chapter 1', should resolve to an XPath like div[@n='1']
 a reference to 'the second commermoration of the first day of Maskaram' should also
 resolve to
 div[@type='commemoration'][2]/parent::div[@xml:id="Mask1"]/ancestor::div[xml:id="Maskaram"]
 in the same way as an hypothetical reference. The resolver of this reference needs to be
 able to map it to the correct piece with as few assumptions as possible about what the
 editor will have decided to be the relevant structures and names for its text and what the
 client will have picked among those to provide a pointer. Here we have again a place where
 the code needs to be savvier then we would like it to be if we assume code needs to be as
 generic as possible. A regex is stored (could be actually kept within the TEI with the existing
 appropriate elements)[15] and a function does its best to match, given a priority order what
 it could refer to piece by piece, building XPaths which are able to match any potential
 structures. The following is an example from the module of such constructor for a part of
 an XPath

"/(t:div|t:cb|t:pb|t:lb|t:l)[(@xml:id|@n)='"||
 $r/text()||"' or contains(@corresp,'"||$r/text()||"')]"

The reference used could be the @corresp to the Narrative Unit
 identifying the commemoration of Bartolomewos without identifying a specific text, as this may occur within differnt types of texts, in different forms, sometimes as edited text, sometimes only as transcription.
 This is indeed a legitimate, if not the most common reference used, as will also be shown
 below in the Collatex example Figure 8.[16]
The XQuery is able, within the exist-db setup for the redirection and parsing of the
 requested URI, to get a variety of possibly encoded structures and return the correct
 text. If we had a <citeStructure> in our TEI data, we could achieve the same from an
 explicit declaration (Cayless et al. 2021), but it is still often the case that we only have parts of text and that the encoding is in slow but constant progress so that such a declaration is not yet possible.
 The DTS Navigation API, will however only at the moment present
 one of them. The Collection API request for a textual unit like the one identified by LIT4032SenkessarS,[17] can be retrieved starting from the HTML view at
 https://betamasaheft.eu/works/LIT4032SenkessarS/main clicking on the VoID (Vocabulary of
 Interconnected Datasets) and then selecting the value of
 void:uriLookupEndpoint, that is
 https://betamasaheft.eu/api/dts/collections?id=https://betamasaheft.eu/LIT4032SenkessarS.
 Here the DTS Collection API tells us of the structure of the text, namely that there are
 textparts, which contain chapters which can contain subscriptio, commemoration and
 supplication. also this names are given by the encoder and selected by the script
 according to a series of alternative priorities for each element used in the
 encoding.

 "dts:citeStructure" : [{
 "dts:citeStructure" : [{
 "dts:citeStructure" : null,
 "dts:citeType" : "chapter"
 }, {
 "dts:citeType" : "subscriptio"
 }, {
 "dts:citeType" : "commemoration"
 }, {
 "dts:citeType" : "supplication"
 }],
 "dts:citeType" : "textpart"
 }]

Here we learn of what we may expect, not yet of the actual stuff available. Moving on to the DTS Navigation API with https://betamasaheft.eu/api/dts/navigation?id=https://betamasaheft.eu/LIT4032SenkessarS I am told what is available to begin with, as top structure

 {
 "dts:citeType" : "unit",
 "dts:dublincore" : {
 "dc:source" : [{
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/BNFabb66A/manifest"
 }, {
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/BNFabb66B/manifest"
 }, {
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/BNFet677/manifest"
 }],
 "dc:title" : "First half of the year"
 },
 "dts:ref" : "FirstHalf"
 }

Here, where you can see how the IIIF manifests are also related to the reference (also in the next example, with reference to the correct Ranges), I can then use levels, and I know from dts:citeDepth how many are available, to navigate different levels of structure or I can point to one of the available dts:ref to see what it contains. Since I know already that the commemorations are the fourth level, I can request https://betamasaheft.eu/api/dts/navigation?id=https://betamasaheft.eu/LIT4032SenkessarS&level=4 and get the following among the members of this level of citation

 {
 "dts:citeType" : "commemoration",
 "dts:dublincore" : {
 "dc:source" : [{
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/BNFabb66A/range/ms_i1.1.1.3"
 }, {
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/BNFabb66A/range/ms_i1.1.1.4"
 }, {
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/BNFabb66B/manifest"
 }, {
 "@type" : "sc:Range",
 "@id" : "https://betamasaheft.eu/api/iiif/BNFet677/manifest"
 }],
 "dc:title" : "Sǝnkǝssār commemoration of Bartalomewos"
 },
 "dts:ref" : "FirstHalf.1.Mask1.Mask1Bartolomewos"
 }

Using the dts:ref I can then request the passage with https://betamasaheft.eu/api/dts/navigation?id=https://betamasaheft.eu/LIT4032SenkessarS&ref=FirstHalf.1.Mask1.Mask1Bartolomewos and its text from the DTS Document API, which, if nothing different is stated and supported, should default to return the above XML in a <dts:fragment>. Eventually, other formats of reference known and inferable by the encoder, or user, e.g. https://betamasaheft.eu/api/dts/navigation?id=https://betamasaheft.eu/LIT4032SenkessarS&ref=NAR0017SBartalomewos using the @corresp instead of the @xml:id, would have worked just the same, but the API does not need to declare all the available, it tells its favourite as one option among many valid ones, while the code need to be gentle in accepting any format of request.

 This is all very experimental and new, it works only to an extent in this implementation and makes far too many assumptions in the code, some of which may just be plain wrong, but I hope that the features and usefulness of this to match the actual encoding of texts in a varied and complex collection, still allowing yet a higher level of interoperability, passing on to the consumer of the API as much complexity as possible. Paradoxically, the presence of
 multiple texts and translation of a single identified unit is in this context the simplest
 bit. The result is needless to say, shaky. Too many uncertainties, too many assumptions in
 the code. As we prefer mindless scribes because less prone to make changes, also mindless
 code should be a nicer acquaintance for the codicologist and philologist.

Joining in one dataset the information which can only queried from the XML
As already seen in the example above, one example where this data exposes connections
 to machines requesting it in a readily available way, is the list of witnesses of a given
 textual unit. In our TEI the declaration that a given content is into a manuscript is made
 within the TEI-based catalogue description of that manuscript. Therefore the list of the
 manuscripts which contain a text is the result of an XQuery in the database for those
 entries, it is not encoded in the TEI file describing the textual unit.[18]

<msItem xmlns="http://www.tei-c.org/ns/1.0" xml:id="ms_i1">
 <locus from="2r"/>
 <title type="complete" ref="LIT1957Mashaf" xml:lang="gez">ቀሌምንጦስ፡</title>
 <textLang mainLang="gez"/>
</msItem>

For a given textual unit LIT1957Mashaf I will go query all TEI files which have a
 <msItem> with a @ref pointing to it as in the example
 above. Because of what we said above, this is not quite it. If my LIT1957Mashaf is a part of
 another textual unit, and that is attested in the <msItem> I also want
 those manuscripts. The HTML presents these results with text to read
 the list of possible witnesses computed for a textual unit. The DTS API implementation
 instead presents that as part of the data, querying it similarly behind the scenes.

 "dc:source" : [{
 "fabio:isManifestationOf" : "https://betamasaheft.eu/BLorient751",
 "@type" : "lawd:AssembledWork",
 "@id" : "https://betamasaheft.eu/BLorient751",
 "dc:title" : "London, British Library, BLorient 751"
 }, {
 "fabio:isManifestationOf" : "https://betamasaheft.eu/BLorient772",
 "@type" : "lawd:AssembledWork",
 "@id" : "https://betamasaheft.eu/BLorient772",
 "dc:title" : "London, British Library, BLorient 772"
 }, {
 "fabio:isManifestationOf" : "https://betamasaheft.eu/BLorient753",
 "@type" : "lawd:AssembledWork",
 "@id" : "https://betamasaheft.eu/BLorient753",
 "dc:title" : "London, British Library, BLorient 753"
 }, {
 "fabio:isManifestationOf" : "https://betamasaheft.eu/BLorient752",
 "@type" : "lawd:AssembledWork",
 "@id" : "https://betamasaheft.eu/BLorient752",
 "dc:title" : "London, British Library, BLorient 752"
 }]

Indexes and clients
But without concrete use cases, it would be useless to develop APIs. While the viewer
 above demonstrates in one of the possible uses of the IIIF Presentation API, I will provide
 here three examples of currently-under-development or proposed uses of the DTS APIs in our
 project.
Beta maṣāḥǝft text navigation
Needless to say, we use the DTS API to navigate the transcriptions of manuscripts and
 the editions of texts which we have. Even if they are partial, as in most cases. Let me
 say, especially if they are partial or incomplete, we know is a bit
 of generously encoded structure of the text, e.g. an incipit. This is the norm and not the
 exception for us, although the collaborative set up as allowed many contributors to share
 what they have with the rest of the interested parties. Let me first discuss the
 navigation of a manuscript, which is more standard, as it is defined by the object itself
 and not by the structure of the intellectual content. We extract transcriptions using
 Transkribus, as noted above. The following example thus does not contain a guaranteed
 correct transcription in Ethiopic. The structure of the text, between folia, columns and
 lines should instead be correct and has been double checked before exporting the results
 of the Hand-written Text Recognition step. In the sequence of images we see the navigation
 from folio, to side, to column, to line in the column for the first line of the second
 folio, recto of Bǝḥerāwi Kǝllǝlāwi Mangǝśti Tǝgrāy, ʿUrā Qirqos, UM-035.[19]

Figure 3: All text of the transcription of the manuscript
[image: All text of the transcription of the manuscript]

Figure 4: Navigating to Folio 2, https://betamasaheft.eu/ESum035.2
[image: Navigating to Folio 2, https://betamasaheft.eu/ESum035.2]

Figure 5: Folio 2, recto, https://betamasaheft.eu/ESum035.2r
[image: Folio 2, recto, https://betamasaheft.eu/ESum035.2r]

Figure 6: Folio 2, recto, column a, https://betamasaheft.eu/ESum035.2ra
[image: Folio 2, recto, column a, https://betamasaheft.eu/ESum035.2ra]

Figure 7: Folio 2, recto, column a, line 1, https://betamasaheft.eu/ESum035.2ra1
[image: Folio 2, recto, column a, line 1, https://betamasaheft.eu/ESum035.2ra1]

The navigation is relative to the first available upper level and should allow to
 navigate within the text. This is rather expensive and time consuming but as a prototype
 allows us for example to point to exact pieces of text with a simply URL structure and
 return the correct text. This is also helpful to discover relevant passages. This is
 useful for example when comparing different manuscript witnesses of a same text. As seen
 above we can reach the correct places in the description of the content, these will
 contain the placement of the information and that we can use to resolve to the exact piece
 of text requested. If a given passage where the text in question occurs is known, then it
 can be pointed to using this same syntax, even if the description of the manuscript is not
 complete yet with that information. Alternatively a user could propose a change for the
 entry, clicking the EDIT button which redirects to GitHub, and add that bit of XML.
Figure 8: Collatex used to collate passages of text retrieved from DTS script, jumping the
 API
[image: Collatex used to collate passages of text retrieved from DTS script, jumping the
 API]

In this case the application does not consume the DTS API, it jumps directly to the
 XQuery functions fetching the correct portions of text from the parsing of the reference,
 transforms them into comparable strings, strips of some punctuation and then presents the
 results provided by passing those normalised strings to Collatex.[20]

How nice, if that could be done starting from a DTS endpoint so that one could collate
 passages from data stored in different source databases, eventually in different ways and
 formats. A functionality similar to that implemented for Alpheios, described below, would
 allow to collate transcriptions of manuscripts hosted by diverse institutions in the same
 way in which the Mirador viewer allows its users to see side by side sets of images coming
 from different providers. And if that collation and the linked IIIF parts could go hand in
 hand, we could have a generic editor for images and texts, based on solid jsonLD-based
 standards. But both in this case and the previous actually our application has no reasons
 to consume its own API, it uses instead the same XQuery functions which are used by the
 API directly.

Web Annotation indexes
What is an entry into an index of places or persons if not a list of occurrences
 formatted as a, possibly resolvable, reference to the main structure of the text?
 Annotations exist in the text for personal names and toponyms marked up in TEI, and
 querying them together with their context is a fairly easy job for an XQuery script. So,
 if we can fetch from DTS our table of contents, the contents in the correct order with
 correct references flexibly adjusted according to the text itself and its author and
 encoder, we may in the same way fetch a list of marked terms of a given kind, e.g. toponym
 and produce our indexes by providing an ordered list of these and the corresponding
 pointer to their context in terms of navigation. Eventually, a script-based index allows
 us to alter the context and produce indexes from the same annotations for outputs or views
 which are different. The Distributed Text Services does not have a specification for this,[21] but I suggested that this would complete, with IIIF, the resources needed to
 be able to produce API based book products for example, dynamically generated from the
 collaboratively edited data. Similarly a citation of a passage in another text, encoded
 like in the following example,

<ref cRef="betmas:LIT2000Mazmur.101.7">
ተመሰልኩ፡
<app>
<lem wit="#D #E #F">ጰልቃን፡</lem>
<rdg wit="#M #V">ጳልቃን፡</rdg>
</app>
ዘገዳም።
</ref>

could be unpacked into a series of meaningful informations for a client which is
 navigating the index, using the Web Annotation standards, like in the example below, which
 is extracted from the GitHub issue linked above.

 {
 "body": [
 {
 "text": "ተመሰልኩ፡ ጰልቃን፡ ጳልቃን፡ ዘገዳም።",
 "@lang": "gez",
 "role": "ref",
 "id": "https://betamasaheft.eu/LIT2000Mazmur.101.7"
 }
],
 "@context": "http://www.w3.org/ns/anno.jsonld",
 "target": {
 "source": {
 "dts:citeType": "sentence",
 "dts:level": "1",
 "dts:citeDepth": 2,
 "dts:passage": "/api/dts/document?id=https://betamasaheft.eu/LIT4916PhysB&ref=4.2",
 "type": "Resource",
 "link": "https://betamasaheft.eu/LIT4916PhysB.4.2",
 "id": "https://betamasaheft.eu/LIT4916PhysB",
 "dts:ref": "4.2",
 "dts:references": "/api/dts/navigation?id=https://betamasaheft.eu/LIT4916PhysB&ref=4.2"
 },
 "selector": {
 "@value": "TEI/text/body/div[2]/div/div[2]/ab/ref",
 "type": "XPath"
 }
 },
 "type": "Annotation"
 }

In the body of the annotation, I can count on the ability of the server to unpack the
 @id, from https://betamasaheft.eu/LIT2000Mazmur.101.7 to
 https://betamasaheft.eu/works/LIT2000Mazmur/text?ref=101.7 which uses the same parameter
 of the DTS specification to pass on to the client requests related to the passage and the
 collection. Also the target of the annotation is enriched with a series of information
 which provide navigation assistance, including the XPath selector, with one among the many
 possible Xpath to the node which constitutes the annotation (<ref> in
 this case). Both if I am looking at a wider collection of texts or I am focusing on a
 portion of an identified text, I can produce on the fly indexes of declared features. For
 example in the image below, the index of places is loaded besides the navigation bar for
 the Chronicle of Bakāffā[22]

Figure 9: The index of places beside the navigation of the text structure in the Chronicle of
 Bakāffā.
[image: The index of places beside the navigation of the text structure in the Chronicle of
 Bakāffā.]

Alpheios Alignment
I would like to conclude with an example of an external client for the DTS services,
 the Alpheios Alignment tool (Version 2), which has just been developed by The Alpheios Project.[23] The first version of the Alpheios tool for the alignment of texts in different languages was
 improved so that texts may be uploaded from source, with copy paste or from DTS API.
 Available implementations include Alpheios' own collection of Greek and Latin texts and
 the Beta maṣāḥǝft implementation. In the following images you can see how the interface
 leads through different requests to the API to select the text which is then loaded and
 prepared for alignment.
Figure 10: Loading a text in Alpheios from a DTS API.
[image: Loading a text in Alpheios from a DTS API.]

Figure 11: Navigating the Collection API
[image: Navigating the Collection API]

Figure 12: Available passages (folia) from the Navigation API
[image: Available passages (folia) from the Navigation API]

Eventually a DTS 'Search' functionality could be added to load a collection which is
 a subset of entries coming from a query, so not all resources with some text, but all
 resources with some text and a match for a given string query. This would need a parameter
 for this query string to be added to the specification, which has not yet been proposed.
The json export of alignment will be then transformed to TEI for inclusion in the BM
 data repository and eventually the annotation thus created fed into a set of existing
 morphological annotations and texts.

Conclusion
I hope I have demonstrated in practice some of the aspects of the XQuery implementation
 serving the DTS and IIIF API specification for the Beta maṣāḥǝft project. While I think the
 DTS API specification are the most innovative and promising development, they are still very
 much a 'Baustelle' but I think that their potential is self evident and I look forward to more
 and more implementations and texts. These can be added also to Matteo Romanello's DTS
 Aggregator (https://github.com/mromanello/aggregator) and become immediately
 available also in the experimental DTS Browser
 (https://dts-browser.herokuapp.com/).

Bibliography
[Almas et al. 2021] Almas, Bridget, Thibault Clérice, Hugh Cayless, Vincent Jolivet, Pietro Maria Liuzzo, Matteo Romanello, Jonathan Robie, and Ian W. Scott. 2021. ‘Distributed Text Services (DTS): A Community-Built API to Publish and Consume Text Collections as Linked Data’. https://hal.archives-ouvertes.fr/hal-03183886.
[Clifford and Wicentowski 2020] Anderson, Clifford B., and Joseph C. Wicentowski. 2020. XQuery for Humanists. College Station, Texas: Texas A & M Univ Pr.
[Bodard 2021] Bodard, Gabriel.
2021. ‘Linked Open Data for Ancient Names and People’. In Linked Open Data for the Ancient Mediterranean: Structures, Practices, Prospects, edited by Sarah E. Bond, Paul Dilley, and Ryan Horne. Vol. 20. ISAW Papers. http://hdl.handle.net/2333.1/zs7h4fs8.
[Cayless et al. 2021] Cayless, Hugh, Thibault Clérice, and Jonathan Robie. 2021. ‘Introducing Citation Structures’. Presented at Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021. Balisage Series on Markup Technologies, vol. 26. doi:https://doi.org/10.4242/BalisageVol26.Cayless01.
[DTS] ‘Distributed Text Services API Specification’. 2018. https://w3id.org/dts/.
[The Guardian 24 January 2021] ‘Fabled Ark Could Be among Ancient Treasures in Danger in Ethiopia’s Deadly War’. 2021. The Guardian. 24 January 2021. http://www.theguardian.com/world/2021/jan/24/fabled-ark-could-be-among-ancient-treasures-in-danger-in-ethiopias-deadly-war.
[Liuzzo 2017] Liuzzo, Pietro Maria. 2017. ‘Encoding the Ethiopic Manuscript Tradition: Encoding and representation challenges of the project Beta maṣāḥǝft: Manuscripts of Ethiopia and Eritrea’. Presented at Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017. Balisage Series on Markup Technologies, vol. 19. doi:https://doi.org/10.4242/balisagevol19.liuzzo01.
[Liuzzo 2019] Liuzzo, Pietro Maria. 2019. Digital Approaches to Ethiopian and Eritrean Studies. Supplement to Aethiopica 8.
[Beta Maṣāḥǝft Data] Liuzzo, Pietro Maria, Solomon Gebreyes, and Dorothea Reule. 2020. ‘Beta Maṣāḥǝft TEI-XML Data’. UHH Data Notes 1. doi:https://doi.org/10.25592/DANO-01-001.
[Beta Maṣāḥǝft Guidelines] Liuzzo, Pietro, Dorothea Reule, Eugenia Sokolinski, Solomon Gebreyes, Daria Elagina, Denis Nosnistin, Eliana Dal Sasso, and Jacopo Gnisci. 2018. ‘Beta Maṣāḥǝft Guidelines’. 2018. https://betamasaheft.eu/Guidelines/. http://dx.doi.org/10.25592/BetaMasaheft.Guidelines
[Retter 2012] Retter, Adam. 2012. ‘RESTful XQuery: Standardized XQuery 3.0 Annotations for REST’. In XML Prague 2012: Conference Proceedings, University of Economics, Prague, Czech Republic, February 10–12, 2012, 91–123.
[Reule 2018] Reule, Dorothea. 2018. ‘Beta Maṣāḥǝft: Manuscripts of Ethiopia and Eritrea’. In COMSt Bulletin, edited by Alessandro Bausi, Paola Buzi, Pietro Maria Liuzzo, and Eugenia Sokolinski, 4/1:13–27.
[Siegel and Retter 2015] Siegel, Erik, and Adam Retter. 2015. EXist: A NoSQL Document Database and Application Platform. Sebastopol, CA: O’Reilly.
[Waal 2021] Waal, Alex de. 2021. ‘Steal, Burn, Rape, Kill’. London Review of Books, 17 June 2021. https://www.lrb.co.uk/the-paper/v43/n12/alex-de-waal/steal-burn-rape-kill.

[1] The TEI-Publisher (https://teipublisher.com/) has, among many other
 features, its own support for a DTS Collection API out of the box.
[2] For RESTxq see Retter 2012 and Siegel and Retter 2015.
[3] https://iiif.io/api/presentation/2.1/#status-of-this-document
[4] https://betamasaheft.eu/ See also Liuzzo 2017 and more recently
 Liuzzo 2019, and a brief description of the underlying data in Beta Maṣāḥǝft Data. This is a long-term project funded within the framework of the
 Academies' Programme (coordinated by the Union of the German Academies of Sciences and
 Humanities) under survey of the Akademie der Wissenschaften in Hamburg. The funding will
 be provided for 25 years, from 2016–2040. The project is hosted by the Hiob Ludolf Centre
 for Ethiopian Studies at the Universität Hamburg. It aims at creating a virtual research
 environment that shall manage complex data related to the predominantly Christian
 manuscript tradition of the Ethiopian and Eritrean Highlands. My participation to the
 conference, the writing of the code discussed and of this article are supported by this
 project, which I would like to acknowledge here.
[5] https://distributed-text-services.github.io/specifications/ DTS. See also Almas et al. 2021.
[6] See Waal 2021 and The Guardian 24 January 2021.
[7] Bodard 2021
[8] We do that as well in Beta
 maṣāḥǝft especially to give the possibility to directly link to a compiled query for use in other tools and environments.
 The RDF has the disadvantage of being as such extremely hard to version, let alone cite as such, which makes the priority of the XML over this other format a fundamental requirement.
 I would like to thank Elisa Beshero-Bondar for her question during the conference, which triggered the write up of the above paragraphs and examples.
[9] I could have probably used the array{} constructor instead, but that is
 how the code is at the moment.
[10] The same script could be used
 to produce the triples, store and index the RDF and serve it instead from a the triplestore, implementing the RESTxq
 module or any other implementation to query only the triplestore with an appropriate CONSTRUCT or DESCRIBE queries serialized as json-LD.
 This would remove further necessity of data-formatting logic from the script leaving it where it belongs, that is, in the data.
 The intermediate layer is one way to preserve the integrity of the data provided with all necessary information to avoid misuse and ensure credit is given, if required.
[11] https://readcoop.eu/transkribus/
[12] We have this in a piece of XSLT.
[13] Clifford and Wicentowski 2020
[14] https://betamasaheft.eu/Guidelines/?id=definitionWorks
[15] See, The Reference System Declaration in the TEI Guidelines.
[16] See the page on references of the project's Guidelines for more on this.
[17] Dorothea Reule, Alessandro Bausi, ʻSǝnkǝssār (Group A)ʼ, in Alessandro Bausi, ed.,
 Die Schriftkultur des christlichen Äthiopiens und Eritreas: Eine multimediale
 Forschungsumgebung / Beta maṣāḥǝft (Last Modified: 28.3.2017)
 https://betamasaheft.eu/works/LIT4032SenkessarS [Accessed: 2021-06-16+02:00]
[18] There may be a list of witnesses, which is however a different thing.
[19] Denis Nosnitsin, Pietro Maria Liuzzo, Alessandro Bausi, Nafisa Valieva, Massimo
 Villa, Eugenia Sokolinski, ʻBǝḥerāwi Kǝllǝlāwi Mangǝśti Tǝgrāy, ʿUrā Qirqos, UM-035ʼ,
 in Alessandro Bausi, ed., Die Schriftkultur des christlichen Äthiopiens und Eritreas:
 Eine multimediale Forschungsumgebung / Beta maṣāḥǝft (Last Modified: 27.5.2021)
 https://betamasaheft.eu/manuscripts/ESum035/main [Accessed: 2021-06-14+02:00]
[20] https://collatex.net/
[21] https://github.com/distributed-text-services/specifications/issues/167
[22] Dorothea Reule, Solomon Gebreyes, Jonas Karlsson, Antonella Brita, Alessandro
 Bausi, Simone Seyboldt, ʻChronicle of Bakāffāʼ, in Alessandro Bausi, ed., Die
 Schriftkultur des christlichen Äthiopiens und Eritreas: Eine multimediale
 Forschungsumgebung / Beta maṣāḥǝft (Last Modified: 23.7.2019)
 https://betamasaheft.eu/works/LIT4633Chronicle/main [Accessed: 2021-06-14+02:00]
[23] https://alignment.alpheios.net/

Balisage: The Markup Conference

Serving IIIF and DTS APIs specifications from TEI data via XQuery with support from a
 SPARQL Endpoint
Pietro Liuzzo
Wiss. Mitarbeiter
Universität Hamburg

<pietro.liuzzo@uni-hamburg.de>
Pietro Maria Liuzzo deals with written artefacts and their digital representations,
 their encoding, visualization and reusability, with methods for easy and fruitful
 collaboration in cataloguing inscriptions and manuscripts, in editing ancient texts and
 scholarly resources. He has been involved with digital epigraphic projects for a long
 time.

Balisage: The Markup Conference

content/images/Liuzzo01-009.png
Chronicle of Bakaffa

Dorothea Reule, Solomon Gebreyes

Witnesses of
the edition

Hide/Show Bibliography

"Abbay
paragraph 25
paragraph 17
"Abola
paragraph 33
paragraph 33
"Adabo

Agam Waha
"Agad

"Aksum Sayon
paragraph 80
paragraph 80
’Amhara

‘Angarab

"Aringo

"Azazo

Close

Work in progress, please don't use as reference

https://betamasaheft.eu/LIT4633Chronicle

Hide/Show Text Navigation Index of persons Index of places Index of works

paragraph

1=

paragraph

[N}
N

44 Z

paragraph
Z

o

paragraph
Z

lon

paragraph
Z

IN

paragraph
Z

loo

paragraph
Z

o

paragraph
10 Z

paragraph
1 Z

paragraph
12 Z

paragraph: 1 backtotop @ Quotations Alignment

The first part of the chronicle deals with the first four year
s of Bakaffa <¥'s reign.

BEU: A 2TW: NP @Y%h: ANL: < NG YTW: NP AMIHA
NwC: HEYAN: DLTOAL:: A AIPAR: HAGAG®: $80978: DEIG
&: HN@-C: AYt: A9PY: A @AW Ah: A OAOD: dMCh: 9
AOD: RAD: HE&AN: ANOD: NUA: A7t OADPTN: NOD: AR HE
AOD: OROLL: AA: NLd: AT £O6A: AIPAdn: HPLN: NLHY
P AINCE OHAALN: NPRNT: &n@: Ah: ONRYT: DEIVTY: d
10th: gPhéTh: 1M

paragraph: 2 backtotop @ Quotations Alignment

Editions Bibliography

Basset, R. 1882. Etudes sur I'histoire d’Ethiopie, ed., tr. R.
Basset, Extrait du Journal Asiatique (Paris: Imprimerie
nationale, 1882) @ <.

Guidi, L, ed., 1960. Annales Iohannis I, ‘Iyasu I et Bakaffa.
Textus, tr. I. Guidi, Corpus Scriptorum Christianorum
Orientalium, 22, Scriptores Aethiopici, 5 (Louvain:
Secrétariat du Corpus SCO, 1960) @ <.

content/images/Liuzzo01-008.png
Here you can collate transcriptions of manuscripts
using Collatex https://collatex.net/) from our server

installation.

You cannot enter your own text, but you can collate any
text which is in the database. To add your transcription,

see the guidelines here.

In the form below you have to provide the two DTS
URNs of the passages you want to compare, then hit
the collate button and you will get a visualization of the
TEI apparatus output from Collatex.

The format of your URNSs has to be the following

BLorient718.1

will point to all the folio 1 of BL Orient 718 (recto
and verso) and take all what is in there

BLorient718.1r

will point to all the folio 1 recto of BL Orient 718
and take all what is on that page

BLorient718.1lra

will point to the folio 1 recto, column a of BL
Orient 718 and take all what is in that column

BLorient718.1lral

will point to the folio 1 recto, column a of BL
Orient 718 and take all what is in that column, line

1

BLorient718.1lral-1ra3

witll nAairnt +A +ha fAalina 1 rartas raliimn, 2 ~AF DI

NARO019SBarkisos

Add another witness hints

EMIP01859 [text][viewer]
9P $L07P: AP U NHE: OAT:

K044 nN: &N: N[lost

chars
11n0eN:
mRN:

$RN:

{manuscriptid}.{passage}-{passage}

{manuscriptid}.{passage}-{passage}

EMML4398 [text][viewer]

$9°: PRIIR: APP5U NHE: OAT:

RO4d:
A

$lillegible]nR.N: $RA:
HASSAAIP:E OHY+:

Pa.p:

TWE o:

EMML6952 [text][viewer]

9°: $RITE: APl NHE: OAT:

RO

AN: NChTN:

a8

SE

$RN:

ESqdq004 [text][viewer]

9°: PROIR: APP5U NHE: OAT:

RO4d:

A

$o.N:

mAN:

Alternatively, you can specify a narrative unit and we will pick any manuscript transcription which contains a reference to that and collate it.

EStzmO002 [text][viewer]
£9°: $LAFER: hgP U NHE: OAT:
ROLd:

A

d&.n:
nchnen:
RRN:
$[illegible
chars

110:

content/images/Liuzzo01-007.png
Hide/Show Bibliography Hide/Show Text Navigation Index of places

780M: ANIPGR:

content/images/Liuzzo01-006.png
<

Hide/Show Bibliography

5 F R
@ @ N
NN [
o .

NONON

5
D
N
w
N

line 2.4

N

line 2.5

N

line 2.6

N

line 2.7

N

line 2.8

N

line 2.9

N

line 2.10 /2

line 2 11 2

10

Hide/Show Text Navigation Index of places

720M: ANTPGE:
F A AMDAG:
a9: 1LOM: Adeit Ok,
EANC: BYDV: Ad,
APPL.: “HINT: Adt A
PUPATL: AT ATD:: b
Phe: MO AG: A
Phd: GEC: AOA: K
i AOA: UNE: Wh
AG: AdAA: dAY:
0% NADAPPNLY:
0: 99: 17 AQD: @
AP: Rd.: M-S Ad,

content/images/Liuzzo01-005.png
Hide/Show Bibliography Hide/Show Text Navigation Index of places

level > |2

Voyant 780M: AAPPYP:

s AT ANDITR:
el 999: ML0h: Adai: DX,
cliay @MLANC: 87D Ad,
inez1 2 | 5 APPE.: ANAT: Advwt A
Ine22 2 PUPAY: AT ATD: A
ne23 2 Pre: MIA: Ab: A
= PR 96 AOA: AP
— Bz AOA: UNL: WA
ineay o 10 AG: AdAA: dAY:
e 2 0F: NODATPNSY: h
ne29 2 g: 699: 7€ AGD: @
g A9 Rd.: Mbé%: A, |P
line2.11 /. e o e o B seem M o

content/images/Liuzzo01-004.png
<

Hide/Show Bibliography Hide/Show Text Navigation Index of places

)
<
8
v

5
D
N
w
N

line 2.4

N

line 2.5

N

line 2.6

N

line 2.7

N

line 2.8

N

line 2.9

N

line 2.10 /2

line2.11 2

fOIiO,'Z back to tOp o Quotations Alignment

|27 |2 |720M: AATPIR: |2 : TAA: ANDIT: |3 999: N0 Ado DR, | ODENC:
0707 Ad. | KP4, INRT: Adot A | FPUPAT: AT ADD: A | PR E: (DA Ad: | TP
Ad: G&C: AOA: AIP | Dzt AOA: UNL: Wh|AG: AdAN: dAT: | 1T OF: NADAIPNE
N[9: 999 Wy AGD: @ | hIP: Al Mb-%: AL [P [N: GNL: NCHA: A|OD: AONE
P AMPF: C|WN: Adot AIPNA: A | OA: XN1998: £7N: KD | INRMIN&: AY T |©
AOA: xAN: RAL: AN | A ONODH: K¥AN: |8 1 At ADECR: 0DN | 7: ANLk: (DA
A OA | $&.N: 14T 93| 0D: BEMDT | P4 AANTPH: @R | TATIH: ADNY: $§ |2V |
3| C8: ANt (3 OA | PN: 1P REDP: K| ABL: MYME-KIP: & | OD: (DY
9 Afe | 7 OAE: VNG 0D | &47: NOESODE: 0D | 7% 8: AODROA: |8 OCH:
o9 2 HE: AODR |1 P&CP: AMT: ODA | PA: NODH: K¥AT: |1 e At HACODY: 9P|
&4 RPPRAR: 99%: |13 N8: Fiht: OAIPIR |0 £¢- ADDE AIPRN | Aé: ATD: hIPR
APL: |16 AOA: KPILT: ThYA:

content/images/Liuzzo01-003.png
Hide/Show Bibliography Hide/Show Text Navigation Index of places

Voyant folio: 1 backtotop @ Quotations Alignment
folo1 2

G2 £ 1|3 1 |28 1 O0DY: |3 RN RRACTH: @ | KATH: ORAAT |1k R1: hOL: 07
:: f M| @-&9°: A0D: LS0D |+ (DITVFAE: A0D | TADCH: TLEH | 9: NHATAPN: A| (DAY:
wioe s TRCE:ANL|T: DAA: HNGY: |12 PEC: APPAAL: | Mot b ATV |2 [780M: A
s 2 ATOE: [2: AN ANDIT: |3 99%: 10A: Adet: D | DENG: B N: AL | APE: 1N
oz 2 Kt Adwt A|PPUPAL dAT: AGD: K| PPhe: MDIA: Ad: A | TPAL: IEC AOA: WP | P
Blog 2 AOA: UNL: Wh|AG: AdAN: dAT: |11 OF: NADAIPNEY: N|G: 999: 7€ AGD: O |
B2 a9 Rd LG Ad,

foio 10 2

foio 1 2

content/images/Liuzzo01-002.png
This textual unit is included in the following E
textual units (saws:formsPartOf)

Mashafa $ar‘at za-was'a 'am-manbara Marqos
hawarya 'asm-makana ma‘allaga = CAe 1968

Mashafa sa‘atat = CAe 3575

content/images/Liuzzo01-001.png
& C' @& mirador-dev.netlify.app/__tests__/integration/mirador/ ¥ &6 0 B e m A * s :

iif App [Funding: Submissi.. B4 % mnx % GL [E] B BetMas Dssues &= w (@) M @ @ [A & B FRPP < webprotege B3 DWA [E5 jTEl BS ENCODE E5 Epidoc E B I » Elenco di lettura
6 Boherawi Kallalawi Mangasti Tegray, ‘Ura Qirqos, UM-035 (Added from URL) Fnﬁéasahaft
14items . T —
i Bodleian Library MS. Ind. Inst. Misc. 22 (Added from URL) Iy
o | 84 items R
Self-Portrait Dedicated to Paul Gauguin (Added from URL) Harvard &%
6 items Art Museums
National Gallery of Art Collection Highlights National Gallery of Art >
26 items .s.
Housing Plans for Greater Dublin Irish Architectural Archive

1 items

content/images/Liuzzo01-012.png
Upload texts from DTS API

Home > Beta masahaft DTS API > Beta masahaft Manuscripts >

Boherawi Kallolawi Mangoasti Togray, ‘Asir Matira, AM-019

You can either upload the entire document or selected passages:

Entire document

025

026

027

028

029

030

031

032

049

0 50

051

052

053

054

055

0 56

073

074

075

076

o7

078

0719

0 80

content/images/Liuzzo01-011.png
Upload texts from DTS API

Home > Beta masahaft DTS API

Beta masahaft Textual Units

Beta masahaft Manuscripts

iy |

content/images/Liuzzo01-010.png
= @ ALPHEIO®S

ENTER TEXT

Original text: Ti

Scegli file | Nessun file selezionato DTSAPI Ty

Prepare texts for alignment

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

