[image: Balisage logo]Balisage: The Markup Conference

Structural Invariants in XForms
Steven Pemberton
Researcher
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Balisage: The Markup Conference 2021
August 2 - 6, 2021

Copyright © Steven Pemberton, 2021. All rights reserved.

How to cite this paper
Pemberton, Steven. "Structural Invariants in XForms." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Pemberton01.

Abstract
XForms is a declarative XML-based programming language for writing
	 applications for the web and elsewhere. One of its central aspects
	 is invariants that describe relationships between
	 values, such that if a value changes or is changed, its related
	 values specified in invariants get updated automatically. This
	 is much like how spreadsheets work, though more general. A major
	 advantage of this approach is that much administrative detail is
	 taken out of the hands of the programmer, and done automatically:
	 the programmer specifies the relationships, and the computer does
	 the work.
	

	 However, XForms in its current incarnation only allows invariants
	 to be placed between simple content values, even though there are
	 important relationships that could be specified over data
	 structures as a whole. This paper explores the possibilities for
	 extending the mechanism to more general cases.
	

Balisage: The Markup Conference

 Structural Invariants in XForms

 Table of Contents

 	Title Page

 	Introduction

 	Invariants
 	An example of the use of invariants

 	Advantages

 	Implementation

 	Events

 	Limitation

 	Structural Invariants
 	Requirements

 	Higher-level functions

 	Implementation

 	Conclusion

 	About the Author

 Structural Invariants in XForms

Introduction

	 XForms [XForms 1.1,
	 XForms 2.0] is a declarative XML-based
	 programming language for defining applications on the web and
	 elsewhere. It is a W3C standard, and in worldwide use, for
	 instance by the Dutch Weather Service, KNMI, national government
	 websites, the BBC, a US Department of Motor Vehicles, the
	 British National Health Service, and many others. Largely thanks
	 to its declarative nature, experience has shown that you can
	 produce applications in much less time than with traditional
	 procedural methods, typically a tenth of the time
	 [Introduction to XForms].

Invariants

	 An essential mechanism within XForms is for invariants:
	 relationships are specified between values, such that if a value
	 changes, for whatever reason, its dependent values are changed to
	 match. This may then generate a chain of changes along dependent
	 values.

	 This is very similar to the basic calculation mechanism in
	 spreadsheets, with one major advantage: it is much more general.

	 An example that illustrates the advantages of this generality of
	 the invariant mechanism is the XForms Map application
	 [Map]. This is a Google-maps slippy-map
	 style of application, that displays a map of anywhere in the
	 world, and allows you to pan and zoom using the mouse. It is a
	 surprisingly small number of lines of XForms code, about 90 in its simplest incarnation,
	 with the startling property, at least startling for a procedural
	 programmer, that it contains not a single
	 while statement.

	 It was Dijkstra in his seminal book A Discipline of
	 Programming [Dijkstra]
	 who first pointed out that the principle algorithmic purpose of a
	 while statement in programming is to maintain
	 invariants. With this view in mind, it is then less surprising
	 that if you have a mechanism in a programming language that
	 automatically maintains invariants, the need for
	 while statements goes away.

An example of the use of invariants

	 To get a taste for why and how this is, let us briefly examine the
	 mechanisms used for implementing the map example.
	

	 The highest-level abstraction of the application is that there is
	 a two-dimensional position of a location in the world, (x, y),
	 and a value that represents the magnification or zoom value required;
	 the application then retains a display of a map centred at that location.
	

	 The implementation uses a supporting service that delivers
	 (square) map tiles that represent a map region covering a set of
	 locations at a particular zoom level:
	

	 http://<site>/<zoom>/<x>/<y>.png

	 The coordinate system for the tiles is as a two-dimension array.
	 At the outermost level, zoom 0, there is a single tile
	
[image:]

	 at the next level of zoom, 2×2 tiles,
	
Table I
	
		 [image:]
	 	
		 [image:]
	
	
		 [image:]
	 	
		 [image:]
	

	 at the next level 4×4, then 8×8, and so on, up to zoom level 19.
	 So it is a fairly simple arithmetical calculation to work out
	 which tile you need for a location in world coordinates: you work
	 out for the given level of zoom how many locations are represented
	 by each tile, and divide.
	

	 scale=226 - zoom
	

	 tilex=floor(worldx ÷ scale)
	

	 tiley=floor(worldy ÷ scale)
	

	 In XForms:
	

	 <bind ref="scale" calculate="power(2, 26 - ../zoom)"/>
	 <bind ref="tileX" calculate="floor(../worldX div ../scale)"/>
	 <bind ref="tileY" calculate="floor(../worldY div ../scale)"/>

	 Note that these are not assignments as in procedural languages,
	 but invariants -- statements of required equality: if
	 zoom changes then scale will
	 be updated. If scale or
	 worldX changes, then tileX
	 will be updated, and so on.
	

	 Once you have the coordinates of the tile you need, is is equally
	 trivial to calculate the URL necessary for the tile to be
	 delivered:
	

	 <bind ref="tile"
	 calculate="concat(../site, ../zoom, '/', ../tileX, '/', ../tileY, '.png')"/>

	 and displaying it is as simple as
	

	 <output ref="tile" mediatype="image/*"/>

	 If you need more tiles to get a larger map, it is obviously easy
	 to calculate the indexes of adjacent tiles.
	

	 So displaying the map is clearly easy, and uses simple invariants.
	

	 Making the map pannable uses the ability of keeping the mouse
	 coordinates and state of the mouse buttons as values: then it is
	 only a question of specifying that when the mouse button is down,
	 the location of the centre of the map is the sum of the current
	 location and the mouse coordinates. As this value changes, so the
	 map display is (automatically) updated to match.
	

Advantages

	 The advantages of the invariant approach are many and include that you can
	 far more easily specify the computational intent of a piece of program, and so
	 the computational intent is therefore much more obvious to the reader of the
	 code; the computer does more of the (administrative) work, saving the
	 programmer time; the resulting code is much shorter (typically a quarter of the
	 length); and production time is greatly reduced: reports of applications
	 needing only 1/10th of the time have been widespread, but some even more than
	 that.
	

Implementation

 The XForms invariant mechanism uses is a fairly straightforward ordered-graph
 based dependency algorithm
 [Model Processing,
 Recalculation],
 ordered since XForms disallows circular
 dependencies; static analysis can be used for large parts,
 though dynamic dependencies are also permitted. Updates are
 triggered by changes to dependent values, and updates are then
 ordered along the dependency chain and applied. For example,
	 the graph of dependencies of the map application fragment above
	 looks like this:
	
Figure 1: A dependency graph
[image:]

 Initially the system is at stasis: all
 values are initalised, and all invariants are up-to-date.
 Whenever a change occurs, whether caused by the user, or by the
 system as a response to an event, an update
 occurs, in order to return the system to stasis.
	

 The update mechanism has 4 stages:
	
	
		 Rebuild: If there have been structural
		 changes in the data (elements or attributes inserted or
		 deleted), the graph of dependencies may have changed, and
		 some invariants may need to be added, deleted, or adapted
		 accordingly.
	

	
		 Recalculate: Whether or not anything
		 happened during rebuild, new values (and related properties)
		 are calculated based on any changed values.
	

	
		 Revalidate: Any new values are checked
		 for validity (this step is not of further interest for this
		 paper),
	

	
		 Refresh: The display is amended with
		 the new values.
	

	 One of the reasons that the XForms dependency graph is so useful is that if
	 a value changes, only dependent values need be recalculated. Initially (at
	 least in principle), all values are calculated, but after that, changes only
	 cause a subset of the values to be updated. Later we will be referring to the
	 update efficiency,
	 how much work has to be done to restore an invariant.
	

Events

 Although the update mechanism is automatic, there are
 opportunities to hook into it, in order to deal with special
 cases not dealt with automatically, for instance setting up
 initial dynamic values on initialisation:
	

	 <action ev:event="xforms-ready">
 	 <setvalue ref="today" value="local-dateTime()"/>
	 </action>

 This uses the XForms event mechanism
 [Events], that allows different
 classes of processing events to be caught and responded to,
	 such as xforms-ready in the example above.
	

Limitation

 The XForms invariant mechanism has one main limitation: it can
 only make changes to simple content, values that can be
 calculated with a simple expression. To make structural changes,
 you have to use the event mechanism.
	

	 The events of interest here are twofold:
	
	
		 when the content of an element or attribute changes,
	

	
		 when items are inserted or deleted causing structural
		 changes to an instance.
	

 Handlers can listen for events that report these changes and
 respond in some way.
	

 As a simple example of such a structural change, suppose we have
 an array of values that has to be of a certain size, defined by
 an attribute on the root element.
	

	 <instance>
	 <data size="10" xmlns="">
	 <value/>
	 </data>
	 </instance>

 To initialise the array, the xforms-ready
 initialisation event is caught, to ensure that there are the
 right number of elements:
	

	 <action ev:event="xforms-ready">
 	 <insert ref="value" while="count(value) < @size"/>
	 </action>

 (The <insert/> action by default
 duplicates the last element in the nodeset referenced). As a
 result at start up there are the right number of elements.
	

 However, if size changes during processing,
 the number of elements has to be changed, either increased or
 decreased. The way to do that is to catch value
 changed events for that value:
	

	 <action ev:event="xforms-value-changed">
	 <insert ref="value" while="count(value) < @size"/>
	 <delete ref="value[last()]" while="count(value) > @size"/>
	 </action>

 This inserts elements if there are less than the required number
 and deletes elements if there are more.
	

 (It should be remarked in passing that while
 was perhaps a poor choice of name for the guard attribute, since
 it could mislead the reader about its intent. It is a guard to
 the action and so a name like suchthat might
 have better reflected its intent.)
	

 An alternative to doing the deletes is to use
 relevance. This leaves the elements
 physically present in the instance, but excludes them from
 availability in the user interface, saving repeated insertions
 and deletions if size changes often, and only
 requiring actual changes when the new value of
 size is larger than any previous.
	

	 <bind ref="value" relevant="position() < @size"/>

 A similar approach can be used for two-dimensional arrays, by
 first growing a row, and then duplicating that sufficiently:
	

	 <instance>
 	 <game size="10" xmlns="">
	 <row><c clicked=""/></row>
	 </game>
	 </instance>

	 <action ev:event="xforms-ready">
	 <insert ref="row/c" while="count(//c) < /game/@size"/>
	 <insert ref="row" while="count(//row) < /game/@size"/>
	 </action>

Structural Invariants

	 These examples show that you can use events in order to maintain your own invariants.
 The question arises, to what extent, and how, could invariants
 that affect structure be introduced into the invariant
 mechanism, without having to resort to such hooks?

	 The first thing to note is that the existing XForms invariant
	 bindings don't state the invariant, but only how to restore it,
	 and that the calculate attribute contains both
	 the signals that indicate that the invariant needs restoring, as
	 well as the method to restore it.

	 <bind ref="tileX" calculate="floor(../worldX div ../scale)"/>

	 On the other hand, in the two structure examples above, the
	 signal (the value changing) is separate from the restore
	 mechanism (the inserts and deletes). This is possibly a clue to how
	 the mechanism could be integrated. Here is a strawman suggestion:

	 <structure requires="count(value) = @size">
	 <insert ref="value" while="count(value) < @size"/>
	 <delete ref="value[last()]" while="count(value) > @size"/>
	 </structure>

	 This allows the boolean requires attribute to
	 become part of the dependency algorithm, and the body of the
	 structure element to become part of the update
	 mechanism, namely the rebuild part.

Requirements

 While this solves a simple case of structural invariants, there
 are more complex ones.
	

 XForms already allows you, for instance, to repeat over a
 filtered set of values. For instance displaying the data that
 matches a search string:
	

	 <repeat ref="data[contains(., instance('search')/q)]">

 But apart from repeating controls over a subset of data, you
 would also like to be able to say this structure
 contains the data that matches the search string.
 Again a strawman:
	

	 <structure ref="subset"
 calculate="data[contains(., instance('search')/q)]"/>

or alternatively

	 <bind ref="subset"
	 structure="data[contains(., instance('search')/q)]"/>

 so that whenever the calculation values change, the subset,
 including its size and values, gets updated.
	

 This looks at first like it would be horribly inefficient, but
 it is important not to throw the baby out with the bathwater:
 what we are asking with requirements analysis is
 "what would be useful to be able to
 do?". We shouldn't prematurely optimise by
 saying it would be inefficient, thus not a good solution; we
 should ask what we want to do, and then later work out how to
 implement it efficiently.
	

 To give two successful examples of this approach in the past:
 early programming languages did not support recursion; during
 the design of Algol 60, the designers came to the conclusion
 that they needed recursion in order to effectively express
 algorithms. So they added it, even though at that time they
 didn't know how to implement it at all, let alone efficiently.
 In fact a long war waged after that about whether recursion was
 really needed, and whole books were written on the subject.
 Today it would be unthinkable for programming languages not to
 support recursion.
	

 The second example also comes from the Algol family. Early
 programming languages only allowed you to assign and copy simple
 values, basically values that would fit in a register. During
 the design of Algol 68, they decided to ignore the type of item
 involved when doing assignments. They argued that assignment was
 an abstraction; if that meant you wanted to copy a whole array,
 that was up to you. Again, it seemed inefficient to traditional
 programmers, but in fact led to the invention of new ways to
 store and copy data
 [Hibbard], methods that
 continue to be used today (for instance in Python).
	

Higher-level functions

 While this paper isn't the place to enumerate all possible data
 structures and the invariants that might be applied to them, it
 is useful to explore some general invariants over lists, since
 dynamic data structures using lists are so inherent to
 programming, and since they form the basis of so many other
 structures.
	

 Useful structural invariance functions apart from filter, are
 map, reduce (or
 fold), and sorting. These specify very
 high-level relationships between structures, thus allowing the
 specification of algorithmic intent very easy.
	

 XForms already has an inherent map ability, though not expressed
 as such, since an invariant like
	

	 <bind ref="value" calculate="..."/>

 does the calculate for every element matched by the nodeset in
 the ref.
	

 It also has some specific versions of reduce, such as
 sum(), but not a generalised one. However,
 the most-recent version of XPath has added these higher-level
 functions, which allows them to be used in new versions of
 XForms.
	

Implementation

 The update mechanism sees the collection of invariants as a tree
 of dependent calculations only some of which fire at each
 iteration. If you compare that with structural invariants like
 filter, map, and reduce, and regard them not as atomic
 calculations, but as an assemblage of sub-calculations, then in
 fact they fit very well into the recalculation mechanism.
	

	 For instance, a map is just a sequence of sub-expressions each
 calculating one function application for each element of the
 sequence of input values (along with a structural guard on the
 size).
	
Figure 2: Map seen as an invariant graph
[image:]

	 Note that this has an update efficiency of O(1): if a value changes, only
	 its dependent value needs to be updated.
	

 Similarly, a reduce can be seen as a tree of reductions. XPath
 specifies two reduction functions,
 fold-left and
 fold-right. Unfortunately, at least for XForms,
	 these are
 computational very specific: you start the reduction either from
 the left or the right. But in fact many typical reductions, such
 as sum, product, and
 concatenate, are directionally neutral,
 since their underlying dyadic operators (namely +, ×, and
 string-join) are associative: a+(b+c) = (a+b)+c, and we can take advantage of this.
	

 For instance, if we regard a
 fold-left as a graph of dependent
 calculations, it would need to be implemented like this:
	
[image:]

 which has an update complexity of O(n). On the other hand, a directionally
 impartial fold could be implemented as
	
[image:]

 with an update complexity of only O(log(n)). (Note that both versions have a
	 space complexity of O(n).)
	

	 This is a big difference for large lists:
	 while doubling the size of the list doubles the number of computationd for O(n),
	 it only adds one single extra computation for O(log(n)).
	 Put another way, it involves 100-fold less
 computations for a list of length 1000 (10 calculations versus 1000)
	 and 50 thousand-fold less for a list of length one million
	 (20 calculations versus 1 million).
	

 This is because if a value changes in the
 middle of the tree or sequence, the other parts of the
 assemblage don't have to be recalculated.
	

 The upshot of this is that you can regard structural invariants as just a
 higher-level form of invariant, ones whose purpose is to manage
 the collection of lower-level simple invariants; the
 rebuild phase of the XForms update
 mechanism can be treated as a higher-level version of
 recalculate.
	
[image:]

 A description of such an implementation can be found in
 [Views].
	

Conclusion

	 The advantage of invariants for the programmer is that they state
	 at a high level the intent of the computations, and leave a lot of
	 the administrative detail to the computer. This is how it should
	 be, and is part of a historical movement in computing, handing off
	 more of the work to the computer.

	 Structural invariants can in fact be seen as a higher level
	 version of the simple invariants found in XForms, where the work
	 of the invariant is rebuilding networks of lower-level invariants.
	 In such a way, structural invariants can be merged into the
	 general invariant recalculation mechanism.

	 The purpose of this paper has been to initiate discussion on
	 generalising the XForms invariant mechanism to these higher-level
	 invariants, as input for a future version of XForms.

	 The purpose of this paper has been to initiate discussion
	 on generalising the XForms invariant mechanism to these
	 higher-level invariants, as input for a future version of XForms.

References
[XForms 1.1] John M. Boyer (ed.), XForms 1.1, W3C,
 2009, https://www.w3.org/TR/xforms11/

[XForms 2.0] Erik Bruchez, et al. (eds.), XForms
 2.0, W3C, 2021,
 https://www.w3.org/community/xformsusers/wiki/XForms_2.0

[Introduction to XForms] Steven Pemberton, An Introduction to
 XForms, XML.com, 2018,
 https://www.xml.com/articles/2018/11/27/introduction-xforms/

[Model Processing] Model Processing, in [XForms 2.0],
 https://www.w3.org/community/xformsusers/wiki/XForms_2.0#Model_Processing

[Recalculation] Recalculation Sequence Algorithm,
 in [XForms 2.0],
 https://www.w3.org/community/xformsusers/wiki/XForms_2.0#Recalculation_Sequence_Algorithm

[Dijkstra] EW Dijkstra, A Discipline of
 Programming, Prentice Hall, 1976, ISBN 0-13-215871-X.

[Map] Steven Pemberton, Live XML Data, in
 Proc. XML London 2014, pp 96-102, ISBN 978-0-9926471-1-7,
 https://xmllondon.com/2014/xmllondon-2014-proceedings.pdf

[Events] Shane McCarron et al., XML Events,
 W3C, 2003, http://www.w3.org/TR/xml-events

[Hibbard] P.G. Hibbard, P. Knueven, and B.W. Leverett,
 A Stackless Run-time Implementation Scheme,
 Proc. 4th International Conference on the Description and
 Implementation of Algorithmic Languages, pp.176-192 (1976).

[Views] J. Ganzevoort, Maintaining presentation
 invariants in the Views system, Report CS-R9262, CWI
 Amsterdam, 1992, https://ir.cwi.nl/pub/5342/05342D.pdf

Balisage: The Markup Conference

Structural Invariants in XForms
Steven Pemberton
Researcher
CWI, Amsterdam

<steven.pemberton@cwi.nl>

	 Steven Pemberton is a researcher affiliated with CWI,
	 Amsterdam. His research is in interaction, and how the
	 underlying software architecture can support users.
	
He co-designed the ABC programming language that formed
	 the basis for Python and was one of the first handful of
	 people on the open internet in Europe, when the CWI set it up
	 in 1988. Involved with the Web from the beginning, he
	 organised two workshops at the first Web Conference in
	 1994. For the best part of a decade he chaired the W3C HTML
	 working group, and has co-authored many web standards,
	 including HTML, XHTML, CSS, XForms and RDFa. He now chairs
	 the W3C XForms and Invisible Markup groups.
	 More details at http://www.cwi.nl/~steven
	

Balisage: The Markup Conference

content/images/Pemberton01-003.png

content/images/Pemberton01-002.png

content/images/Pemberton01-005.png

content/images/Pemberton01-004.png

content/images/Pemberton01-007.png

content/images/Pemberton01-006.png
Zzoom

worldX

tilexX
scal T
a e<:tiIeY 3tile

worldY site

content/images/Pemberton01-009.png

content/images/Pemberton01-008.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Pemberton01-010.png

content/images/Pemberton01-001.png

