[image: Balisage logo]Balisage: The Markup Conference

Ariadne's thread
A design for a user-facing query language
	 for texts and documents
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Balisage: The Markup Conference 2021
August 2 - 6, 2021

Copyright ©2021 by the author.

How to cite this paper
Sperberg-McQueen, C. M. "Ariadne's thread." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Sperberg-McQueen01.

Abstract
Ariadne is a query language intended to be powerful
 enough to allow domain experts to find interesting passages in
 their documents, but simple enough for them to learn even if
 XPath and other expression languages are too complex. Its
 assumptions about document structure (elements have parents
 and are at least partially ordered) are compatible with XML
 and the XPath Data Model but are also compatible with many
 non-XML models of text; Ariadne could thus serve as a query
 language for documents with overlapping structures.
	

Balisage: The Markup Conference

 Ariadne's thread

 A design for a user-facing query language
 	 for texts and documents

 Table of Contents

 	Title Page

 	Origins, goals, design decisions
 	Arras

 	DynaText query language

 	Why not XQuery? Or even just XPath?

 	Origins of Ariadne

 	Design decisions

 	Examples
 	Basic expressions

 	Expressions using filters
 	Context filter (INSIDE)

 	Content filter (CONTAINING)

 	Left-right filters (PRECEDED BY, FOLLOWED BY)

 	Attribute filters (WITH)

 	Word proximity filter (WITHIN
 k
 WORDS OF)

 	Element proximity filter

 	Parentheses

 	Expressions with Boolean operators
 	Boolean operators in right-hand argument of qualifier

 	Boolean operators between filters

 	Boolean operators (top-level)

 	Grammar

 	Semantics
 	Basic searches
 	Base-word searches

 	Basic searches connected by Booleans

 	Base-element searches

 	Filtered searches
 	Word-proximity filters

 	Element-proximity filters

 	Left-right filters

 	Context filters

 	Content filters

 	Attribute filters

 	The Ariadne text model

 	Current status, progress towards implementation, and future plans

 	About the Author

 Ariadne's thread
A design for a user-facing query language
	 for texts and documents

This paper describes the design of Ariadne, a small query
 language intended to make searching structured documents easier
 for non-technical users. The following sections will describe
 the origins, goals, and design decisions of the language;
 present its grammar and semantics; illustrate its application to
 documents; and describe progress towards a full
 implementation.
Ariadne may be of interest in part because it is designed to
 be easier to learn and understand (and to implement!) than other
 query languages for structured documents. Users who would not be
 willing to undertake to learn XQuery or even XPath may (it is
 hoped) find Ariadne understandable and usable. Though designed
 to be smaller and less capable than XPath, XSLT, or XQuery,
 Ariadne can be used for relatively powerful searches within
 structured documents. Because it is smaller and less capable
 than XPath, XSLT, or XQuery, an Ariadne language processor is
 readily implemented using XSLT or XQuery. And because Ariadne
 makes only relatively weak assumptions about document structure,
 it is applicable to non-XDM text models like concurrent
 hierarchies, Goddag structures, TAG (Text as graph),
 multi-colored trees, and even (with mild restrictions)
 non-graph-based models like (a simple version of) LMNL.
Origins, goals, design decisions
Ariadne has its roots in several places. Among the most
	prominent are the perceived need for a reasonably powerful
	search language easier for non-XML-oriented users to learn
	than XPath and XQuery or XSLT; a desire to recreate the
	functionality of two query language I used and liked some
	years ago; the desire for a user-accessible query language to
	exploit the rich markup in some of the projects I have been
	involved with; and the desire to
	enjoy myself by writing language processors in XSLT and
	XQuery.
Two earlier languages have exerted a strong influence on
	the functionality and syntax of Ariadne: a system called
	Arras, and the query language which formed part of the SGML
	publishing tool DynaText. The name Ariadne was chosen in part
	because the letter combinations ar and
	dn recall the names of those two
	systems.[1]

The following sections describe this background in slightly
	more detail.
Arras
In 1980, an associate professor of English at
	 Pennsylvania State University published a book about James
	 Joyce's Portait of the Artist as a Young Man
	 (Smith 1980). In order to identify, trace, and
	 visualize the appearance, repetition, and recurrence of
	 various complexes of images in the work, the author, John B.
	 Smith, had created what might be called an interactive
	 concordance system. Like a printed concordance, his tool
	 allowed him to look for all occurrences of a given word and
	 see them in context. Unlike a printed concordance, Smith's
	 tool was interactive. It allowed the user to specify how
	 much context to give when displaying a word: three words on
	 either side? One word before and five after? The full
	 sentence? The typographic line? Three lines? It also allowed
	 the user to search for multiple words occurring in
	 proximity: fire and
	 ice in the same paragraph, for
	 example.
Smith's system was initially called Rats
	 (Random-Accessible Text System), but he later changed the
	 name to Arras, for which the retronym ARchival Retrieval
	 and Analysis System was formed.[2] The Arras reference
	 manual is available on the web site of the computer science
	 department at the University of North Carolina at Chapel
	 Hill, to which Smith moved from Penn State in the mid-1980s,
	 and interested readers are encouraged to consult it (Smith 1985). A few sample queries, mostly drawn
	 from the manual, will suffice to illustrate some of the
	 program's salient capabilities.
The core functionality is to display occurrences of
	 words, in context. The following command displays
	 occurrences of the word fire in the
	 default context of one sentence.

	 display concordance: fire.

In an attempt to make the system easier to use, Smith
	 allows noise words, which are ignored, and allows keywords
	 to be abbreviated. So the command just given could also be
	 given in these and other alternative forms

	 please display a concordance for the word: fire.

 disp conc: fire.

A different amount of context can also be specified,
	 for example five words on either side:

	 display concordance: fire; context: -5 to 5 words.

	 As may be seen, left and right context are specified
	 independently. Context may be specified in several different
	 logical units (word, sentence, paragraph, chapter) as well
	 as in several physical units (line, page, volume).
To allow the user to identify images like those of fire
	 or water, Arras allows the user to define
	 categories, which in the simple case
	 are just sets of word forms. To find all images of fire, a
	 user might specify a number of word forms related by
	 etymology or only by meaning:

	 define category: enflaming, fire, fireconsumed,
 fires, flame, flamed, flames, flaming,
 heat, heated, hot, hotly;
 name: firecat.

	 The names of categories (here firecat) can be
	 used in display concordance and other commands
	 in the same places as words from the text.
Another facility is the ability to define a
	 configuration, which matches a word occurring
	 within a specified proximity of another word.

	 configuration: fire & water; name: ffww.

	 This defines the configuration ffww as the
	 subset of occurrences of fire which
	 occur within the default context (one sentence, again) of
	 water. The context can be varied,
	 using the same units as mentioned above. The usual Boolean
	 operators are allowed; in addition to
	 and (seen above),
	 or and not can
	 also be used.

	 configuration: fire &~ water; name: ff.

 configuration: fire | water; name: fw.

Names of categories and configurations can be used
	 wherever word forms are called for in a command. This allows
	 definitions of complex constellations of words to be built
	 up step by step.

	 configuration: firecat & watercat;
 context: -50 to +50 words;
 name: fwcat.

	 There are also facilities for interrogating the list of word
	 forms found in a text, excluding specific word occurrences
	 from a category or configuration, displaying the
	 distribution of a word, category, or configuration across
	 the text (in the form of a bar graph for two-per-cent
	 segments of the text), session management, and so on.
The Arras scanner relied on simple markup in the input to
	 know where volume, chapter, and paragraph boundaries fall.
	 Line and sentence boundaries it recognized by itself using
	 simple rules, with markup available for overriding the
	 default decisions.
The text model exposed by Arras is essentially that of a
	 text as a sequence of words, with the sequence partitioned
	 into sentences, paragraphs, chapters, lines, and volumes. As
	 may be seen, these units form both a logical hierarchy
	 (chapters, paragraphs, sentences) and a physical hierarchy
	 (volumes, pages, lines). The ability to specify proximity
	 using any of these structural units makes Arras very useful
	 for those interested in the close study of a text.
It may be noted in passing that while Arras provides ways
	 of looking for passages in a text which meet certain
	 criteria, it does not provide any mechanism for creating new
	 textual objects.

DynaText query language
The second major influence of Ariadne is the textual
	 query language which formed part of DynaText. I won't
	 rehearse in detail the history of that product in detail
	 here, since many others who attend Balisage know it as well
	 as I, and some know it better. I will only observe that
	 DynaText was a system for publishing SGML documents in
	 electronic form, which allowed users to switch among
	 multiple stylesheets for different views of the data,
	 provided good hypertext linking, and offered a simple and
	 convenient textual search interface. The query language was
	 used both as part of the end-user interface and as part of
	 the infrastructure: as part of the creation of an electronic
	 book, DynaText publishers could also provide simple search
	 forms, to elicit values which could be plugged into a
	 complex search expression as parameters. So power users
	 could use the query language to create complicated queries
	 which others could use without learning the query
	 language.[3]

I won't attempt a full account of the DynaText query
	 language (which for brevity I'll call DTQL from now on), but
	 some examples will illustrate key points.
A search can consist of a word or phrase. To search
	 for a word which is also a keyword in the language, it may
	 be enclosed in quotation marks:

	 programming language

 "containing"

Equally important, since DynaText is designed to allow
	 the exploitation of markup, a search can consist of an
	 element type's generic identifier, distinguished from a word
	 to be sought in the text by being enclosed in angle
	 brackets:

	 <title>

Context can be specified using the keyword
	 inside or in, optionally modified
	 by directly:
	
	 programming language inside <title>

 <title> directly inside <book>

	 The first finds occurrences of the phrase
	 programming language occurring inside
	 a title element. The second finds title
	 elements occurring as children of a book element.
	
Conversely, content can be specified using the keyword
	 containing, also optionally modified by
	 directly:
	
	 <chapter> directly containing <title>
 containing syntax

All operators in DTQL are right-associative, so the
	 search just given is equivalent to the following:

	 <chapter> directly containing
 (<title> containing syntax)

	
 These searches find all chapter elements within
 which there occurs (at any nesting depth) a title
 element which contains the word
 syntax.
Note that while

	 <title> containing programming language

	 and
	 programming language in <title>

	 describe the same set of document structures, the value of
	 the first is a set of title elements, while the value of
	 the second is a set of word occurrences. In the interactive
	 interface to DynaText, this difference was reflected in the
	 highlighting of hits and in the hit counts displayed in the
	 table of contents, which was itself typically displayed in a
	 navigation bar and always visible.
Boolean operators are also allowed:

	 <bibl> not containing <title>

 (<element-citation> or <mixed-citation>)
 containing <publisher-name> not containing
 "Elsevier"

 <title> containing theory and practice

 <title> containing practice
 and not theory

The last two examples illustrate a slightly curious
	 aspect of DTQL's boolean operators: the one search finds
	 title elements containing both the word theory and the
	 word practice, the other finds title elements containing
	 one word but not the other. The right-hand argument of the
	 and is not interpreted as a full query, but as a second
	 operand for the containing operator. This feels natural to
	 native speakers of English (and perhaps other languages),
	 but it is trickier to implement than a naive approach might
	 expect. In particular the query

	 <title> containing practice and not theory

	 does not first evaluate the queries
	 <title>, practice, and theory, then
	 construct the complement of the third query (every word that
	 is not theory), then take the set
	 intersection of the occurrences of the word
	 practice and the set of words which
	 are not the word theory, and so
	 on.[4]

DTQL also has a proximity operator, for which distance is
	 specified in words:

	 proximity within 5 words of search

 markup within 10 words of descriptive or prescriptive

The samples do not exhaust the DynaText query language,
	 although they come close: it is a useful language but gets
	 its power from a very small number of constructs.

Why not XQuery? Or even just XPath?
An obvious reaction to the announcement of yet another
	 query language for documents, especially at Balisage, is to
	 ask why. Why do we need another language for document
	 queries? Doesn't XQuery exist? Or if XQuery is deemed too
	 complicated, why not just use XPath? There are two reasons
	 one might want to design a new query language, even though
	 XPath and XQuery exist.
The first is ease of acquisition by users.
Like many Balisage attendees, I often work with domain
	 experts who are less technically inclined than I am and less
	 tolerant of the pernickety syntax often characteristic of
	 languages designed to be parsed by machine. The XML
	 community is justly proud of the number of domain experts
	 who do not self-identify as programmers but who are able to
	 learn and use XPath and XSLT. But many domain experts never
	 do learn XSLT, or even XPath.
When I build a web interface for a collection of XML
	 documents, one of the first things I like to do is to
	 provide a simple search interface that allows a user to type
	 in a simple XPath expression and see a list of the XDM nodes
	 matched by the expression.[5] But
	 often, my hopes that the domain experts with whom I work
	 will learn enough about XML and XPath to be able to use it
	 are dashed. As far as I know, when I have made XPath
	 interfaces for collaborative projects, I am the only project
	 participant who ever uses them. From time to time, others in
	 a project have attempted to learn XML, and XPath, and
	 XQuery. But often, domain experts find it unnerving to
	 venture from a field in which they are experts into a field
	 in which they are novices, and since they typically have
	 achieved a full and rewarding professional life without
	 knowledge of any computer languages, it is understandable
	 both that they don't have a lot of time to focus on learning
	 new languages and that the frustrations known to anyone
	 learning something new and very different will often lead
	 busy people to abandon the attempt.
It is unlikely that Ariadne is a silver bullet for this
	 problem.
It is quite possible that some users will resist any
	 query interface involving anything recognizable as syntax or
	 keywords. The logical consequence of such syntax phobia
	 among users is a search interface with a single box in which
	 to type a query, and no visible rules for how to type it,
	 such as is now familiar to any user of Google, Bing,
	 DuckDuckGo, or almost any other web search engine.
But anyone who has used a single-box search interface to
	 look for structural patterns in documents will remember how
	 disappointing the results usually are. A search for a
	 chapter whose title includes the word
	 syntax, in a book whose title
	 includes the phrase programming
	 language, is one thing. A search for a chapter
	 whose title includes the words programming
	 language, in a book whose title includes the
	 word syntax, is something rather
	 different.[6] A query interface based on
	 a bag-of-words document model, with no knowledge of
	 chapters, books, or titles, cannot comfortably capture the
	 difference.
One of Ariadne's goals is to serve users who don't feel
	 comfortable with most artificial languages but who do
	 understand how their documents are tagged, and who have some
	 interest in being able to use structural information in
	 queries.
The second reason for not just using XQuery or XPath is:
	 trees.
XPath and XQuery and XSLT are designed to work on XML
	 documents, and specifically on XML documents viewed through
	 the XPath Data Model (XDM), or more generally any
	 information that can be viewed through that model, whether
	 its serialized form is XML or something else. Since I was
	 not involved in the initial design of any of those
	 languages, I can say without immodesty that they do a good
	 job.
But it is well known that documents often exhibit
	 structural patterns that are not tree-shaped, or at least
	 not shaped like a single tree. A bewildering number of
	 alternate proposals have been made, for an equally
	 bewildering variety of text models. (The number of models is
	 slightly lower than the number of proposals, since in some
	 proposals appear on closer examination to be variations on
	 the same basic idea.)
It would, I think, be helpful for users of the
	 text-as-graph model, the LMNL model, the Goddag model, the
	 concurrent-hierarchies model, if it were possible to
	 formulate queries against those models. Of course, if as
	 sometimes happens the actual documents are stored in XML,
	 the documents can be queried in their XML form using XPath
	 and XQuery. But models are not just guides for implementors;
	 they are tools for thinking about things. It would be
	 better, when we are using a non-tree-shaped model of text,
	 if we could formulate queries against the model we want to
	 use, instead of translating our queries into some sort of
	 slightly awkward XPath.
One possible caveat to this line of reasoning should be
	 addressed. XPath is indeed defined in terms of the XPath
	 Data Model, but nothing in its syntax requires that the
	 parent axis return a single node. If we were to
	 allow nodes to have multiple parents, we could apply XPath
	 to any document model involving a directed acyclic graph.
	 And if we relaxed other constraints like the rule that no
	 node is its own ancestor, we could apply XPath to cyclic as
	 well as to acyclic graphs. So if we wished to apply XPath to
	 Goddag structures, or to concurrent hierarchies, or to
	 text-as-graph instances, we could do so, at least in
	 principle. And indeed there have been proposals in the past,
	 some of them presented at Balisage or Extreme Markup
	 Languages, to use XPath as an expression language for
	 navigating arbitrary directed graphs.
To anyone who can easily implement the whole of XPath
	 over a non-XDM model, there is clearly no pressing need for
	 a different language. The problem for others is that even in
	 its version 1.0, XPath was large enough to require
	 non-trivial implementation effort. Now, in XPath 3.0 and
	 3.1, the language has become Turing-complete and
	 implementing it from scratch looks rather daunting.
	 Ariadne's advantage in this context is that in comparison
	 with XPath, it's tiny, and it's possible to imagine a
	 relatively straightforward implementation that does not
	 require programmer-years of effort.

Origins of Ariadne
The project that has turned into the design and
	 specification of Ariadne began life as a pair of
	 low-priority free-time projects to re-implement both Arras
	 and the DynaText query language, as an exercise in nostalgic
	 retro-computing.[7]

The feasibility of re-implementing Arras became clear to
	 me when I reflected that its text model could be implemented
	 as a single SQL table in which each row contains a token, a
	 word form (the token, stripped of punctuation), a word
	 number, a sentence number, a chapter number, a line number,
	 a page number, and a volume number. Arras commands could in
	 principle be translated into SQL queries. John B. Smith
	 implemented his own inverted-file index, but I was willing
	 to farm all of those details out to a SQL database.
Once the key idea of letting a database management system
	 handle the boring bits like storage details became clear, it
	 immediately became obvious that the Arras text model could
	 also be implemented quite simply in an XQuery database,
	 using either element containment or milestone elements to
	 handle the structural units. Since in Arras all structural
	 units partition the entire text, simple milestones suffice
	 and the more complex mechanisms of Trojan-Horse markup are
	 not needed.
Since DynaText is designed for search and retrieval in
	 SGML documents, it seems self-evident that it should be
	 relatively straightforward to implement a DynaText front end
	 which passes queries to an XQuery back end for evaluation.
	 Since DTQL seems very accessible even to non-technical
	 users, the idea of re-implementing DTQL sometimes seemed
	 more than an exercise in nostalgia: it could be useful to
	 real projects I have been engaged with. But the idea never
	 had high priority, so it never got beyond a few
	 sketches.
Recently, however, whiling away an idle hour with an
	 attempt to figure out a way to describe the behavior of
	 and and or in DTQL cleanly enough
	 to guide an implementation, I realized that DTQL requires a
	 model of text in which two nodes can be in a parent/child
	 relation (or not), or more generally an ancestor/descendant
	 relation, but does not require that the model form a tree.
	 Nothing breaks in the semantics of the query if an element
	 (or a word) can have more than one parent.
At this point I began to think that an implementation
	 might have more practical use than I had first imagined, and
	 that a new query language inspired by Arras and DynaText
	 should have a higher priority than historically accurate
	 re-implementations of the two languages.

Design decisions
The basic design approach of Ariadne was summarized by
	 Steven J. DeRose, the designer of the DynaText query
	 language, thus:[8]
 Give users a very limited and very formulaic subset of
	 English — it's pretty easy to implement (because so
	 limited), yet users can read queries as if they were
	 just English, and can form new ones by analogy
	 — all they really have to learn is to avoid being
	 creative (which, when they try it, provides negative
	 reinforcement for free).

DynaText has four query operators, not counting Booleans,
	 which require special treatment:
	
	 	
 INSIDE, optionally modified by
	 NOT and/or DIRECTLY

	
 CONTAINING, optionally modified by
	 NOT and/or DIRECTLY

	
 WITHIN
 n
 WORDS
 OF

	
 WITH (which searches the attribute axis
	 of XDM)

	
	 The INSIDE and CONTAINING
	 operators are of course inverses of each other, moving
	 vertically in a document tree.
Ariadne extends this set of operators modestly to allow
	 searching based on document order among siblings or among
	 all nodes and to allow proximity to be measured,
	 Arras-style, in any structural unit, not just words.
It should be noted that the only basic relations required
	 to support these operators are parent-child,
	 prec-next, and
	 element-attribute-value. No assumption is
	 made that a child can have only one parent, so essentially
	 any binary relation on structures in a document can be used
	 as the parent-child relation. If the relation is cyclic,
	 some results may of course puzzle users used to thinking of
	 the parent-child relation as acyclic.
Like Arras and DTQL, Ariadne lacks any means of
	 constructing new values of any kind: all Ariadne expressions
	 denote sets of locations within texts, where from the user's
	 point of view a location is either a
	 tagged element in the text (e.g. a paragraph, title, or
	 chapter) or a word. From the implementation point of view,
	 at document ingestion time the document is tokenized and all
	 words are wrapped in w elements, so for the
	 implementation, all values are sets of locations, and all
	 locations are elements in the input document. This provides
	 a simple uniform model and makes implementation on top of
	 XSLT or XQuery or XPath itself conceptually very simple.
The absence of constructors makes Ariadne strictly weaker
	 than XQuery or XSLT. It cannot be used to perform
	 arithmetic: an expression like 2 + 3 is not an Ariadne query
	 or expression. It cannot be used to make a list of all word
	 forms: Ariadne has no equivalent to the XPath
	 distinct-values() function, and indeed no user-callable
	 functions at all. Its intended users are not programmers who
	 need to be able to specify and perform arbitrary
	 computations, but readers who want to be able to describe
	 and find locations in texts.
For some situations, it is convenient to have some notion
	 of a location which is an appropriate size to return in a
	 list of search results. I'll call such locations chunks.
	 In most modern prose, a sentence, a list item, a heading, or
	 a line of verse will be a reasonably good chunk. Sometimes
	 it might be better to use a larger chunk, for example a
	 paragraph. The only constraint on chunks is that every
	 word in the document must be in some chunk; it may sometimes
	 be desirable to specify further that no chunk
	 contains any other chunk, i.e. chunks must partition the
	 document.
To simplify the use of Ariadne for document owners, an
	 implementation of Ariadne is expected to define some notion
	 of chunk without intervention by the
	 document owner; a simple default is to accept any element
	 containing at least two words as a chunk. Another possible
	 default (up to the implementor) is to break the input
	 document up into sentences or sentence-like objects based on
	 punctuation and capitalization and use them as chunks. A
	 document owner should however be able to specify explicitly
	 which elements are to be treated as chunks. And of course, a
	 document owner can explicitly mark sentences (or
	 sentence-like objects) with an element such as the TEI
	 s element, and thus override the default behavior
	 of the implementation. The same goes for tokenization into
	 words: if the default behavior is suitable, the user need do
	 nothing special, but if the user wants another behavior,
	 they can control the behavior of an Ariadne search engine by
	 using markup to identify what should be treated as
	 words.
The design principles of Ariadne are thus:
	 	Queries should be a very limited, very formulaic
	 subset of English.

	Query operators should allow qualification of
	 searches both vertically (by context and content) and
	 horizontally (by relative position in document
	 order).

	Proximity searching should be possible using
	 words or any structural elements as units.

	The language must be simple to implement.[9]

	Ariadne should be applicable to any model of text
	 in which structural units can be construed as having a
	 parent-child relation and an ordering. Just as structural
	 units may have multiple parents, they may also have
	 multiple immediately following siblings.

	It is acceptable for searching of a document to
	 be possible only after that document has been ingested in
	 some way (indexed, scanned, imported, ...); in practice it
	 is in the process of import that the system will perform
	 services like recognition of implicit markup of words,
	 lines, and sentences.

	Anything the indexing system does without markup
	 (e.g. the identification of words or sentences) should be
	 done by injecting markup in the document. The user should
	 be able to change the relevant behavior by supplying
	 explicit markup for the phenomena in question, for example
	 by exporting the document, changing the markup, and
	 re-importing the document.

	The text model used by Ariadne should be
	 compatible with (i.e. its assumptions and constraints
	 should where possible be a subset of) as the most
	 prominent non-XDM document models: multi-colored trees,
	 concurrent hierarchies, text as graph, and Goddag
	 structures. Compatibility with LMNL is a desideratum.

One topic which has been ruled out of scope for this
	 version of Ariadne is the ability to qualify searches by a
	 particular hierarchy, analogous to the qualification of
	 XPath axes with colors in Colored XML. It may be helpful,
	 but I do not currently understand the requirements well
	 enough to design it. It is hoped that experience with
	 Ariadne will help to indicate whether extension in this
	 direction is needed and what kind of extension would be
	 helpful.

Examples
At heart, Ariadne is an expression language, with basic
	expressions which can be combined and re-combined using
	different operators. The value of any expression is a set of
	locations in the text, which are here referred to sometimes
	from the user view as locations and sometimes
	from the formal view as nodes; in an Ariadne
	implementation those two terms are extensionally equivalent.
	The locations in the value of an expression are said to be
	matched by or found by the
	expression.
Since the purpose of formulating expressions is normally to
	find locations in the text which match the expression,
	expressions will in what follows sometimes be referred to as
	searches or queries.
	No difference in meaning is intended by this variation in
	terminology.
Structurally, some expressions are basic expressions and
	others are compound expressions. Compound expressions are
	formed using operators to combine subordinate expression.
	Ariadne has two kinds of operators: filters and Boolean
	operators. As their name suggests, filters are used to
	eliminate items from a search result. Their first or left-hand
	argument matches a set of locations in the text, and the
	effect of the operator is to select some of those locations
	and eliminate others, based on the value of the second or
	right-most argument. Filters may be said to
	qualify a search. Boolean operators combine sets
	of results in familar ways: an AND denotes the
	intersection of two sets, an OR the union, and
	NOT typically denotes set subtraction.
Basic expressions
Like DTQL, Ariadne has two fundamental forms of
	 expression, one for words (or strings) and one for
	 (structural) elements:
	
	 <author>

 Heinlein

The first of these finds all author elements in
	 the text; the second finds all occurrences of the token
	 Heinlein.

Expressions using filters
Context filter (INSIDE)
Word and element queries can both be qualified by
	 context:
	
	 ward inside <heading>

 <head> directly inside <div> directly inside <body>

 <p> inside <subsection>

These have the same value in Ariadne as in DTQL. The
	 first finds occurrences of the word
	 ward occurring anywhere inside a
	 heading element; the second finds head
	 elements which are directly inside div elements
	 (i.e. with no intervening elements) which are themselves
	 directly contained by body elements. The third
	 finds p elements occurring withing
	 subsection elements.
In an XML context, these will be roughly equivalent to
	 the following XPath expressions.[10]
 //text()[contains(., 'ward')][ancestor::heading]

 //head[parent::div[parent::body]]

 //p[ancestor::subsection]

Content filter (CONTAINING)
As in DTQL, element queries (but not word queries) can
	 be qualified by the content of the element. For example:
	
	 <chapter> directly containing
 <title> containing syntax

 This is the equivalent of the XPath expression
	 //chapter[title[contains(., 'syntax')]]

Using qualification by context and by content, the two
	 examples of structure-aware full-text search given earlier
	 can be expressed readily in Ariadne or in DTQL:

	 programming language in <title> directly inside
 <chapter> inside <book> directly containing
 <title> containing syntax

 syntax in <title> directly inside <chapter>
 inside <book> directly containing <title>
 containing programming language

Left-right filters (PRECEDED BY, FOLLOWED BY)
Just as the keywords INSIDE and
	 CONTAINING search
	 vertically on the equivalent of the
	 XDM parent, child, ancestor, and descendant axes, the
	 keywords FOLLOWED BY and PRECEDED
	 BY search horizontally on the
	 equivalent of the XDM axes preceding,
	 preceding-sibling,
	 following, and
	 following-sibling.

	 <theorem> not preceded by <axiom>

	 This finds all theorem elements which occur in
	 the document before the first occurrence of an
	 axiom element.[11]
 <speech> directly followed
 by sibling <stage-direction>

 This finds all speech elements whose next
	 sibling is a stage-direction element.
The keywords PRECEDED BY and
 FOLLOWED BY are interpreted by reference to
 document order; unlike XDM, the Ariadne model does not
 require that the ordering be total or unique. There may be
 multiple orderings; the value of an expression of the form
 x
 FOLLOWED BY
 y is the set of all values
 of x which are followed in some ordering by some value
 of y. If multiple orderings apply in a document, it
 might be helpful to be able to specify which ordering to
 use, but as noted earlier this is out of scope for the
 current version of Ariadne.
As may be seen, these operators may be modified by
	 DIRECTLY, as well as by NOT,
	 which is not illustrated, and by SIBLING,
	 which restricts the search to locations which share a
	 parent.

Attribute filters (WITH)
As in DTQL, element searches can be qualified by
	 reference to attributes on the element and their values.

	 <section> with n = 2

 <section> with n > 2

 <div> with id null

These search, respectively, for section
	 elements with the attribute-value pair n="2",
	 for section elements with an n
	 attribute whose value, when coerced to a number, is
	 greater than 2, and for div elements which have
	 no id attribute.

Word proximity filter (WITHIN
 k
 WORDS OF)
Words can be qualified by proximity to other words:

	 challenge within 10 words of election

The order of the two words can be prescribed:

	 challenge followed within 10 words by election

 challenge preceded within 10 words by election

As mentioned elsewhere, word proximity is treated
	 formally as a special case of element proximity. In the
	 queries just shown, the keyword WORDS is
	 syntactic sugar for the expression
 <w>
	 elements
 . So the queries shown are equivalent to
	 the following, and they may indeed by translated into the
	 following forms internally before evaluation:

	 challenge within 10 <w> elements of election

 challenge followed within 10 <w> elements by election

 challenge preceded within 5 <w> elements by election

Element proximity filter
As in Arras, proximity can be measured in structural
	 units other than words:

	 fire within 5 <l> elements of ice

This query finds all occurrences of the word
	 fire whose distance from some
	 occurrence of the word ice is fewer
	 than five l elements. Distance is measured by
	 counting elements within the ordering assigned to elements
	 in a purely mechanical way. If fewer than five l
	 elements begin between some occurrence of
	 fire and some occurrence of
	 ice, measured in some ordering of
	 l elements, then the filter retains that occurrence
	 of fire.
This method of measuring proximity has the consequence
	 that if two elements are within the same l element,
	 they have distance 0, measured in l elements:[12]
 fire within 0 <l> elements of ice

This returns all occurrences of
	 fire which occur within the same
	 l element as an occurrence of
	 ice. It also returns all occurrence
	 of fire which are not inside an
	 l element, as long as there is also an occurrence
	 of ice which is also not inside an
	 l element and as long as there is no l
	 element between them.[13]

The elements in question need not be contiguous:

	 Borges within 4 <footnote> elements of Barthes

	 This query includes all occurrences of the name
	 Borges if some occurrence of the name
	 Barthes is found with fewer than five
	 footnote elements between them.

Parentheses
The qualifying operators are right-associative, so
	 multiple qualifications on a single query require
	 parentheses. The following two queries are equivalent:
	 each filters the set of p elements to include
	 only those inside a subsection element and only
	 those containing the word
	 appointed.

	 (<p> inside <subsection>) containing appointed

 (<p> containing appointed) inside <subsection>

Note, however, that since containment is a transitive
	 relation, the latter formulation is equivalent to the
	 unparenthesized form

	 <p> containing appointed inside <subsection>

Expressions with Boolean operators
Boolean operators in right-hand argument of qualifier
In English and other natural languages, conjunctions
	 are sometimes tricky to parse. Given a sentence beginning
	 Alice invited Bob and Carol ..., it is not clear
	 without further context whether the conjunction
	 and joins two clauses (Alice
	 invited Bob and Carol invited Dave) or two names
	 (Alice invited Bob and Carol to dinner with her and
	 Dave).
The goal of an English-like query syntax means that
	 Ariadne should if possible match users' expectations.
	 Given a query like the following, many users will not
	 perceive the or as ambiguous.

	 (<p> inside <subsection>) containing
 appointed or appoint or appointment

 They will (or so I conjecture) expect the result to
 contain the set union of the values of the following three
 queries:

	 (<p> inside <subsection>) containing appointed

 (<p> inside <subsection>) containing appoint

 (<p> inside <subsection>) containing appointment

	 They will emphatically not expect the query result to be a
	 mixture containing all the occurrences of
	 appoint and
	 appointment together with the set
	 of paragraphs inside subsections which contain the word
	 appointed.
To achieve this interpretation, Ariadne treats Booleans
	 slightly differently depending on where they appear. When
	 Boolean operators are found in the right-hand argument of
	 any filter, the qualification is applied to each argument
	 of the Boolean and the results are combined as indicated.
	 Grammatically, this is mostly a matter of ensuring that
	 the Boolean operators bind more tightly than the filter
	 operators, so that	
	 x
 CONTAINING
 y
 AND
 z
	 is parsed like
	 x
 CONTAINING (y
 AND
 z)
	 and not like
	 (x
 CONTAINING
 y) AND (z).
Semantically, it's a bit more complicated than that;
	 the filter must be applied to each item in the compound
	 argument separately, before the results are combined as
	 indicated by the Boolean operator.[14]

For example, the value of the query
	
	 <p> containing fire and water and not ice

	
	 is the set of p elements which (1) contain the
	 word fire, and (2) contain the word
	 water, and (3) do not contain the
	 word ice. That is to say, it is the
	 intersection of the values of the three queries

	 <p> containing fire

 <p> containing water

 <p> not containing ice

This treatment of Boolean operators follows that
	 of DTQL.

Boolean operators between filters
If a Boolean connector is found between qualifiers,
	 then the two qualifiers share the left-hand argument.
	 The query

	 <p> inside <subsection> and containing appointed

	 finds all p elements which both (1) occur within
	 a subsection element and (2) contain the word
	 appointed.
	
	 It is equivalent to the form

	 (<p> inside <subsection>) containing appointed

	 in which the CONTAINING filter is applied to
	 the results of applying the CONTAINING
	 filter.
The Boolean operator or can also be used.

	 (<p> inside <subsection>) containing appointed
 or containing appoint or containing appointment

This has the same meaning as the query above in which
	 the second and third occurrences of
	 containing are omitted.
This treatment of Boolean operators is intended as a
	 generalization of the treatment of Booleans described in
	 the previous section. It is not clear whether DTQL accepts
	 Boolean operators between filters.

Boolean operators (top-level)
Word queries can be combined with boolean operators:

	 Heinlein and Robert

 Heinlein or Bradbury

 Heinlein and not Bradbury

It is slightly challenging to provide a plausible
	 interpretation for these which is consistent both with
	 normal usage of the Boolean operators and with user
	 expectations formed by expressions like those given in the
	 preceding sections. If AND is interpreted as
	 denoting the intersection of the values of its two
	 arguments, and NOT as denoting the complement
	 of the value of its argument, then the first query shown
	 must denote the empty set, since there are no words which
	 are both the word Heinlein and the
	 word Robert. The third query will,
	 given these interpretations, denote the set of locations
	 which are both (1) occurrences of the word
	 Heinlein and (2) not occurrences of
	 the word Bradbury. Neither of these
	 is a satisfactory interpretation for expressions which
	 appear perfectly idiomatic to many users.[15]

Ariadne interprets top-level queries
	 like those shown as abbreviated forms of x
 CONTAINING
 y
 op
 z, where
	 x denotes some smallish region of text, like a
	 paragraph. It is for this reason that Ariadne introduces
	 the idea of a chunk. The searches shown above
	 find chunks which contain both
	 Heinlein and
	 Robert; contain either
	 Heinlein or
	 Bradbury; or contain
	 Heinlein but do not contain
	 Bradbury. If all chunks are
	 p or q or bibl elements, then
	 these Boolean searches are equivalent to

	 (<p> or <q> or <bibl>) containing
 Heinlein and Robert

 (<p> or <q> or <bibl>) containing
 Heinlein or Bradbury

 (<p> or <q> or <bibl>) containing
 Heinlein and not Bradbury

This is one of two places where the semantics of
	 Ariadne appeals to the notion of
	 chunk. The other place is that in an
	 Arras-style interactive interface which displays lists of
	 hits, the default context for a hit will be one chunk.

Grammar
The basic form of the language is straightforward: a query
	is a basic query, followed by zero or more qualifications
	using the filter operators. Since some filters apply only to
	one kind of query, word queries and element queries are
	distinguished syntactically. Also, queries can be combined
	using Boolean operators, as can filters.
The grammar will be given in ixml notation, for which see
	Pemberton 2013 and Pemberton 2021.
Starting at the top: a query is either a word query, an
	element query, a set of basic word queries joined by Boolean
	operators, or a set of basic element queries joined by Boolean
	operators.
query: single-query | multi-query.
single-query: word-query | element-query.
multi-query: base-word+boolean
 | base-element+boolean.

 Each kind of query consists of a base query followed by zero
 or more filters, connected by Booleans.
word-query: base-word, (s, word-filter*boolean)?.
element-query: base-element, (s, element-filter*boolean)?.

 A basic word query is sequence of tokens, or a parenthesized
 word query:
	
base-word: tokens
 | '(', s?, word-query, s?, ')'.
tokens: token+s.
token: word | pattern | string.

A word is a sequence of word characters or a quoted string.
	Ambitious implementations may also provide either simple
	glob-style patterns using asterisk and question mark or
	regular expressions. Those are not described here, though they
	are likely to be important in practice.
A basic element query is a generic identifier enclosed in
	angle brackets. As in XML, we allow whitespace before the
	closing angle bracket.

base-element: '<', name, s?, '>'
 | '(', s?, element-query, s?, ')'.

Word queries may be filtered by word proximity, by element
	proximity, horizontally (by left-right context), or vertically
	(by ancestor-descendant context). Element queries may be
	filtered by attribute, by element proximity, horizontally, or
	vertically.
word-filter: word-proximity-filter
 | element-proximity-filter
 | left-right-filter
 | context-filter.
element-filter: element-proximity-filter
 | left-right-filter
 | context-filter
 | content-filter
 | attribute-filter.

Word proximity filters take the form
 w1
 within
 k
 words of
 w2
 , or
	
 w1
 followed within
 k
 words by
 w2
 , or
 w1
 preceded within
 k
 words by
 w2
 .
word-proximity filter:
 NOT?, WITHIN, n, WORDS, OF, word-query
 | NOT?, PRECEDED, WITHIN, n, WORDS, BY, word-query
 | NOT?, FOLLOWED, WITHIN, n, WORDS, BY, word-query.

Element proximity filters are essentially the same, but
	specify an element type instead of using the keyword WORDS.
element-proximity filter:
 NOT?, WITHIN, n, units, OF, single-query
 | NOT?, PRECEDED, WITHIN, n, units, BY, single-query
 | NOT?, FOLLOWED, WITHIN, n, units, BY, single-query.
	units: base-element, ELEMENTS.

Left-right filters use the keywords PRECEDED
	and FOLLOWED, but no proximity measurements. They
	can be preceded by NOT and DIRECTLY.
left-right-filter:
 NOT?, DIRECTLY?, PRECEDED, BY, single-query
 | NOT?, DIRECTLY?, FOLLOWED, BY, query.

Context filters use the keyword INSIDE.
	context-filter: NOT?, DIRECTLY?, INSIDE, element-query.

Content filters use the keyword CONTAINING:
	content-filter: NOT?, DIRECTLY?, CONTAINING, single-query.

Attribute filters use the keyword WITH.
attribute-filter: WITH, attribute-test.
attribute-test: name, NOT?, NULL
 | name, NOT?, comparator, value.
comparator: "=" | "<" | ">" | "<=" | ">=".
value: token.

Omitted here are rules for the keywords NOT,
 DIRECTLY, PRECEDED, etc., which are
 defined to accept either lowercase or uppercase spelling and
 to allow or require surrounding whitespace.
An XML representation follows directly from the ixml
	specification; experience may lead to a reformulation of the
	grammar in order to get a different XML representation.

Semantics
For each form of expression E, we give a
	rule for finding its value v(E), typically in
	terms of a set comprehension rule.
In describing the forms of expressions, we write
		
 w for a base word,

	
 gi for a base element,

	
 x for an expression which may be either a base word
	 or a base element,

	
 wq for a word query,

	
 eq for an element query,

	
 sq for any simple query (word query or element query)

In describing values, we write n for locations (or nodes)
	in the document, which can be either word nodes or element
	nodes.
A variety of predicates and relations holding among nodes,
	strings, names, and integers will be introduced as needed.
The only function used is v(); all other terms are
	relations. For example, we write name(e, gi) to say that
	the name of a particular element instance e is gi. In
	XPath, we would normally write name(e) = gi (or
	name($e) = $gi), but the formulas are easier to
	follow if there is never any doubt about whether a given term
	is a function call or a relational predicate. If the functor
	is v, it's a function call denoting a set of nodes; otherwise,
	it's a predicate which is either true or false.
Basic searches
Base-word searches
A search for a single word form finds all occurrences of
	 that form in the document.
	 	v(w) = { n | word(n) ∧ form(n, w) }

	 That is: the value of a search for word w is the set of all
	 locations n in the document such that n is a word node
	 and w is the word-form of n.
	
The predicate word is true if and only if its
	 argument is a word-node.
The relation form is true for a word-node and its
	 word form (a string).
A search for multiple words (e.g. programming language)
	 looks for adjacent tokens.
	 	v(w1
 w2) = v(w1
 DIRECTLY FOLLOWED
	 BY
 w2)

	 The pattern w1
 DIRECTLY FOLLOWED BY
 w2 is defined
	 below.
	

Basic searches connected by Booleans
As noted earlier, in a query like
	
	 <title> containing fire and ice

	 the Boolean operator can be thought of as connecting two
	 arguments for the filter, not two full queries. (It may be
	 thought of as analogous to the and connecting
	 the parts of a compound direct object, rather than to the
	 and connecting two clauses in a compound
	 sentence.)[16]

Some queries may connect basic searches with Booleans,
	 like this one:
	
	 fire and ice

	
	 In order to provide some meaning for such queries, these
	 are interpreted as denoting the set of chunks which
	 contain both the form fire and the
	 form ice. If chunks can nest, then
	 only the smallest chunks which satisfy the constraint are
	 returned.
This special treatment is applied only to Boolean
	 combinations of basic queries, which the grammar
	 identifies as multi-queries.
A multi-query on words finds all chunks in the document
	 containing that combination of words; it can be understood
	 as performing set operations on the sets of chunks
	 identified by the individual base queries.
For any multi-query mq, we shift to a special
	 evaluation procedure:
	v(mq) = vmq(mq)

	vmq(x
 AND
 mq) = v(CHUNK CONTAINING
 x) ∩ vmq(mq)

	vmq(x
 OR
 mq) = v(CHUNK CONTAINING
 x) ∪ vmq(mq)

	vmq(x
 NOT
 mq) = v(CHUNK CONTAINING
 x) \ vmq(mq)

	vmq(x
 AND NOT
 mq) = v(CHUNK CONTAINING
 x) \ vmq(mq)

As a base case, when all the occurrences of
	 AND, OR, and NOT
	 have been dealt with, and we are dealing with the simple
	 query which is the last (right-most) element of the
	 multi-query, we interpret it as if it were a search for a
	 chunk containing whatever is specified by the simple
	 query. So Heinlein, for example, is
	 interpreted as if it were CHUNK CONTAINING
	 Heinlein, and <author> as if it
	 were CHUNK CONTAINING <author>.
	vmq(sq)
		 = v(CHUNK CONTAINING sq)

This requires that we define the pattern CHUNK CONTAINING
 x:
	v(CHUNK CONTAINING
 w) = { n1 | chunk(n1)
	 ∧ (∃ n2)(n2 ∈ v(w)
	 ∧ ancestor-descendant(n1, n2)) }

Base-element searches
A basic element search finds all elements in the document
	 with that generic identifier.
	v(gi) = { n | element(n) ∧ name(n, gi) }

Filtered searches
Word-proximity filters
A word proximity query finds all instances of the
	 left-hand argument which are within the designated distance
	 of some instance of the right-hand argument.
	v(w
 WITHIN
 k
 WORDS OF
 wq)
	 = { n | n in v(w)
	 ∧ (∃ n2) (n2 ∈ v(wq)
	 ∧ (∃ d1, d2) (distance(n1, n2, w, d1)
	 ∧ num-abs(d1, d2)
	 ∧ d2 ≤ k)) }
	

Here distance(n1, n2, gi, d) is a relation
	 holding among two nodes n1 and n2, the generic
	 identifier of an element type serving as a unit of measure
	 (here the w element), and d, an integer denoting
	 the directed distance between n1 and n2, measured in
	 those units. If d is positive then n1 precedes n2, if
	 negative then n1 follows n2. So d is the distance from
	 n1 to n2, moving forward in the text.
The num-abs relation holds between a number and its
	 absolute value.
In prose: a search for some word w within k words
	 of some word found by word-query wq finds all nodes (or:
	 locations) n, such that n is in the value of w and
	 there exists some second node n2 in the value of the
	 word-query wq such that there is some distance d,
	 measured between n and n1 in w elements, such
	 that d is less than or equal to k.
The reader may find the formulation slightly puzzling,
	 expecting in the last part of the set comprehension
	 formula to see a formulation more like

	 ... abs(distance(n1, n2, w)) ≤ k

with a meaning like the absolute value of the
	 distance from n1 to n2 is less than or equal to
	 k
 .
The first reason for this is that in this alternate
	 formulation, abs and distance are functions, not
	 relations.
The more important reason is as mentioned earlier: We
	 would like to avoid the assumption that there is always a
	 single distance between two words. For example, when a
	 note or note reference[17] occurs immediately following a word w,
	 what is the next word after w? Is it the word after the
	 reference? or is it the first word of the note? Viewed
	 another way: what is the distance between w and the word
	 following the reference? In this paragraph, what is the
	 distance between the word reference
	 and the word occurs? The
	 formulation given above is intended to allow for the
	 possibility that there are two distances, which depend on
	 the route taken: if the note is skipped and we remain in
	 the main text, then the distance is
	 1. If we follow the reading route through the note, and it
	 has (as here) three words, then the distance is 4. What is
	 the distance between two words? It depends on which route
	 you take. An Ariadne implementation may adopt a distance
	 measure in which there is only ever a single distance
	 between two points — prescribing a single route
	 between them, so to speak — but it is not obligated
	 to do so.
Non-deterministic proximity measures can be helpful not
	 only in cases of paratextual structures like footnotes or
	 running heads, but also in cases where textual variants
	 are encoded in a single document, whether the document is
	 a critical edition, a variorum edition, or a normative
	 document (technical specification, legislation, ...) in
	 which changes from a previous published version are marked
	 to simplify displays that show all changes in context. In
	 a single version of the text, two word tokens are within
	 k words of each other if there are at most k - 1 words
	 between them. In a multi-version representation the text,
	 two words are within k words of each other if there is
	 some version of the text in which they are within k
	 words of each other.
The use of relational notation instead of functional
	 notation makes it easier to exclude unconscious assumptions
	 about the uniqueness of certain values.
The ordered proximity filters are similar but do not need
	 to calculate the absolute value of the distance.
	v(w
 PRECEDED WITHIN
 k
 WORDS BY
 wq)
	 = { n1 | n1 in v(w)
	 ∧ (∃ n2)(n2 ∈ v(wq)
	 ∧ (∃ d)(distance(n2, n1, w, d)
	 ∧ 0 < d ≤ k)) }
	

In prose: the value of a search matching the pattern
	 w
 PRECEDED WITHIN
 k
 WORDS BY
 wq is the set of all word occurrences n1 matching w,
	 such that there is some other word occurrence n2 and
	 some distance d, such that n2 matches the word query
	 wq and d is a left-to-right distance (not the
	 distance) from n2 to n1, measured in words, and
	 d is positive and d is less than or equal to k.
The FOLLOWED keyword is the mirror image:
	 the only difference is the order of arguments in the
	 distance relation.
	v(w
 FOLLOWED WITHIN
 k
 WORDS BY
 wq)
	 = { n1 | n1 ∈ v(w)
	 ∧ (∃ n2)(n2 ∈ v(wq)
	 ∧ (∃ d)(distance(n1, n2, w, d)
	 ∧ 0 < d ≤ k)) }
	

The set comprehensions for the NOT
	 operator have a similar structure, but the existential
	 quantifier over the second node n2 is negated.
	v(w
 NOT WITHIN
 k
 WORDS OF
 wq)
	 = { n | n ∈ v(w)
	 ∧ ¬(∃ n2)(n2 ∈ v(wq)
	 ∧ (∃ d1, d2)(distance(n1, n2, w, d1)
	 ∧ num-abs(d1, d2)
	 ∧ d2 ≤ k)) }
	

	v(w
 PRECEDED WITHIN
 k
 WORDS BY
 wq)
	 = { n | n ∈ v(w)
	 ∧ ¬ (∃ n2)(n2 ∈ v(wq)
	 ∧ (∃ d)(distance(n2, n1, w, d)
	 ∧ 0 < d ≤ k)) }
	

	v(w
 FOLLOWED WITHIN
 k
 WORDS BY
 wq)
	 = { n | n ∈ v(w)
	 ∧ ¬(∃ n2)(n2 ∈ v(wq)
	 ∧ (∃ d)(distance(n1, n2, w, d)
	 ∧ 0 < d ≤ k)) }
	

These find the set of all words which match the left
	 argument w for which some node in the value of the word
	 query wq is within k words; when PRECEDED
	 or FOLLOWED is used, the distance is measured
	 only in the indicated direction.

Element-proximity filters
The element-proximity filters have a very similar
	 structure to the word-proximity filters; the only
	 difference is that the hardcoded w
	 is replaced by a reference to the specified generic
	 identifier.
	v(x
 WITHIN
 k
 gi
 ELEMENTS OF
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 ∧ (∃ d1, d2)(distance(n1, n2
 gi, d1)
	 ∧ num-abs(d1, d2)
	 ∧ d2 ≤ k)) }
	

	v(x
 PRECEDED WITHIN
 k
 gi
 ELEMENTS BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 ∧ (∃ d)(distance(n2, n1, gi, d)
	 ∧ 0 < d ≤ k)) }
	

	v(x
 FOLLOWED WITHIN
 k
 gi
 ELEMENTS BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 ∧ (∃ d)(distance(n1, n2, gi, d)
	 ∧ 0 < d ≤ k)) }
	

	v(x
 FOLLOWED WITHIN
 k
 gi
 ELEMENTS BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 ∧ (∃ d)(distance(n1, n2, gi, d)
	 ∧ 0 < d ≤ k)) }
	

	v(x
 NOT WITHIN
 k
 gi
 ELEMENTS OF
 sq) = { n1 | n1 ∈ v(x)
 ∧ ¬(∃ n2)(n2 ∈ v(sq)
	 ∧ (∃ d1, d2)(distance(n1, n2
 gi, d1)
	 ∧ num-abs(d1, d2)
	 ∧ d2 ≤ k)) }
	

	v(x
 NOT PRECEDED WITHIN
 k
 gi
 ELEMENTS BY
 sq)
	 = { n1 | n1 ∈ v(x)
 ∧ ¬(∃ n2)(n2 ∈ v(sq)
	 ∧ (∃ d)(distance(n2, n1, gi, d)
	 ∧ 0 < d ≤ k)) }
	

	v(x
 NOT FOLLOWED WITHIN
 k
 gi
 ELEMENTS BY
 sq)
	 = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 ∧ (∃ d)(distance(n1, n2, gi, d)
	 ∧ 0 < d ≤ k)) }
	

Left-right filters
The filters PRECEDED BY and FOLLOWED
	 BY appeal to an underlying relation
	 preceding-following which holds for all pairs (x, y)
	 such that x precedes y in the document.
In a totally ordered document like an XDM instance, for
	 any pair (x, y) we have either
	 preceding-following(x, y) or
	 preceding-following(y, x) or x = y. In a
	 partially ordered document, it can be the case that none
	 of these apply. In a multiply ordered document (for
	 example, a document that includes multiple orderings of
	 its nodes), we may have both preceding-following(x,
	 y) and preceding-following(y, x) — that is,
	 x may both precede and follow y.
	v(x
 PRECEDED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 and preceding-following(n2, n1)) }
	

	v(x
 FOLLOWED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 and preceding-following(n1, n2)) }

	v(x
 DIRECTLY PRECEDED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 and prec-next(n2, n1)) }
	

	v(x
 DIRECTLY FOLLOWED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ (∃ n2)(n2 ∈ v(sq)
	 and prec-next(n1, n2)) }

	v(x
 NOT PRECEDED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ ¬(∃ n2)(n2 ∈ v(sq)
	 and preceding-following(n2, n1)) }
	

	v(x
 NOT FOLLOWED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ ¬ (∃ n2)(n2 ∈ v(sq)
	 and preceding-following(n1, n2)) }

	v(x
 NOT DIRECTLY PRECEDED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ ¬(∃ n2)(n2 ∈ v(sq)
	 and prec-next(n2, n1)) }
	

	v(x
 NOT DIRECTLY FOLLOWED BY
 sq) = { n1 | n1 ∈ v(x)
 ∧ ¬(∃ n2)(n2 ∈ v(sq)
	 and prec-next(n1, n2)) }

Context filters
Analogously, the context and content filters rely on
	 relations that we can call parent-child and
	 ancestor-descendant.
	v(x
 INSIDE
 eq)
	 = { n1 | n1 ∈ v(x)
	 ∧ (∃ n2)(n2 ∈ v(eq)
	 ∧ ancestor-descendant(n2, n1)) }

	v(x
 DIRECTLY INSIDE
 eq)
	 = { n1 | n1 ∈ v(x)
	 ∧ (∃ n2)(n2 ∈ v(eq)
	 ∧ parent-child(n2, n1)) }

	v(x
 NOT INSIDE
 eq)
	 = { n1 | n1 ∈ v(x)
	 ∧ ¬(∃ n2)(n2 ∈ v(eq)
	 ∧ ancestor-descendant(n2, n1)) }

	v(x
 NOT DIRECTLY INSIDE
 eq)
	 = { n1 | n1 ∈ v(x)
	 ∧ ¬(∃ n2)(n2 ∈ v(eq)
	 ∧ parent-child(n2, n1)) }

Content filters
The content filters are the converse of the context
	 filters; they look down the tree, not up. So the main
	 difference in the definitions is the order of arguments
	 in the reference to the ancestor-descendant and
	 parent-child relations.
	v(e
 CONTAINING
 sq)
	 = { n1 | n1 ∈ v(e)
	 ∧ (∃ n2)(n2 ∈ v(sq)
	 ∧ ancestor-descendant(n1, n2)) }

	v(e
 DIRECTLY CONTAINING
 sq)
	 = { n1 | n1 ∈ v(e)
	 ∧ (∃ n2)(n2 ∈ v(sq)
	 ∧ parent-child(n1, n2)) }

	v(e
 NOT CONTAINING
 sq)
	 = { n1 | n1 ∈ v(e)
	 ∧ ¬(∃ n2)(n2 ∈ v(sq)
	 ∧ ancestor-descendant(n1, n2)) }

	v(e
 NOT DIRECTLY CONTAINING
 sq)
	 = { n1 | n1 ∈ v(e)
	 ∧ ¬(∃ n2)(n2 ∈ v(sq)
	 ∧ parent-child(n1, n2)) }

Attribute filters
The attribute filters are straightforward.
The first filter tests for an attribute being present
	 or absent.
	v(e
 WITH
 an
 NULL)
	 = { n | n ∈ v(e)
	 ∧ ¬(∃ val)(e-an-av(n, an, val)) }

	v(e
 WITH
 an
 NOT NULL)
	 = { n | n ∈ v(e)
	 ∧ ¬(∃ val)(e-an-av(n, an, val)) }

In prose: the filter WITH
 an
 NULL matches an element just in case it has
	 no value associated with the attribute name an; the
	 variant with NOT matches just in case it does
	 have some value for that name.
	v(e
 WITH
 an
 EQ
 val)
	 = { n | n ∈ v(e)
	 ∧ (∃ v)(e-an-av(n, an, v)
	 ∧ (((∃ i1, i2)(str-num(val, i1)
	 ∧ str-num(v, i2)
	 ∧ i1 = i2))
	 ∨ ¬(∃ i1, i2)(str-num(val, i1)
	 ∧ str-num(v, i2)
	 ∧ v = val))) }

In prose: the filter WITH
 an = val
	 matches an element just in case the element has a value
	 associated with the attribute name an, and the value
	 specified and the value of the attribute are equal either
	 numerically, if both are convertible to numbers, or else
	 as strings.
The other forms differ from the one just given only in using
	 different operators instead of equality, or in adding negation.
	 They will not be given here.
	v(e
 WITH
 an
 LT
 val)

	v(e
 WITH
 an
 GT
 val)

	v(e
 WITH
 an
 LE
 val)

	v(e
 WITH
 an
 GE
 val)

	v(e
 WITH
 an
 NOT EQ
 val)

	v(e
 WITH
 an
 NOT LT
 val)

	v(e
 WITH
 an
 NOT GT
 val)

	v(e
 WITH
 an
 NOT LE
 val)

	v(e
 WITH
 an
 NOT GE
 val)

The Ariadne text model
It may be observed, by inspecting the semantic descriptions
	offered in the preceding section, that Ariadne searches may be
	performed on any collection of data that can be represented as a
	set of nodes, on which a certain number of relatively simple,
	relatively general relations are defined.
Nodes can be words, or elements. Relevant predicates are:
	
		
 word(n): true if node n is a word

	
 element(n): true if node n is an element

	
 node(n): true if n is a node

	
 chunk(n): true if node n is a chunk

The word and element predicates are not mutually exclusive:
	as mentioned earlier, internally Ariadne processors are
	expected to represent words as w elements. The chunk
	predicate holds of some elements.
In most obvious cases, all nodes will be either words or
	elements, but in principle other node types are possible,
	though they cannot be retrieved using Ariadne as currently
	defined.
Words have word forms, and elements have names:[18]
 	
 form(n, w): true if node n is a word and w
	 is the (or: a) word form of n

	
 name(n, gi): true if node n is an element and
	 gi is its name

One or more partial orders are defined on the nodes in the
	document. The prec-next relation holds for nodes which are
	immediately adjacent in some partial ordering; the
	preceding-following relation is its transitive closure.
	
		
 prec-next(n1, n2): true iff n2 immediately
	 follows n1 in some ordering; this can be thought of a
	 recording a next-pointer from n1 to
	 n2, not necessarily the only next-pointer from
	 n1.

	
 preceding-following(n1, n2): true if n2 can be
	 reached by following a series of next-pointers beginning at
	 n1 and ending at n2; the transitive closure of the next
	 relation

Either of these may be derived from the other. If
	
 preceding-following
 is specified and is
	acyclic, then prec-next can be derived by taking its
	transitive reduction. If prec-next is specified,
	then
 preceding-following
 may be derived from it
	by taking its transitive closure; in this case,
	prec-next need not be acyclic.
A parent-child relation is also defined on the nodes of
	the document, together with its transitive closure
	ancestor-descendant. If these are acyclic, then either can
	be specified and the other derived from it; if they include
	cycles, then parent-child must be defined and
	ancestor-descendant derived from it.

		
 parent-child(n1, n2): true if n1 is a parent
	 of n2

	
 ancestor-descendant(n1, n2): true if n1 is an
	 ancestor of n2; this is the transitive closure of the
	 parent-child relation

As in SGML or XML, elements may have attribute-value pairs;
	the comparison operators assume that values are represented as
	strings, but may denote numbers. Ariadne is agnostic on whether
	attributes are nodes (as in XDM) or simply properties attached
	to element nodes.
	
		
 e-an-av(n, an, val): true if n1 is an
	 element with an attribute with the name an and the value
	 val.

For proximity searching, the distance relation is crucial.
	It measures the distance between two nodes, using an arbitrary
	element type as the unit of measure.
	
		
 distance(n1, n2, gi, d): true if the
	 distance from n1 to n2, moving forward in the text, can
	 be measured at d elements of type gi. If the second
	 argument precedes the first, d is negative.

The semantic formulae given above do not assume any
	particular relationship between the distance relation and the
	next and preceding-following relations. In order to ensure
	that searches involving the filters DIRECTLY FOLLOWED
	BY and FOLLOWED
 WITHIN 1 ...
	BY produce plausibly related results, however, it
	is probably best if they are systematically related.
When all nodes in a document are totally ordered, as in
	XDM, one possible approach is to define distance in terms of
	next, along the following lines. One possible definition is as
	follows. For any nodes n1 and n2, and any generic
	identifier gi, the following hold:

		The distance from any node to itself is 0. That is,
	 distance(n1, n1, gi, 0).

	If prec-next(n1, n2) and gi is the name of
	 n2 (name(n2, gi)), then the distance is 1:
	 distance(n1, n2, gi, 1).

	If prec-next(n1, n2) and gi is not the name
	 of n2, then the distance is 0: distance(n1, n2,
	 gi, 1).

	If there exists some node n3 such that
	 prec-next(n1, n3), and gi is the name of n3, and
	 the distance from n3 to n2 is d, then the distance
	 from n1 to n2 is 1 + d.

	If there exists some node n3 such that
	 prec-next(n1, n3), and gi is not the name of n3, and
	 the distance from n3 to n2 is d, then the distance
	 from n1 to n2 is also d.

Operationally, this amounts to walking the path from n1 to
	n2 by following next-pointers, incrementing the count each
	time an element with the specified generic identifier is
	encountered.
In a text model with multiple paths from n1 to n2, a
	distance is measured along each path.
A few relations are defined on numbers, strings, and
	attribute values:

		
 num-abs(num1, num2): true if num2 is the
	 absolute value of num1.

	
 str-num(v, num): true if string v is in the
	 lexical space of some XSD numeric type, and num is the
	 corresponding value.

If both arguments to the following relations are numbers, or
	strings that can be coerced to numbers, then the comparisons are
	numeric; otherwise, the comparisons are string comparisons using
	an implementation-defined Unicode collation sequence.
	
 equal(v1, v2): true if v1 and
	 v2 are the same value

	
 lt(v1, v2): true if
	 v1 is less than v2, numerically if they are both numbers,
	 otherwise lexicographically

Current status, progress towards implementation, and future plans
Ariadne is intended to be simple to implement, but early
	implementation of a design can have unfortunate effects if
	properties of the implementation leak out and affect the
	design. In order to avoid this problem, the author is
	attempting to work out the design of Ariadne as completely as
	possible before actually implementing anything.[19] This has drawbacks, but if all goes
	well it will help ensure that the query language can be
	understood without reference to any particular implementation
	or implementation approach.
At the time this version of the paper was prepared, the
 language existed only on paper, with some paper sketches of code
 for a toy implementation. It is expected that a toy
 proof-of-concept implementation will be completed
 soon, sufficient to allow experimentation with
 small documents using different text models and with different
 ways of reducing the Ariadne text model to a minimal set of
 relations.

References
[EBT 1996]
	 EBT (Electronic Book Technologies)/Inso Providence Corporation.
	 DynaText Publishing: Document Preparation.
	 Release 3.0.
	 Providence: EBT/Inso Providence Corporation, 1996.
	
[Pemberton 2013]
	 Pemberton, Steven.
	 Invisible XML.
	 Presented at Balisage: The Markup Conference 2013,
	 Montréal, Canada, August 6 - 9, 2013.
	 In
	 Proceedings of Balisage: The Markup Conference 2013..
	 Balisage Series on Markup Technologies, vol. 10 (2013).
	 doi:https://doi.org/10.4242/BalisageVol10.Pemberton01.
	
[Pemberton 2021]
	 Pemberton, Steven.
	 Invisible XML Specification (Draft).
	 2021-01-28.
	 On the Web at
	 https://invisiblexml.org/ixml-specification.html.
	
[Smith 1980] Smith,
	 John Bristow.
	 Imagery and the Mind of Stephen Dedalus: A
	 Computer-Assisted Study of Joyce's a Portrait of the Artist
	 As a Young Man.
	 Lewisburg, PA: Bucknell University Press,
	 1980. 294 pp.
	
[Smith 1985] Smith,
	 John B.
	 Arras User's Manual.
	 TR85-036 1985.
	 Chapel Hill: University of North Carolina at Chapel Hill,
	 Dept. of Computer Science, 1985.
	 Available online at
	 http://www.cs.unc.edu/techreports/85-036.pdf.

[1] The association of Ariadne with a method of finding one's
	way through a complex and confusing structure also doesn't
	hurt.Ariadne is a reasonably popular name for technology
	projects, so it may be desirable to say explicitly here that
	the query language described in this paper has no relation to
	any other software, language, project, or firm using the name
	Ariadne, including but not limited to:

		Ariadne Software (http://www.ariadnesoftware.com), the maker of Cool
	 Spools and a provider of solutions for the IBM i (AS 400
	 iseries) platform;

	Ariadne Solutions - Red Thread Software (https://www.ariadnesolutions.com/), the maker of Red
	 Thread, a tool for bioanalytical data review and risk
	 management;

	the Ariadne project (https://www.ariadne-eu.org), a program funded by the
	 European Union to integrate existing archeological data
	 infrastructure across Europe, so researchers can use the
	 various distributed datasets and new technologies to explore
	 research methodologies.

[2] Like many computer-related names at the time, the name
	 Arras was typically written in all
	 caps in printed documentation. For the sake of a visually
	 quieter page I follow the rule of down-casing such names
	 when they are pronounceable.
[3] The description of the
	 DynaText query language which follows is derived mostly from
	 chapter 12 of the manual DynaText Publishing:
	 Document Preparation (EBT 1996).
	 DynaText was a commercial product and is as far as I know no
	 longer commercially available. This has several
	 consequences. First, I do not now have and have never had
	 access to the source code of the program, and do not now
	 have access to a running copy, so my description of corner
	 cases in the query language cannot be tested against the
	 behavior of the search interface and may need to be taken
	 with a grain of salt. The information in the manual has been
	 augmented in a few details by personal recollection and here
	 and there also by information from Steven J. DeRose, who is
	 thanked for his patience. Second, it must be assumed that
	 someone, somewhere owns the intellectual property rights to
	 the program. In the U.S., I believe my description of the
	 DynaText query language and its influence on Ariadne fall
	 into the category of fair use.
[4] I'm just saying that someone might
	 try to formalize the meaning of the language that way, and
	 be surprised by the results, not that such a mistake
	 happened to anyone I happen to know
	 personally.
[5] For example,
	 the ancilla search interface for
	 Trials in the Late Roman Republic (http://tlrr.blackmesatech.com/2016/04/ancilla.xhtml);
	 the initial a of the name
	 ancilla signals that this was the
	 first search interface to be specified and named, though it
	 was not in fact the first one implemented.
[6] The first may be expected
	 to locate chapters about the syntax rules in books about
	 languages like Pascal, Javascript, or C; the second should
	 find chapters discussing suitable programming languages, in
	 books about the syntax of natural languages. When I first
	 heard it, the example was attributed to the computational
	 linguist Toshio Yokoi.
[7] Actually, since I
	 still miss Arras's proximity searching thirty-five years
	 after last using it, an Arras implementation might be useful
	 as well as fun. But it was fun, not functionality, that was
	 the key motivator for keeping the project on my someday
	 list. I reiterate my claim that independent
	 re-implementations of Arras and DTQL would fall within the
	 bounds of fair use under U.S. copyright law.
[8] Steven J. DeRose,
	 personal communication, 10 March 2021.
[9] I mean, really simple to implement. I
	 mean, simple enough for someone trained in comparative
	 literature to implement.
[10] The
	 XPath expressions given are only roughly equivalent
	 because the search for the word
	 ward is not a string search, and
	 should not find occurrences of the words
	 reward or
	 award. In an implementation which
	 records its tokenization of words by marking them with
	 w elements, the equivalent XPath will be:
	 //w[@form = 'ward'][ancestor::heading]

[11] It may be
	 less useful than it appears at first. If the user wants
	 all the theorems which occur before the first theorem in
	 the same chapter, this query won't find them. The search
	 <theorem> not preceded by sibling
	 <axiom> will work, but only if all the axioms
	 and theorems we are looking for are siblings, and none of
	 them are buried in subsections.
[12] A case might be made for adding WITHIN
	 SAME
 gi
 ELEMENT AS, as
	 syntactic sugar for WITHIN 0
 gi
 ELEMENTS OF.
[13] Because of the
	 way XDM orders nodes, a simple-minded implementation based
	 on XDM will typically measure zero l elements
	 between two locations if they are separated by an end-tag
	 for an l element, but not by a start-tag. The
	 asymmetry of start- and end-tags is imperfect, but for the
	 moment it appears to be avoidable at the cost of increased
	 implementation effort.
[14] For OR, the results are the
	 same whether the OR is evaluated before
	 or after the filter, but for AND and
	 NOT, the results are very different.
[15] Some query systems are supposed to have
	 concluded that a top-level query of the form x
 AND
 y expresses a desire to see all the
	 records which match sub-query x
 and those
	 which match sub-query y. That makes the operators
	 AND and OR equivalent, which
	 will work well for users who do in fact mean
	 all the x
	 and all the y,
	 but which
	 seems likely to puzzle at least some users who think
	 that AND and OR
		 are not synonyms.
[16] If the and
	 were thought of as connecting two queries, the obvious
	 meaning would be the set of word nodes which are both
	 instances of fire and instances of
	 ice, which on any plausible
	 formalization of word forms will be the empty
	 set.
[17] Like this
	 one.
[18] In its current form, Ariadne seems to be
	living in a markup paradise in which there are no
	complications involving the tangled relationships among local
	names, namespace prefixes, namespace names, expanded names,
	and so on. If the reader wishes to imagine that all names are
	unqualified, or that all names are given as expanded names in
	Q{namespace}local notation, they may do so.
[19] I reject in the strongest possible terms any
	imputation that this approach has anything at all to do with
	procrastination or laziness. I am shocked at the
	suggestion.

Balisage: The Markup Conference

Ariadne's thread
A design for a user-facing query language
	 for texts and documents
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and
	 principal of Black Mesa Technologies, a consultancy
	 specializing in helping memory institutions improve
	 the long term preservation of and access to the
	 information for which they are responsible.
He served as editor in chief of the TEI
	 Guidelines from 1988 to 2000, and has also served
	 as co-editor of the World Wide Web Consortium's
	 XML 1.0 and XML Schema 1.1
	 specifications.
	

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

