[image: Balisage logo]Balisage: The Markup Conference

Serverless Searching with XSLT and JavaScript
Introducing staticSearch
Joey Takeda
Digital Humanities Innovation Lab, Simon Fraser
University

Martin Holmes
Humanities Computing and Media Centre, University of
Victoria

Balisage: The Markup Conference 2022
August 1 - 5, 2022

Copyright rests with the authors.

How to cite this paper
Takeda, Joey, and Martin Holmes. "Serverless Searching with XSLT and JavaScript." Presented at: Balisage: The Markup Conference 2022, Washington, DC, August 1 - 5, 2022. In Proceedings of Balisage: The Markup Conference 2022.
 Balisage Series on Markup Technologies vol. 27 (2022). https://doi.org/10.4242/BalisageVol27.Takeda01.

Abstract

 Increasing awareness of the burdens of technical debt and the
 risks and costs associated with complex server infrastructures
 have prompted digital humanists to consider moving to purely
 static HTML/CSS/JS websites for projects such as online digital
 editions. Building static sites is not difficult, but digital
 editions also require sophisticated search capabilities,
 incorporating text search with stemming and wildcards as well as a
 rich array of filters tuned to the contents of the edition itself.
 Responding to this need, we created staticSearch, a system which
 builds search indexes offline with XSLT and queries them
 statically using JavaScript, providing a straightforward approach
 to search for purely static websites. This presentation will
 describe how staticSearch works, and discuss some of the
 interesting and challenging problems that such a system has to
 overcome.

Balisage: The Markup Conference

 Serverless Searching with XSLT and JavaScript

 Introducing staticSearch

 Table of Contents

 	Title Page

 	Introduction

 	Prior Work and Existing Solutions

 	What is staticSearch?
 	Configuration

 	Tokenizing
 	Cleaning and Pre-Processing

 	Stemming

 	Indexing
 	Stem Files

 	Additional Files

 	Filter Files

 	Search Page

 	Conclusion

 	Appendix A. Statistics

 	Appendix B. Sample Static Search Implementations

 	About the Authors

 Serverless Searching with XSLT and JavaScript
Introducing staticSearch

Introduction

 The Endings project is a SSHRC-funded collaboration between
 scholars, programmers, and librarians to devise and implement
 guidelines and practices that ensure the long-term survival and
 archivability of digital edition projects, not just as data but as
 functioning web applications. In the first phase of the project,
 we converted numerous projects, ranging from small collections of
 texts to densely interlinked documents and datasets, from eXist-db
 backends into entirely static sites consisting only of HTML, CSS,
 and JavaScript [Holmes and Takeda 2019a; Holmes and Takeda 2019b;
 Holmes and Takeda Forthcoming].

 Having demonstrated the feasibility of building large sites which
 are both static and interactive, we were left with one remaining
 issue: how to provide a search engine for our collections without
 adding an unwanted technical debt in the form of a server-side
 backend. Searching is often an essential component of digital
 edition projects and most, if not all, of our projects are built
 with the assumption that there will be some sort of searching
 ability available in the future; much of our encoding work is
 predicated on the notion that good, clean encoding produces not
 only better texts, but ones more amenable to complex and specific
 querying in the future. These projects thus require robust search
 mechanisms that can allow for a range of queries—from simple word
 searches to complex faceted searches, to aid in both the usability
 and discoverability of documents.

 This paper introduces staticSearch: a serverless text-search
 engine with full stemming, wildcard, keyword-in-context, and
 filter support.[1] It is made up of two distinct, albeit interdependent,
 components: an XSLT-based indexer that generates an inverted index
 of JSON files from a collection of XHTML files and an associated
 JavaScript module for querying and displaying search
 results.[2] While our initial expectation was that staticSearch
 would be practical for smaller sites and perhaps not realistic for
 our larger ones which have tens of thousands of documents, our
 pessimism has proved unwarranted. Now nearing its second major
 release, staticSearch has become a core part of over a dozen
 projects, many of which contain thousands of documents, and its
 performance has surprised us.

Prior Work and Existing Solutions

 As we note in Holmes and Takeda Forthcoming, static websites have
 become popular due, in part, to their long-term durability. Static
 sites, once deployed, require minimal maintenance; unlike
 server-side applications, there is no risk of incompatible
 upgrades that either break your application, forcing the site to
 be remade, remediated, or retired, or, if ignored, make your site
 vulnerable to attacks or pre-emptive shutdown by system
 administrators. While the Endings project initially focused on
 generating static versions of existing web applications for
 long-term preservation, we quickly realized that creating static
 sites from the outset is relatively straightforward, and offers
 significant improvements in terms of workflow, project
 consistency, maintenance costs, and project management. The
 majority of the projects developed at the HCMC are now entirely
 static from the start.

 While full-text search engines like eXist and Solr offer powerful
 and well-documented mechanisms for indexing and querying large
 document collections, there is a lack of good options when it
 comes to adding search to static websites. As we detailed in
 Holmes and Takeda 2018, we tested a number of approaches, including
 invoking Google Custom Search Engine (CSE)—which the authors of
 O’Reilly’s introduction to static website development nominate as
 the best solution and the undisputed king of search
 [Camden and Rinaldi 2018]—and hooking into a centralized Library-run
 Solr indexer, but all of these systems had significant drawbacks.
 External services such as Google CSE and the Library’s Solr are
 not only fragile, but also difficult to customize for our needs
 and challenging to update. The Lunr.js JavaScript library, which
 bills itself as [a] bit like Solr, but much smaller and not
 as bright [Nightingale 2011], is another popular mechanism
 for adding search to static sites [Wikle, Williamson, and Becker 2020].
 Lunr.js only requires a pre-built JSON index file, which it can
 then parse in-memory to display search results. One of serious
 drawback of Lunr, however, is that it requires a single JSON file
 in memory, which can quickly become overwhelmed by large volumes
 of data. The assumption is that the index will be comprised of
 simple text or Markdown files, but our HTML is often highly nested
 and enriched with data attributes and classes that retain
 important information from the source documents; while not all of
 the information contained in the HTML is critical, much of it is
 important when it comes to fine-tuning and configuring specific
 site searches.

 There are, of course, many other ways to index a document
 collection beyond those services list above, but our ultimate goal
 was creating a search engine that could easily fit within our
 established infrastructure of XML languages and software. As
 Kraetke and Imsieske 2016 note, XSLT offers a modern, powerful
 static website generator, one that, we realized, could quite
 capably handle all of the tasks required by an indexing system.

What is staticSearch?

 Broadly, staticSearch works by first taking in a user supplied XML
 configuration file that tells the staticSearch build process where
 to find the documents and the search page and sets various options
 such as the number and length of keyword-in-context fragments to
 harvest for each stem.[3] It then runs the build process as follows:

	
 Checks and validates the input document collection.

	
 Checks the user’s configuration file, and if it is valid, uses
 it to build an XSLT configuration file for the remaining
 processes.

	
 Processes all documents in the collection to create versions
 in which stemmed tokens are tagged, and each tagged token has
 additional information about its context (more on this later).
 Each document is given an identifier consisting of its path
 relative to the search page.

	
 Uses the tokenized texts to build a collection of JSON files
 which are used to power the search.

	
 Creates the search page itself.

	
 Creates a report on the process.

Figure 1
[image:]

 There is one stipulation: the input document collection must
 consist of well-formed HTML5 in the XHTML namespace.
 Well-formedness is essential because we use Saxon to process the
 collection; the XHTML namespace arises purely out of our own
 prejudice.[4] That staticSearch uses and produces HTML, however, is
 an infrastructural feature. While extending staticSearch to other
 namespaces and to other XML dialects in general is certainly
 feasible and, in fact, our HTML documents are frequently derived
 from TEI XML encoded documents, it is difficult, in our minds, to
 imagine cases where indexing and tokenizing non-HTML files would
 be more effective. Since the search is meant to power a web
 application, users of the search are looking for information that
 they can find in the mass of HTML files, not the source documents
 from which they are produced. Our index, in other words, reflects
 the documents that are available in the collection and thus search
 results can be easily linked to the places in the source document
 where a term appears.

 We will now discuss the technical implementation in further
 detail.

Configuration

 The structure and syntax of the configuration file is defined by
 staticSearch’s custom schema (expressed as a TEI ODD file) and
 provides specific options for the staticSearch build process. A
 basic configuration file looks something like this:

<config xmlns="http://hcmc.uvic.ca/ns/staticSearch" version="2">
 <params>
 <searchFile>test/search.html</searchFile>
 <versionFile>test/VERSION</versionFile>
 <recurse>true</recurse>
 <phrasalSearch>true</phrasalSearch>
 <wildcardSearch>true</wildcardSearch>
 <createContexts>true</createContexts>
 <resultsPerPage>5</resultsPerPage>
 <minWordLength>2</minWordLength>
 <maxKwicsToHarvest>5</maxKwicsToHarvest>
 <maxKwicsToShow>5</maxKwicsToShow>
 <totalKwicLength>15</totalKwicLength>
 <kwicTruncateString>...</kwicTruncateString>
 <stopwordsFile>test/test_stopwords.txt</stopwordsFile>
 <dictionaryFile>xsl/english_words.txt</dictionaryFile>
 <outputFolder>ssTest</outputFolder>
 </params>
 <rules>
 <rule weight="2"
 match="h1 | h2"/>
 <rule weight="0"
 match="span[@class='lineNum']"/>
 <rule weight="0"
 match="script | style"/>
 <rule weight="0"
 match="header | footer"/>
 </rules>
 <contexts>
 <context match="blockquote" label="Quotations"/>
 <context match="div[@class='l']"/>
 <context match="span[@class='note'] | *[contains-token(@class,'sidenotes')]"
 label="Notes"/>
 <context match="cite" label="Citations"/>
 <context match="p[contains-token(@class,'citation')]" label="Citations"/>
 </contexts>
 <excludes>
 <exclude type="index" match="html[@id='excluded']"/>
 <exclude match="meta[contains-token(@class,'excludedMeta')]" type="filter"/>
 </excludes>
</config>

 There are many interesting configuration options that are beyond
 the scope of this paper (full documentation of each option is
 available on the project’s website and the GitHub repository),
 but the crucial parameter here is the
 <searchFile>.
 <searchFile> contains the path
 (relative to the configuration file) for the page in the
 collection that will be populated with the search form and
 controls for filters. This page may or may not already exist. If
 that page exists, then it must contain an HTML block element
 (<div>,
 <section>, etc) with the id
 "staticSearch"; if that page does not exist, then the
 page is created during the build process. The
 <searchFile> parameter also gives the
 location of the collection to index; in the above case,
 staticSearch will index all of the HTML files in the
 test/ directory.

 This configuration file is transformed into an XSLT stylesheet
 that is included in all subsequent steps of the build process.
 It is necessary to convert the configuration file into its own
 XSLT as some configuration options, like weighting rules and
 context specifications, rely on XPath match statements. For
 example, elements can be assigned weights[5] via the <rule> element in
 the configuration file:

<rule match="header" weight="3"/>
<rule match="menu | aside | footer" weight="0"/>

 The @weight attribute above signals the
 multiplier that should be applied to each instance of that
 element within a document when computing a term’s score. We make
 some assumptions about specific weighting of elements (all
 heading-like elements <h1> etc are
 given a weight of 2). A weight of 0 means that the indexer
 should ignore the element entirely).

 The rule element (and other elements that bear a
 @match) are converted into
 <xsl:template>s that are run during the
 multi-phase tokenization process.

Tokenizing
Cleaning and Pre-Processing

 What we refer to as the "tokenization" process is a
 bit of a misnomer: it refers to a single monolithic
 stylesheet—tokenize.xsl—that processes each
 source document in multiple passes in order to create the
 minimal HTML structure necessary for generating the
 index.[6] The first stage in the process is to remove
 irrelevant content, retaining only the information that is
 necessary for the indexing process and removing ignored
 elements, unnecessary wrappers, and most attributes. In most
 cases, input documents will contain a significant amount of
 boilerplate HTML that appears on every page and should be
 completely ignored by the indexer, like the site menu,
 sidebar, or footer. As the example above shows, these elements
 are given a weight of 0, which means they are removed from the
 tokenized document. The tokenization process also removes
 elements that will have no bearing on the indexing process;
 this includes most inline elements, like links, spans, etc,
 unless these elements must be retained for a specific reason
 (i.e. they are assigned a higher weight or they contain a
 fragment identifier, which can be linked from the search
 results).

 Often, a well-configured instance of staticSearch will produce
 tokenized documents that are significantly smaller than the
 original. For example, consider this line from a poem in the
 Digital Victorian Periodical Poetry
 Project:

<div class="l" data-el="l" id="l_1">A blush, a smile, a dusk sweet violet—1</div>

 After being run through the tokenizer, all classes, data
 attributes, superfluous wrapping elements, and other
 information irrelevant to the indexer are removed:

<div id="l_1" ss-ctx="true">A blush, a smile, a dusk sweet violet—</div>

Stemming

 The second process is, of course, tokenization. The
 tokenization stage wraps each token in a span element and
 decorates the element with the token’s stem, position, weight,
 et cetera. Each meaningful text node is matched and analyzed
 using <xsl:analyze-string> to
 identify each word where a word is
 understood as:

	
 A number [\d]+([\.,]?\d+)

	
 An alphanumeric word [\p{L}\p{M}]+

	
 A hyphenated word:
 $alphanumeric(-$alphanumeric)*)

 We also consider apostrophes and quotation marks (both
 straight and curly) as part of a word,
 so the constructed Regular Expression is slightly more
 complicated when expressed in the XSLT:

 <xsl:variable name="numericWithDecimal">[<xsl:value-of select="string-join($allApos,'')"/>\d]+([\.,]?\d+)</xsl:variable>
 <xsl:variable name="alphanumeric">[\p{L}\p{M}<xsl:value-of select="string-join($allApos,'')"/>]+</xsl:variable>
 <xsl:variable name="hyphenatedWord">(<xsl:value-of select="$alphanumeric"/>-<xsl:value-of select="$alphanumeric"/>(-<xsl:value-of select="$alphanumeric"/>)*)</xsl:variable>
 <xsl:variable name="tokenRegex">(<xsl:value-of select="string-join(($numericWithDecimal,$hyphenatedWord,$alphanumeric),'|')"/>)</xsl:variable>

 Which yields the the following:

(['‘’”“"\d]+([\.,]?\d+)|([\p{L}\p{M}'‘’”“"]+-[\p{L}\p{M}'‘’”“"]+(-[\p{L}\p{M}'‘’”“"]+)*)|[\p{L}\p{M}'‘’”“"]+)

 If a word is indeed a word and is neither too short nor a
 stopword, it is then run through the user-configured XSLT
 stemmer. At the moment, staticSearch has four different
 stemmers: the Porter stemming algorithms for English and
 French (Porter 1980; Porter 2002; Porter French) ; an
 identity stemmer; and a diacritic stemmer, which
 simply strips diacritics and is otherwise
 idempotent.[7] Users can specify their own stemmers, but, at the
 moment, the stemmers need to be implemented identically in
 both XSLT and JavaScript. We are currently exploring options
 for integrating existing implementations of Porter’s stemming
 algorithms in Java and JavaScript (for Saxon and the browser,
 respectively).

Indexing

 staticSearch works by generating an inverted index
 from the tokenized documents (Zobel and Moffat 2006). This index is
 simply a directory full of JSON files on the file system: each
 unique stemmed term has a JSON file to itself, named for itself
 ('book.json', 'walk.json', etc.) that contains information about
 the documents in which that term appears. This means that when
 the search page queries the index, it need only retrieve the
 individual JSON files for the terms which are in the search; the
 bulk of the index is never retrieved.

 The many JSON files range in size depending, of course, on their
 frequency within the document collection; in most cases, the
 individual JSON files are trivially small, but for very common
 words not included in the stopwords file, they can reach into
 MBs. However, given that these are texts files and most servers
 can serve GZIP compression, the files can be highly compressed
 and thus retrieved almost instantly. As shown in Appendix A,
 regardless of compression, the JSON index is significantly
 smaller than the input document collection.

Stem Files

 Here’s an example of the stem file for the term
 glow:

{
 "stem": "glow",
 "instances": [
 {
 "docUri": "poems/twilight.html",
 "score": 1,
 "contexts": [
 {
 "form": "glow",
 "weight": "1",
 "pos": 49,
 "context": "Twilight for dreams, the dun and dying <mark>glow</mark>",
 "fid": "l_9"
 }
]
 }
]
}

 This contains an entry for each document which contains the
 stem, an overall score for that stem in that document, and
 precise information about each individual instance, including
 a keyword-in-context extract in which it is marked.

 Each stem is created by grouping the entire set of stems by
 their @ss-stem value.

<xsl:for-each-group select="$stems" group-by="string(@ss-stem)">
 <xsl:variable name="stem" select="current-grouping-key()" as="xs:string"/>
 <xsl:call-template name="makeTokenCounterMsg"/>
 <xsl:variable name="map" as="element(j:map)">
 <xsl:call-template name="makeMap"/>
 </xsl:variable>
 <xsl:result-document href="{$outDir}/stems/{$stem}{$versionString}.json" method="text">
 <xsl:sequence select="xml-to-json($map, map{'indent': $indentJSON})"/>
 </xsl:result-document>
</xsl:for-each-group>

 The makeMap template takes each group of
 stems and creates an XML map in the JSON
 namespace[8] for the file:

 <xsl:template name="makeMap" as="element(j:map)">
 <!--The term we're creating a JSON file for, inherited from the createMap template -->
 <xsl:variable name="stem" select="current-grouping-key()" as="xs:string"/>
 <!--The group of all the terms (so all of the spans that have this particular term
 in its @ss-stem -->
 <xsl:variable name="stemGroup" select="current-group()" as="element(span)*"/>
 <!--Create the outermost part of the structure-->
 <map xmlns="http://www.w3.org/2005/xpath-functions">
 <!--The stem is the top level string key for this map; it should be
 the same as the JSON file name.-->
 <string key="stem">
 <xsl:value-of select="$stem"/>
 </string>
 <!--Start instances array: this contains all of the instances of the stem
 per document -->
 <array key="instances">
 <!--If every HTML document processed has an @id at the root,
 then use that as the grouping-key; otherwise,
 use the document uri -->
 <xsl:for-each-group select="$stemGroup"
 group-by="document-uri(/)">
 <!--Sort the documents so that the document with the
 most number of this hit comes first-->
 <xsl:sort select="count(current-group())" order="descending"/>
 <!--The current document uri, which functions
 as the key for grouping the spans-->
 <xsl:variable name="currDocUri" select="current-grouping-key()"
 as="xs:string"/>
 <!--The spans that are contained within this document-->
 <xsl:variable name="thisDocSpans"
 select="current-group()" as="element(span)*"/>
 <!--Get the total number of documents
 (i.e. the number of iterations that this
 for-each-group will perform) for this span-->
 <xsl:variable name="stemDocsCount" select="last()" as="xs:integer"/>
 <!--The document that we want to process
 will always be the ancestor html of
 any item of the current-group() -->
 <xsl:variable name="thisDoc"
 select="current-group()[1]/ancestor::html"
 as="element(html)"/>
 <!--Get the raw score of all the spans by getting the weight for
 each span and then adding them all together -->
 <xsl:variable name="rawScore"
 select="sum(for $span in $thisDocSpans
 return hcmc:returnWeight($span))"
 as="xs:integer"/>

 <!--Map for each document that has this token-->
 <map xmlns="http://www.w3.org/2005/xpath-functions">
 <string key="docId">
 <xsl:value-of select="$thisDoc/@id"/>
 </string>
 <!--And the relative URI from the document, which is to be used
 for linking from the KWIC to the document. We've created this
 already in the tokenization stage and stored it in a custom
 data-attribute-->
 <string key="docUri">
 <xsl:value-of select="$thisDoc/@data-staticSearch-relativeUri"/>
 </string>
 <!--The document's score, forked depending on configured
 algorithm -->
 <number key="score">
 <xsl:choose>
 <xsl:when test="$scoringAlgorithm = 'tf-idf'">
 <xsl:sequence select="hcmc:returnTfIdf($rawScore, $stemDocsCount, $currDocUri)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="$rawScore"/>
 </xsl:otherwise>
 </xsl:choose>
 </number>
 <!--Now add the contexts array, if specified to do so -->
 <xsl:if test="$phrasalSearch or $createContexts">
 <xsl:call-template name="returnContextsArray"/>
 </xsl:if>
 </map>
 </xsl:for-each-group>
 </array>
 </map>
 </xsl:template>

 Each stem files contains precise information about each
 individual instance in which that stem appears. This is the
 most onerous part of the process as each context contains the
 a keyword-in-context string, which shows this word
 in situ.

 This has been difficult to optimize. Our approach so far has
 been to move up the tree and use node comparison operators
 (<< and >>)
 to compile all of the nodes that precede the span and the
 nodes that follow and then trim each string to the configured
 length.

 This can still lead to very long strings being stored in
 memory, however, and so we have tried to optimize by iterating
 through each node using <xsl:iterate>
 and breaking once a string of the desired length has been
 found.

 <xsl:function name="hcmc:returnSnippet" as="xs:string?">
 <xsl:param name="nodes" as="node()*"/>
 <xsl:param name="isStartSnippet" as="xs:boolean"/>

 <!--Iterate through the nodes:
 if we're in the start snippet we want to go from the end to the beginning-->
 <xsl:iterate select="if ($isStartSnippet) then reverse($nodes) else $nodes">
 <xsl:param name="stringSoFar" as="xs:string?"/>
 <xsl:param name="tokenCount" select="0" as="xs:integer"/>
 <!--If the iteration completes, then just return the full string-->
 <xsl:on-completion>
 <xsl:sequence select="$stringSoFar"/>
 </xsl:on-completion>
 <xsl:variable name="thisNode" select="."/>
 <!--Normalize and determine the word count of the text-->
 <xsl:variable name="thisText" select="replace(string($thisNode),'\s+', ' ')" as="xs:string"/>
 <xsl:variable name="tokens" select="tokenize($thisText)" as="xs:string*"/>
 <xsl:variable name="currTokenCount" select="count($tokens)" as="xs:integer"/>
 <xsl:variable name="fullTokenCount" select="$tokenCount + $currTokenCount" as="xs:integer"/>

 <xsl:choose>
 <!--If the number of preceding tokens plus the number of current tokens is
 less than half of the kwicLimit, then continue on, passing
 the new token count and the new string-->
 <xsl:when test="$fullTokenCount lt $kwicLengthHalf + 1">
 <xsl:next-iteration>
 <xsl:with-param name="tokenCount" select="$fullTokenCount"/>
 <!--If we're processing the startSnippet, prepend the current text;
 otherwise, append the current text-->
 <xsl:with-param name="stringSoFar"
 select="if ($isStartSnippet)
 then ($thisText || $stringSoFar)
 else ($stringSoFar || $thisText)"/>
 </xsl:next-iteration>
 </xsl:when>

 <xsl:otherwise>
 <!--Otherwise, break out of the loop and output the current context string-->
 <xsl:break>
 <!--Figure out how many tokens we need to snag from the current text-->
 <xsl:variable name="tokenDiff" select="1 + $kwicLengthHalf - $tokenCount"/>
 <xsl:choose>
 <xsl:when test="$isStartSnippet">
 <!--We need to see if there's a space before the token we care about:
 (there often is, but that is removed when we tokenized above) -->
 <xsl:variable name="endSpace"
 select="if (matches($thisText,'\s$')) then ' ' else ()"
 as="xs:string?"/>
 <!--Get all of the tokens that we want from the string by:
 * Reversing the current token sequence
 * Getting the subset of tokens we need to hit the limit
 * And then reversing that sequence of tokens again.
 -->
 <xsl:variable name="newTokens"
 select="reverse(subsequence(reverse($tokens), 1, $tokenDiff))"
 as="xs:string*"/>
 <!--Return the string: we know we have to add the truncation string here too-->
 <xsl:sequence
 select="$kwicTruncateString || string-join($newTokens,' ') || $endSpace || $stringSoFar "/>
 </xsl:when>
 <xsl:otherwise>
 <!--Otherwise, we're going left to right, which is simpler
 to handle: the same as above, but with no reversing -->
 <xsl:variable name="startSpace"
 select="if (matches($thisText,'^\s')) then ' ' else ()"
 as="xs:string?"/>
 <xsl:variable name="newTokens"
 select="subsequence($tokens, 1, $tokenDiff)"
 as="xs:string*"/>
 <xsl:sequence
 select="$stringSoFar || $startSpace || string-join($newTokens,' ') || $kwicTruncateString"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:break>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:iterate>
 </xsl:function>

Additional Files

 In addition to the stem files, the build process also creates
 the following individual JSON files:

ssTitles.json

 This maps each document’s unique identifier (its path
 relative to the search page) to its title. It may also
 include an icon with which to identify the document in
 search results, and an optional sort key to be used instead
 of its title when search results with the same score are
 being listed.

ssWordString.json

 This is a plain-text list of all the individual (unstemmed)
 words appearing in the collection, separated by pipes:

...|page||pairs||paragraph||part||parts||peep||People||per||percent||percentages||perhaps|...

 This file is used when processing wildcard searches. When
 the user enters a wildcard term, it is expanded into a
 regular expression which is used to extract all of the
 individual matching words from the word string JSON list.
 Each of those words is a potential match, so it is stemmed,
 and its stem file is retrieved. Then a search is made
 through all the contexts in those files to find matches for
 the wildcard/regex term in their contexts, so that all
 actual hits can be found.

 For exact phrase (i.e. quoted string) searches, the quoted
 string is tokenized and the first non-stopword is extracted
 from it; that word is stemmed, and its stem file retrieved.
 Then all the contexts in that stem file are searched for an
 exact match for the phrase.

Filter Files

 In addition to the text search, the user can trigger the
 creation of a range of different search filter controls on the
 search page, by including some HTML meta tags with specific
 formats in the document. For example, if a document has these
 three meta tags:

 <meta name="Document type" class="staticSearch_desc" content="Poems"/>
 <meta name="Document type" class="staticSearch_desc" content="Translations"/>
 <meta name="Date of publication" class="staticSearch_date" content="1895-01-05"/>

 then the containing document will be classified as belonging
 to two document categories, Poems and
 Translations, in the Document type
 selection filter (which we refer to as a description
 filter). A second date range filter will also be
 created. If an end-user searches for documents in either of
 those categories, using a date-range that includes 1895-01-05,
 then this document will be selected. Other filter types
 include boolean, number range, and feature
 filters, which provide a typeahead searchable list of
 keywords. The build process creates a separate JSON file for
 each of these filters.

 The JSON for a description filter looks like this (heavily
 truncated example):

{
 "filterId": "ssDesc4",
 "filterName": "Poet’s nationality",
 "ssDesc4_1": {
 "name": "English",
 "docs":
 ["poems\/p_1095_a_duet.html",
 "poems\/p_1099_the_ox.html"]
 },
 "ssDesc4_2": {
 "name": "Irish",
 "docs":
 ["poems\/p_8866_golden_lilies.html",
 "poems\/p_8825_in_a_cathedral.html"]
 }
}

 When an end-user’s search makes use of a filter control, then
 required filter JSON will also be downloaded along with any
 stem files needed, but the filter files are also downloaded in
 the background on page load so that most are already available
 by the time a user has initiated a search.

 When filters are combined with text search, the list of
 documents containing hits for the text search are first
 computed, then those hits are filtered based on the filter
 settings. The small size and innate compressibility of the
 JSON files enables staticSearch to produce results quite
 rapidly, even from relatively large document collections.

Search Page

 Once the documents have been indexed, staticSearch then creates
 the search page using data assembled by the indexing
 process.[9] This search page is pre-populated with all necessary
 values for the search, including the query input, checkboxes for
 filters, inputs for dates and numeric filters, et cetera; the
 form itself also bears custom HTML data-attributes specifying
 some of the configuration options—the name of the folder that
 contains the index, the number of results to show, and so on—to
 be used by the JavaScript.

 Building the page beforehand means that the client-side script
 does not need to retrieve and parse any of the filters in order
 for the page to display the necessary controls; while some
 files—the list of stopwords, the word string, and the titles
 file—are crucial for any search to be performed and are thus
 fetched immediately on page load, staticSearch retrieves these
 asynchronously in the background such that the page is
 immediately responsive and usable.

Conclusion

 While in many cases, staticSearch has been implemented in projects
 as a replacement for pre-existing search engines, we find
 ourselves using staticSearch from the start with many our
 projects. Since staticSearch runs on HTML files, it could be
 integrated into any publishing workflow that produces well-formed
 HTML5. We are also continuing to research ways that the static
 index produced by staticSearch could be packaged with a web
 archive file (WARC) such that web archives displayed on the
 Wayback Machine and other web archive viewers would retain their
 essential search functionality.

 Overall, this paper has outlined our approach behind staticSearch
 and demonstrates how XSLT can be used to generate a robust search
 index without the use of server-side technologies.

Appendix A. Statistics

 The following table details statistics about staticSearch’s
 indexing process for three different projects: the very small
 staticSearch test set of documents; the Winnifred
 Eaton Archive’s (Chapman 2022) documents, including
 transcriptions; and the Landscapes of
 Injustice’s (Stanger-Ross 2021) large archive of
 primary and secondary source materials. Statistics below were
 taken on an Apple MacBook Pro running 16GB of RAM and silicon
 architecture (M1 Pro); timing and sizes are as reported by
 gtime, a port of GNU time
 for macOS.

Table I
	
 Project
 	
 staticSearch Test Set
 	
 Winnifred Eaton
 Archive
 	
 Landscapes of
 Injustice

	
 Number of HTML files
 tokenized
 	
 10
 	
 1820
 	
 93998

	
 Size of Document
 Collection
 	
 17.4K
 	
 31M
 	
 264M

	
 Average document size
 	
 1.8K
 	
 17K
 	
 2.9K

	
 Number of token files
 	
 678
 	
 20514
 	
 92203

	
 Total Size
 (uncompressed)
 	
 285K
 	
 188M
 	
 617M

	
 Average size
 (uncompressed)
 	
 420B
 	
 9.2K
 	
 6.7K

	
 Total Size
 (compressed)
 	
 171K
 	
 39M
 	
 106M

	
 Average size
 (compressed)
 	
 252B
 	
 1.9K
 	
 1.2K

	
 Build time
 	
 6s 680ms
 	
 1m 24s 52ms
 	
 8m 53s 20ms

	
 Memory Used
 	
 391M
 	
 1.3G
 	
 3.7G

Appendix B. Sample Static Search Implementations
Figure 2
[image:]

 Image from the Colonial Despatches project:
 https://bcgenesis.uvic.ca/search.html?q=%22timber%20trade%22

Figure 3
[image:]

 Image from Le Mariage Sous le Ancien
 Regime:
 https://mariage.uvic.ca/recherche.html?q=chat

Figure 4
[image:]

 Image from Landscapes of Injustice:
 https://loi.uvic.ca/archive/loiCollectionCustodianCaseFiles_search.html?Nationality=Canadian%20born&Date%20of%20Birth_from=1880&Date%20of%20Birth_to=1910

Figure 5
[image:]

 Image from The Winnifred Eaton Archive:
 https://winnifredeatonarchive.org/search.html?q=sam*r*&Exhibit=Alberta%201917%E2%80%931954&Exhibit=In%20Hollywood%201916%E2%80%931935

References
[Camden and Rinaldi 2018] Camden, R., and Rinaldi, B. 2018. Working with Static Sites. O’Reilly Media Inc. https://learning.oreilly.com/library/view/working-with-static/9781491960936/.

[Chapman 2022] Chapman, M., et al. 2022. The Winnifred Eaton Archive. University of British Columbia. https://winnifredeatonarchive.org.

[Holmes and Takeda 2018] Holmes, M.D. and Takeda, J. 2018. Why do I need Four Search Engines? Proceedings of the Japanese Association of Digital Humanities Conference, Tokyo, Japan, September 2018. https://conf2018.jadh.org/files/Proceedings_JADH2018.pdf#page=58.

[Holmes and Takeda 2019a] Holmes, M.D., and Takeda, J. 2019. The Prefabricated Website: Who needs a server anyway? Paper presented at the Text Encoding Initiative Conference, Graz, Austria, September 2019.
 https://gams.uni-graz.at/o:tei2019.116/sdef:TEI/get?context=context:tei2019.papers.

[Holmes and Takeda 2019b] Holmes, M.D. and Takeda, J. 2019. Beyond Validation: Using Programmed Diagnostics to Learn About, Monitor, and Successfully Complete Your DH Project. Digital Scholarship in the Humanities, 34 (suppl_1) (December 2019): i100–i109. Oxford University Press/EADH. doi:https://doi.org/10.1093/llc/fqz011.

[Holmes and Takeda Forthcoming] Holmes, M.D. and Takeda, J. Forthcoming. From Tamagotchis to Pet Rocks: Static Websites for Long-term Sustainability. In peer review with Digital Humanities Quarterly, 2022.

[Kraetke and Imsieske 2016] Kraetke, Martin, and Gerrit Imsieke. 2016. XSLT as a Modern, Powerful Static Website Generator: Publishing Hogrefe’s Clinical Handbook of Psychotropic Drugs as a Web App. Presented at XML In, Web Out: International Symposium on sub rosa XML, Washington, DC, August 1, 2016. In Proceedings of XML In, Web Out: International Symposium on sub rosa XML. Balisage Series on Markup Technologies, vol. 18. doi:https://doi.org/10.4242/BalisageVol18.Kraetke02.

[Nightingale 2011] Nightingale, Oliver.
 lunr.js. JavaScript. https://github.com/olivernn/lunr.js.

[Porter 1980] Porter, M.F. 1980. An algorithm for suffix stripping. Program 14(3) (1980), 130–137. doi:https://doi.org/10.1108/eb046814.

[Porter 2002] Porter, M.F. The English (Porter2) stemming algorithm. http://snowball.tartarus.org/algorithms/english/stemmer.html.

[Porter French] Porter, M.F. French stemming
 algorithm. http://snowball.tartarus.org/algorithms/french/stemmer.html.

[Quin 2008] Quin, Liam R.E. 2008. Text Retrieval for XML-Encoded Corpora: A Lexical Approach. Presented at Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008. Balisage Series on Markup Technologies, vol. 1. doi:https://doi.org/10.4242/BalisageVol1.Quin01.

[Stanger-Ross 2021] Stanger-Ross, J., et al. Landscapes of Injustice. University of Victoria. https://loi.uvic.ca/archive.

[Wikle, Williamson, and Becker 2020] Wikle, O., Williamson, E., and Becker, D. 2020. What is Static Web and What’s it Doing in the Digital Humanities Classroom? dh+lib June 2020. https://acrl.ala.org/dh/2020/06/22/what-is-static-web-and-whats-it-doing-in-the-digital-humanities-classroom/.

[Zobel and Moffat 2006] Zobel, J., and Moffat, A. Inverted Files for Text Search Engines. ACM Computing Surveys 38 (2) (2006): 6-es. doi:https://doi.org/10.1145/1132956.1132959.

[1]
 All code and documentation for staticSearch can be found on
 its GitHub repository:
 https://github.com/projectEndings/staticSearch.
 Rendered documentation for the most recent release can be
 found at
 https://endings.uvic.ca/staticSearch/docs/index.html.

[2]
 While this paper focuses primarily on the XSLT-based indexer,
 we would like to address the concerns helpfully raised by a
 reviewer about the sustainability of using JavaScript for the
 client-side retrieval. While much of the history of JavaScript
 has been defined by the use of libraries like JQuery (which
 often cause critical problems within applications due to
 incompatibility of upgrades, changed pointers, etc.), the
 language itself has been remarkably stable and
 backwards-compatible since the 1990s. What makes client-side
 scripts fragile, in our view, is not the language itself, but
 changes in browser security policies (e.g. the recent rollout
 of CSP rules), which are ultimately managed at the server
 level anyway, as well the multiple points of failure
 introduced by external dependencies (and, crucially, the
 dependency’s dependencies). staticSearch is written entirely
 in ES6 JavaScript and does not have any dependencies (either
 bundled with it or as external scripts).

[3]
 For full details on how to implement staticSearch and
 integrate it into a development workflow, see the How Do
 I Use It? section of the project documentation
 (https://endings.uvic.ca/staticSearch/docs/howDoIUseIt.html).

[4]
 Our insistence on well-formed HTML5 in the XHTML namespace is
 part ideological—given our fealty to XML, our hope is that
 this constraint will encourage projects to create well-formed
 our HTML—and part practical: it is beyond the scope of our
 project to try and handle the range of ill-formed tag-soup
 HTML that is common in the wild. That said, since staticSearch
 does not modify the input files, implementers could use any
 number of existing conversion tools to pre-process their files
 into well-formed HTML (such as Tidy or the TagSoup parser in
 Python); as well, since the codebase is open-source,
 implementers could fork the repository and use a custom parser
 in Saxon.

[5]
 Weight here is a slightly misleading term; most
 discussions of search engines refer to what we call
 weight as boost where what we call
 score is usually framed as weight.

[6]
 Quin 2008 discusses possible solutions for full-text
 querying of XML with lq-text and notes that, while
 tedious, a pragmatic approach is to re-write
 documents before indexing them, perhaps with XSLT.
 While we were not aware of Quin’s extensions to lq-text
 hitherto working on staticSearch, the approach described
 in many ways pre-figures and anticipates our own.

[7]
 While the identity stemmer is not necessarily
 ideal, it does vastly simplify the creation of a search
 engine for multi-lingual documents and document
 collections. It also provides a convenient starting point
 for users who might want to implement their own stemmers.

[8]
 The advantage of using this structure rather than XPath
 maps and arrays is the ease with which we can construct an
 array at least until such time that the proposed XSLT 4.0
 <xsl:array> instruction becomes
 available.

[9]
 See Appendix B for examples of
 the search pages produced by staticSearch.

Balisage: The Markup Conference

Serverless Searching with XSLT and JavaScript
Introducing staticSearch
Joey Takeda
Digital Humanities Innovation Lab, Simon Fraser
University

Joey Takeda is a Digital Humanities Developer at Simon
Fraser University’s Digital Humanities Innovation Lab. He holds an MA in
English Literature from the University of British Columbia. He currently
serves as Technical Editor for the Winnifred Eaton Archive and is a
member of TEI By Example’s International Advisory Committee.

Martin Holmes
Humanities Computing and Media Centre, University of
Victoria

Martin Holmes is a programmer in the University of
Victoria Humanities Computing and Media Centre. He served on the TEI
Technical Council from 2010 to 2015 and was managing editor of the
Journal of the Text Encoding Initiative from 2013 to 2015. He is lead
programmer on several large DH projects, including The Map of Early
Modern London and Digital Victorian Periodical Poetry.

Balisage: The Markup Conference

content/images/Takeda01-001.svg

 image/svg+xml

 HTML Collection

 HTML

 HTML

 HTML

 JSON Filters

 JSON

 JSON

 JSON

 JSON Tokens

 JSON

 JSON

 JSON

 Search page

 HTML

 XSLT Files

 XSLT

 XSLT

 XSLT

 Configuration

 XML

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Takeda01-004.png
Home Collections Data About Search
Iaadsoazes
of Injustios

~ Home > Collcions > Custdian Gse Fils > Search Custodian Gase Files
< Update Results

Filters available: Search Custodian Case Files

Nationality ~
Everything Custodian Case Files Oral Histories
Canadian born

Japanese national Protest Letters Land Titles Fishing Boat Ledger
Naturalized Canadian
Fishing Vessel Request Letters Other Archival Files Names
United States
Unknown .) . .)
Visitors can search the case file collection by family name or case file number as well as by keywords or
Unspecified phrases that appear in the descriptions of each file. Search results can be filtered by the nationality of
an individual (as indicated by the file's creators), as well as by gender of the individual, birth and death
Reel Y dates, whether the individual was exiled to Japan, and the length in pages of the case file.
Sex v
Date of Birth ~ Q
From:
o}
1880
o Documents found: 381
1910
Date of Death © 5025: Tsunezo Nishi
Nationaity Reel Sex
Exiled to Japan N Canadianbom co3st Male
., o DateofBirth Lengthin pages
28 December 1908 49

6735: Moto Hashimoto

Nationalty Reel Sex
Canadian born c-9368 Female
Date of Birth Length in pages

10 April 1897 4

8244: Yoshiichi Yoshimoto

Nationalty Reel Sex
Canadian born c-0381 Male
Date of Birth Length in pages

24 September 1910 2

content/images/Takeda01-005.png
WEA

ABOUT ARCHIVE

SEARCH FILTERS

PUBLICATION DATE >

DOCUMENT TYPE >

EXHIBIT v

() Early Experiments
1895-1902

(0 Playing Japanese
1896-1922

0 New York Years 1901
1916

Alberta 1917-1954.

In Hollywood 1916-
1935

GENRE >

PSEUDONYM >

BIOGRAPHY RESOURCES

sam*r*

Clear

» Instructions

Sort by | Relevance (Highest to Lowest) v

Documents found: 3

Lend Me Your Title (Part One)

¥ More Info
GENRE EXHIBIT
Short Story Alberta 19171954
PSEUDONYM PUBLICATION DATE
Onoto Watanna February 1919

entire Orient, in face —— his people being Samoroos (Japanese for Kings

and Princes) when the...

What Happened to Hayakawa

¥ More Info

DOCUMENTTYPE GENRE

Primary Source: Published Non-fiction

EXHIBIT PSEUDONYM

In Hollywood 1916-1935 Winnifred Eaton Reeve

Onoto Watanna

PUBLICATION DATE
January 1929

acrobat's. He was born in Tokyo, of Samurai ancestry; is a graduate of the
Imperial University.

Search...

content/images/Takeda01-002.png
Colonial Despatches

Tho colonial despatches of Vancouver Island and Britsh Columbla 18461871

PRI B
Indexes Maps

Home About Browse MS images Disclaimer Credits Search

Search the collection

“timber trade”][Search
Clear
Archive record 1 Sender } Document type
Ocoe2s ([Addington, Henry Unwin ([Adderley, Charles Bowyer O Biographies
Ocoe:26 O aiken, James OBall, John O Correspondence (private letter)
Ocoe:27 O Aldrich, Stephan J. O Banister, Thomas U Despatch from London
Ocoe:28 [Alexander, Henry O Barclay, Archibaldus [Despatch to London
Ocoe:29 CAllen, B. G. OBarrow, George J Organization descriptions

From:| 1775-01-01 To:| 2013-12:31
v Mentions indigenous individuals: [? v/
Search | Clear

Documents found: 3

Douglas, Chief Factor Governor Vice-Admiral Sir James to Pelham-Clinton, 5th Duke of Newcastle Henry Pelham Fiennes
7 January 1854, CO 3055, no. 3206, 15. Scol

o ..lands, and to throw the [TETTIATEYT, as much as.

‘The Colonial Despatches: Webster William Score: 1

© _..intends to establish a similar between England and...
‘The Colonial Despatches: Ottawa Score: 1

o ...Ottawa became known for its and later for..

@ Humanities Computing and Media Centre and UVic Libraries, University of Victoria

“The Colonial Despatches Team. *Search the collecton.” The Colonial Despatches of Vancouver Isiand and British Columbia 1846-1871, Edition 2.2, ed. James Hendrickson and the Colonial Despatches projoct.
Victoria, B.C. University of Victoria. it /bcgenesis.uviccalsearch himl.

Last modified: 2020-12-02 13:40:34 0800 (Wed, 02 Doc 2020) (SVN revision: 5008)

content/images/Takeda01-003.png
E®

Accueil Ausujet dusite Documents Appareil critique Recherche Renseignements.

Faire une recherche
XML | Métadonnées.

Cette page permet divers genres de recherches :par troncature,
boolénne, par phrase, et en utlisant les caractéres génériques.

> Instructons détsllcs

[em T cherear |
o |
Auteur,

ClAnon.
de Baif, Jean-Antoine
 Bernard, Catherine
7 Le Blane, Thoms
Z Blanchon, Joschim
CBoyer, Claude
R, Philhert

Editeur / Maison d'dition / Presse: Formes
2 Abel LAngelier DGravre
‘Abrabam Bosse Oprose.
L Abraham Constant Overs

Anon.
T Anthoine Barre
= Anthoine Estoc

Antoine Damonnevile

|
Genres|
Carice
Biblographie Ccolmare
CDovay
Otenens
C Inconnu
Ciile
it ot taon
{Date]
o e
[Corear

Documents localisés: 17

Elle laisse aller le chat au fromage Score:

Ainsy st vat e chat »

Mais a bon chat bon rat, »

Hor, wbonchat »

Le chat et e rat sont sur .. »

Bl lassealler o Chat au fromage. 9

