[image: Balisage logo]Balisage: The Markup Conference

Getting Useful XML out of Microsoft Excel
Gayanthika Udeshani
Typefi Systems Pty Ltd

<gudeshani@typefi.com>

Balisage: The Markup Conference 2022
August 1 - 5, 2022

Copyright ©2022 Typefi Systems Pty Ltd. All rights reserved.

How to cite this paper
Udeshani, Gayanthika. "Getting Useful XML out of Microsoft Excel." Presented at: Balisage: The Markup Conference 2022, Washington, DC, August 1 - 5, 2022. In Proceedings of Balisage: The Markup Conference 2022.
 Balisage Series on Markup Technologies vol. 27 (2022). https://doi.org/10.4242/BalisageVol27.Udeshani01.

Abstract
This paper presents a solution that transforms a Microsoft Excel Open XML Spreadsheet
 (XLSX) file into a shallow-structured XML file used at Typefi, called Content XML (CXML),
 using XSLT and XProc.
This solution has three main research areas:

 	The XProc pipeline to read the Excel file content.

	Transform Excel tables to a CALS table using XSLT functions.

	Transform Excel charts and embedded images. Significant information is read from the chart.xml and converted to a Scalable Vector Graphics (SVG) file, and then referenced as an image in the output XML.

The XLSX file can contain various elements such as tables, charts, and graphics. This
 solution does not yet use all the features available within the Excel XML but is a work in
 progress and future improvements will be guided by customer requests.

Balisage: The Markup Conference

 Getting Useful XML out of Microsoft Excel

 Table of Contents

 	Title Page

 	Introduction
 	XLSX overview

 	XProc pipeline

 	XLSX to CXML Methodology
 	Input XML
 	The system architecture

 	XLSX tables
 	Cell (entry)
 	Cell range

 	XLSX Cells (c)

 	Style overrides

 	Column width

 	Custom number formats

 	Date and time formatting

 	Conditional formatting

 	XLSX with charts and graphs
 	SVG (Scalable Vector Graphics)

 	XLSX with a pie chart

 	XLSX with a line chart

 	XLSX with a bar chart

 	Application of the converter

 	Discussion

 	Conclusion

 	About the Author

 Getting Useful XML out of Microsoft Excel

Note
I would like to thank my colleague Max Zhaloba for his valuable comments and
 clarifications related to XProc and XSLT, and also Damian Gibbs, Kate Prentice, and Anupama
 Wimalasooriya for helping me to review the content. Finally, I would like to thank Typefi for
 the motivation and support.

Introduction
This solution transforms a Microsoft Excel Open XML Spreadsheet (XLSX) file into a
 shallow-structured XML file used at Typefi, called Content XML (CXML), using XSLT and XProc an
 XML- based programming language for processing documents in pipelines.
Previously in Typefi, the XLSX to CXML transformations were performed using Java packages,
 usually the Apache POI package, which provides APIs for manipulating Office Open XML
 documents. This approach required a significant amount of Java knowledge, and for someone with
 little Java experience, handling the available functionalities of the Apache POI was not
 convenient in comparison to the XSLT transformations. Many systems convert XLSX to other XML
 schema transformations using Java language, but identifying the internal structure of an XLSX
 file and processing them is the real challenge.
A solution could use several of these technologies, but the approach outlined in this
 paper uses XSLT—mainly XSLT 3.0 features. While the amount of code needed to filter out all
 the Excel formatting information is significant, the goal is to make the code reusable. This
 goal is accomplished by providing reusable functions to access features within the XLSX
 elements easily. Moreover, the solution includes an 'xlsx-to-cals' mode that transforms Excel table
 information into a CALS table. The "CALS Table Model" is the most widely adopted industry
 standard of SGML/XML representation for tables. Further, this research provides modules that
 transform charts (bar chart, pie chart and line chart) into SVG files. This general approach helps to transform XLSX tables and charts into XML schemas other than CXML because CALS tables and SVG files are well-known formats. The XSLT solution outlined in this paper is executed from an XProc pipeline, with ANT scripts used to call the pipeline and XML Calabash running the XProc pipeline..
In this solution, the final output is Content XML (CXML) which is a DocBook-like XML scheme used internally in Typefi products. It is an intermediary format to facilitate converting any input file format to another format, such as Adobe InDesign. CXML is optimised for page layout (i.e. InDesign/PDF) or digital production (i.e. EPUB, HTML, DAISY).
XLSX files can contain tables, charts and graphics, which all play a significant role. Therefore, this paper focuses on processing these elements and transforming them into the corresponding CXML elements according to the CXML schema 3.2.
This paper examines how the XProc pipeline reads the .xlsx file along with the information from the various XML files and how the XSLT transforms the content using the elements and attributes into a different XML schema—CXML.
Please note: This paper uses @ in front of names to denote attributes of an element.
Figure 1 illustrates the high-level design of this system.
Figure 1: High-level project architecture
[image:]

XLSX overview
The XLSX file type was introduced in 2007 as the disk form of Excel spreadsheets when
 Office 2007 was released. XLSX is a ZIP package that contains many XML files and is
 organised according to the Open Packaging Conventions (OPC). The XLSX system follows this
 folder structure with several functions to read the corresponding files such as relationship
 files, sheet.xml, and chart.xml.
Table I
The XLSX file structure

	XLSX folder structure example	Folder/sub-folder titles	Information contained within these folders
	
 [image:]

 	_rels	Relationships to the primary XML documents and other key parts are included here.
	[Content_Types].xml	
 	All XML file references included in the package are referenced here.

	Content types for parts within the package are also listed in this file.

	docProps	
 Overall document properties are contained here.

 	app.xml: information about the file content.

	core.xml: information about the author, created and modified dates etc.

	xl	
 Details about the content of the file are listed here.

 	charts: Information relating to inserted charts.

	drawings: graphics related information.

	media: Image files.

	theme: Theme-related details.

	worksheets: worksheet-related information.

XProc pipeline
Calabash is used to implement an XProc pipeline that reads the files from the input XLSX file and passes the information as a collection() to the XSLT. More information about XProc is available in "XProc 3.0: An XML Pipeline Language" [23].
Using the ANT script we can extract the Excel file and pass the disk location to the XSLT.
 However, the advantage of Calabash is that everything flows through the pipeline and does not
 require to be saved to a disk unless we use p:store explicitly.
The first solution writes the unzipped file into the disk. Having
 cx:decode="true" in the p:store is important, otherwise the XSLT
 function collection() could not detect the extracted content as a valid XML
 file, instead returnining an xs:base64Binary object, while the expected output was a
 document-node().

 <pxp:unzip>
 <p:with-option name="href" select="$input.file.path"/>
 <p:with-option name="file" select="$filename"/>
 <p:with-option name="charset" select="UTF-8"/>
 <p:with-option name="content-type" select="xml"/>
 </pxp:unzip>

 <p:store cx:decode="true">
 <p:with-option name="href" select="concat($output-dir, '/', encode-for-uri($filename))"/>
 </p:store>

The following code segment demontrates how to pass the Excel file as a collection to the XSLT program. This idea is proposed by one of our team members, Max Zhaloba. This is the recommended way, as it does not need to write the intermediate content into the disk.
This XProc pipeline follows these steps:
	Get the input parameters from the ANT script (input file path and the XSLT stylesheet).

	Unzip the XLSX file

	Iterate over the ZIP file and add the file path as an attribute. This will be used from the XSLT side to read the file content.

	Call the XSLT program and pass the unzip file information as a parameter.

	Write the main output file to the disk.

	Write the other result documents to the disk.

 <p:declare-step version="3.0"
 xmlns:c="http://www.w3.org/ns/xproc-step"
 xmlns:pxp="http://exproc.org/proposed/steps"
 xmlns:p="http://www.w3.org/ns/xproc"
 name="main">

 <p:input port="param" kind="parameter"/>

 <p:output port="result" primary="true" sequence="true">
 <p:pipe port="result" step="secondary-storage"/>
 </p:output>

 <p:declare-step type="pxp:unzip">
 <p:output port="result"/>
 <p:option name="href" required="true"/>
 <p:option name="file"/>
 <p:option name="content-type"/>
 <p:option name="charset"/>
 </p:declare-step>

 <p:variable name="input.file.path" select="replace(/c:param-set/c:param[@name eq 'input']/@value, '\\', '/')">
 <p:pipe step="main" port="param"/>
 </p:variable>

 <p:variable name="stylesheet.file.path" select="replace(/c:param-set/c:param[@name eq 'xsl']/@value, '\\', '/')">
 <p:pipe step="main" port="param"/>
 </p:variable>

 <p:load name="load-stylesheet">
 <p:with-option name="href" select="$stylesheet.file.path"/>
 </p:load>

 <pxp:unzip name="unzip-excel-file">
 <p:with-option name="href" select="$input.file.path"/>
 </pxp:unzip>

 <p:for-each name="iterate-zip-directory">
 <p:iteration-source select="/c:zipfile/c:file[ends-with(@name, '.xml') or ends-with(@name, '.rels')]">
 <p:pipe step="unzip-excel-file" port="result"/>
 </p:iteration-source>

 <p:output port="result">
 <p:pipe step="unzipped-xml-files" port="result"/>
 </p:output>

 <p:variable name="unzipped-file-subpath" select="/c:file/@name"/>

 <pxp:unzip>
 <p:with-option name="href" select="$input.file.path"/>
 <p:with-option name="file" select="$unzipped-file-subpath"/>
 </pxp:unzip>

 <p:add-attribute name="unzipped-xml-files" attribute-name="xml:base" match="/*">
 <p:with-option name="attribute-value" select="$unzipped-file-subpath"/>
 </p:add-attribute>
 </p:for-each>

 <p:xslt name="apply-transform" template-name="main">
 <p:input port="stylesheet">
 <p:pipe step="load-stylesheet" port="result"/>
 </p:input>

 <p:input port="source">
 <p:pipe step="iterate-zip-directory" port="result"/>
 </p:input>

 <p:input port="parameters">
 <p:inline>
 <c:param-set>
 <c:param name="sheet_ui_name" value="sheet1.xml"/>
 <c:param name="debug" value="true"/>
 </c:param-set>
 </p:inline>
 </p:input>

 </p:xslt>

 <p:store href="../output/output.cxml"/>

 <p:for-each name="secondary-storage">
 <p:iteration-source select=".">
 <p:pipe port="secondary" step="apply-transform"/>
 </p:iteration-source>

 <p:output port="result">
 <p:pipe port="result" step="store"/>
 </p:output>

 <p:store name="store">
 <p:with-option name="href" select="document-uri(.)"/>
 </p:store>
 </p:for-each>

 </p:declare-step>

The following code segment can be used to read the inner files of the unzipped file from the XSLT side. All files will be accessed using the corresponding file name.

 <xsl:variable name="worksheet" select="collection()[*/base-uri() eq 'xl/worksheets/sheet1.xml']" as="document-node()"/>

XLSX to CXML Methodology
The transformation to CXML begins with an XLSX input file which is processed to access the
 inner files. As explain in the previous section, this program is initialised using ANT
 scripts; then an XProc pipeline is executed using XML Calabash.
Most transformations are triggered from the sheet.xml which resides in the xl/worksheets
 folder. The sheetData element in the sheet.xml contains the information needed to
 be converted to a tps:table element and the following sections will discuss this
 in more detail.
The XLSX to CXML solution was developed out of two major research areas:
	Map the XLSX table information to the CALS table elements and attributes.

	Convert the chart.xml into an SVG and map it to tps:image elements and attributes.

The XLSX to CALS transformation happens as a pre-processing mode, then in the default
 mode, it will be converted to CXML schema; SVG files are referred to as images in this schema.
 The solution provides a CXML file as the final output. The XLSX to CALS transformation adds
 flexibility to this allowing mapping to XML schemas other than CXML since it uses CALS table
 and SVG formats.
Solutions to the above scenarios are developed using XSLT 3.0.
Input XML
Workbook.xml contains information about the available worksheets. The attribute value of the r:id maps to the related sheet.xml. This XSLT transformation starts to trigger the templates from the sheet.xml.
The following is a sample sheets element in the workbook.xml

 <sheets>
 <sheet name="Instructions" sheetId="1" r:id="rId1"/>
 <sheet name="DBRS Tape" sheetId="37" r:id="rId2"/>
 </sheets>

The following code segment can be used to find the corresponding sheet.xml using the
 sheet name which we get as an input parameter.

 <xsl:variable name="sheet.name" select="substring-after(tps:get-workbook-rels()/rel:Relationships/rel:Relationship[@Id = $workbook/e:sheets/e:sheet[@name = $sheet]/@r:id]/@Target, '/')" as="xs:string?"/>

The following shows a sample sheetData element from a XLSX input XML.

 <sheetData>
 <row r="1" spans="1:2" x14ac:dyDescent="0.2">
 <c r="A1" t="s">
 <v>0</v>
 </c>
 <c r="B1" t="s">
 <v>1</v>
 </c>
 </row>
 .
 .
 .
 </sheetData>

The system architecture
The following diagram shows the functions created to access the XLSX features. Other than these functions, matching templates are triggered to convert the sheetData into a CALS table as well as for the chart conversion.
Figure 2: Overview of XSLT functions
[image:]

Table 2 explains the available functions and the purpose of each.
Table II
Function definitions

	Function	Description
	tps:get-worksheet	Read the sheet.xml
	tps:get-stylesheet	Read the styles.xml
	tps:get-sharedstring-table	Read the shared string table from the sharedStrings.xml
	tps:get-theme-xml	Read the theme.xml
	tps:get-workbook-rels	Read the workbook.xml.rels
	tps:get-worksheet-rels	Read the sheet#.xml.rels
	tps:get-drawing-rels	Read the drawing#.xml.rels
	tps:get-chart-xml	Read the chart.xml
	tps:get-cellxfs	Get the /styleSheet/cellXfs/xf elements
	tps:get-font	Get font elements from the style.xml
	tps:get-border-style	Get the style of the bottom, top, left, right borders.
	tps:get-pattern-fill	Get the /styleSheet/fills/fill/patternFill/@patternType from the styles.xml
	tps:get-theme-colour	Get the /styleSheet/numFmts/numFmt[2]/@formatCode from the styles.xml
	tps:get-align	Get the horizontal alignment of the cell
	tps:get-valign	Get the vertical alignment of the cell
	tps:get-rotation	Get the rotation information from the styles.xml
	tps:get-foreground-colour	Get the font colour
	tps:get-style	Get the style applied to text, bold, italic, underline, strikethrough, superscript and subscript. This can be individual or a combination of them.
	tps:get-background-colour	Get background colour of the cell
	tps:get-total-col-width	This function is used to calculate the total column width
	tps:get-time-from-the-value	Convert the decimal value to the correct time format
	tps:get-date-from-the-serial-no	Convert the serial no to a date
	tps:is-hidden-column	Check whether a column is hidden

XLSX tables
This section considers XLSX files with tables. The XSLT transformations to convert XLSX into CALS table markup (with example XPath) is explained, and guidelines to apply user-defined XSLT functions are provided.
Table 3 displays the corresponding CALS table element mapping for the Excel elements of the sheet.xml.
Table III
XLSX elements map to the CALS table elements

	XLSX element	CALS table element
	

 sheetData

 Header rows, footer rows are defined by the user through the application
 interface, see Figure 11.

 	

 <table>
 <tgroup cols="number of columns">
 <colspec/>
 <thead>
 </thead>
 <tbody>
 </tbody>
 <tfoot>
 </tfoot>
 </tgroup>
 </table>

	
 col
 	
 <colspec>

	
 row
 	
 <row>

	
 c
 	

 <entry>

 	@namest specifies the starting cell number for horizontally merging
 cells.

	@nameend specifies the ending cell number for horizontally merging
 cells.

	@morerows specifies the number of additional rows for vertically
 merging cells.

	@valign specifies the vertical alignment for the cell contents.

	@align specifies the horizontal alignment for the cell contents.

The following shows a sample CALS table output corresponding to the input given in section 2.1.

 <table>
 <tgroup cols="2">
 <colspec colname="1" colwidth="8"/>
 <colspec colname="2" colwidth="8"/>
 <thead>
 <row>
 <entry namest="1" nameend="1" align="left" valign="bottom">Year</entry>
 <entry namest="2" nameend="2" align="left" valign="bottom">Total</entry>
 </row>
 <row>
 <entry namest="1" nameend="1" align="left" valign="bottom">Year 2020</entry>
 <entry namest="2" nameend="2" align="left" valign="bottom">20 </entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry namest="1" nameend="1" align="left" valign="bottom">Year 2022</entry>
 <entry namest="2" nameend="2" align="left" valign="bottom">80</entry>
 </row>
 </tbody>
 </tgroup>
 </table>

Cell (entry)
The <entry> element is used in this solution to create table cells and has several attributes, so further discussion about cell-related information is important. Therefore, the following section explains about XLSX cell elements and related features and attributes.
Cell range
In order to access the cell range, tps:get-worksheet() will return the selected worksheet as the $worksheet variable. This is either user-specified by using an input parameter, or it considers the tabSelected value to read the specific sheet (i.e <sheetView tabSelected="1" workbookViewId="0"/> tabSelected="1" specifies that the corresponding sheet is currently selected).
The xlsx-to-cxml transformation should limit the processing of cells to the given cell range. This is defined by the dimension element for a particular table.

 <dimension ref="A1:B3"/>
 <xsl:variable name="cell.range" select="$worksheet//excel:dimension/@ref" as="xs:string?"/>

XLSX Cells (c)
This element represents a cell in the Excel worksheet, and the information about the cell’s reference (@r) , formatting (@s), data type (@t), value (is- rich text inline, v - cell value) and the formula (f) are expressed. In this application, the formula-related transformation has been ignored.
Cell reference (@r)
The solution identifies the location of a particular cell using cell reference information, and analyses whether a cell is within the cell range or whether it is within a merged cell range.
Possible data types
	n - number (the default)

	b - boolean

	d - date

	e - error

	inlineStr - an inline string

	s - a shared string

	str - a formula string

The following section describes a shared string data type (s).

Shared String Table (sst)
The Shared String Table serves as a collection of individual String Items (<si>). It contains two attributes: @count - total number of text strings in the workbook, @uniqueCount - total number of unique text strings.
When the data type (@t) of the cell (c) indicates a 's' then the corresponding value should be read from the sharedStrings.xml

 <c r="A7" s="14" t="s">
 <v>6</v>
 </c>

The above sample cell element value is 6, therefore, it maps to the 7th string item
 of the shared string table (/sst/si[7]/t).

Merge cells
The sample mergeCells element

 <mergeCells count="3">
 <mergeCell ref="A7:C7"/>
 <mergeCell ref="A8:B8"/>
 <mergeCell ref="B9:C9"/>
 <mergeCell ref="A4:A5"/>
 </mergeCells>

In CALS, @nameend and @namest attributes define the horizontally-merged cells. The @r value is used to identify the cell reference, then the system has defined several functions to identify whether that particular cell is within a merged cell range.

 <xsl:function name="tps:is-cell-merged" as="xs:boolean">
 <xsl:param name="cell" as="xs:string"/>

 <xsl:variable name="merge-cells" select="$worksheet/e:worksheet/e:mergeCells/e:mergeCell" as="element(e:mergeCell)*"/>
 <xsl:sequence select="some $c in $merge-cells satisfies tps:is-within-cell-range($cell, $c/@ref)"/>
 </xsl:function>

This function tps:is-within-cell-range($cell, $ref) is used to check the whether a given cell reference is within a cell range, the same function is used to process the merged cells and it needs the current cell and the mergeCell/@ref value as parameters. The following code segment demonstrates how it processes the @nameend attribute

 <xsl:variable name="merge-cells" select="sum(tps:get-merged-cell-count(@r))" as="xs:integer"/>
 <xsl:attribute name="nameend">
 <xsl:value-of select="$merge-cells + count(preceding-sibling::excel:c) + 1"/>
 </xsl:attribute>

The function tps:get-merged-cell-count(@r) gets the cell reference as a parameter, and if that cell is within a merge cell range, then it will get the difference between the columns. For instance if the mergeCell/@ref is A7:C7 string-to-codepoints($last-col) - string-to-codepoints($first-col) will return 2. The @namest defines the cell position corresponding to a particular row. So if the @namest is 1, then the @nameend value will be 3.
The <xsl:template
 match="excel:c[not(normalize-space())][tps:is-cell-merged(@r)]"
 priority="10"/> template will remove the blank cells related to the merged
 cell range.
The above mergeCells element <mergeCell ref="A4:A5"/> indicates vertically merged cells, and the solution defines them using @morerows in the CALS tables.

Style overrides
Figure 3 can be used to explain more about these cell formats, it has applied different kinds of formatting. These can be considered in the following sections to discuss how this solution considers such input and applies cell format attributes to the final output.
	A2 cell value is left aligned and it is styled as bold.

	A3 cell value has applied red as the font colour.

	A4 cell has borders in it.

	C3 cell has a background colour.

	the 7th row has some italic and underline text.

	C5 cell value has a number format applied to it.

Figure 3: Sample Excel table
[image:]

For instance, cell A3 can be considered and the following is how it is displayed in the worksheet.xml.

 <c r="A3" s="9">
 <v>4</v>
 </c>

Note: All the style-related numbers are 0-based indexes (i.e., 0 maps to the 1st element in the style.xml).
The @s maps to the /styleSheet/cellXfs/xf[10],
 <xf numFmtId="0" fontId="2" fillId="0" borderId="0" xfId="0" applyFont="1"
 applyAlignment="1">, and Table 4 provides details about the available
 style information in the styles.xml. The @applyFont and @applyAlignment attributes store
 boolean values indicating whether the corresponding formatting specified for this xf
 should be applied or not.
Table IV
Cell format attributes

	Attribute	Sample XPath	Description
	Background colour	
 /styleSheet/fills/fill[4]/patternFill/fgColor/@rgb
 	cellXfs/xf/ gives the fillid, which maps to the
 fill and the corresponding fillpattern.
	Foreground colour	
 /styleSheet/fonts/font[3]/colour/@rgb
 	cellXfs/xf/ gives the fontId which maps to the font
 element /styleSheet/fonts/font.
	Border type and Border pattern	
 Border type : /styleSheet/borders/border[3]/top/@style

 Border pattern: /styleSheet/fills/fill[4]/patternFill/@patternType

 	cellXfs/xf/ gives the fillId="0" borderId="0" which maps to the required information.
	Number format e.g: 80.50%	
 /styleSheet/numFmts/numFmt[@numFmtId eq 171]/@formatCode
 	numFmtId maps to the formatCode.
	Bold, Italic, Underline e.g: "bold_italic"	
 /styleSheet/fonts/font[8]/b
 /styleSheet/fonts/font[8]/i
 /styleSheet/fonts/font[8]/u
 /styleSheet/fonts/font[20]/vertAlign/@val
 /styleSheet/fonts/font[1]/strike
 	fontId maps to the corresponding font element,
 vertAlign/@val can be either superscript or subscript, strike element
 relates to the Strikethrough style.

The mapping between the XLSX cell-format attributes, number format and the style
 attributes of the XLSX XML are listed in Table 4 with sample input elements and
 XPaths. The CALS table format does not support styling attributes; therefore, the
 information related to CXML style overrides (tps:c type="cell-format" and the
 tps:style) are parsed from XLSX to CALS during the xlsx-to-cals processing
 mode by using processing instructions. The information available with these processing
 instructions is converted to CXML style overrides and the number format is done during
 the stage where it processes the cell value-related information.
Here is an example of a table cell (<entry>) with the style and cell-format information which are represented using processing instructions:

 <entry type="normal" namest="4" nameend="4" align="left" valign="bottom">
 <?style bold?>
 Heading 1
 <?cell-format border-bottom:thick; background-color:FFFFC7CE; foreground-color:FF9C0006;?>
 </entry>

The corresponding XSLT template which creates the CXML style overrides is implemented as follows;

 <xsl:template match="processing-instruction('cell-format')">
 <tps:c type="cell-format">
 <xsl:value-of select="."/>
 </tps:c>
 </xsl:template>

Alignment

 <xf numFmtId="0" fontId="2" fillId="0" borderId="0" xfId="0" applyFont="1" applyAlignment="1">
 <alignment horizontal="right"/>
 <alignment vertical="top"/>
 <alignment textRotation="90"/>
 </xf>

The @align and @valign attributes of the CALS table are filled from the above cellXfs/xf/alignment/@horizontal and cellXfs/xf/alignment/@vertical attributes and in the absence of these elements it considers left and bottom respectively as the default values.
The cell text rotation is defined using the @textRotation value of the above <alignment> element.

Font style
In the above xf element, fontId="2" maps to the following font element /styleSheet/fonts/font[3].

 <i/>
 <u/>
 <sz val="12"/>
 <color rgb="FFFF0000"/>
 <vertAlign val="superscript"/>
 <name val="Calibri"/>
 <family val="2"/>
 <scheme val="minor"/>

The font element can contain a collection of style information such as bold (b), italic (i) and underline (u). Furthermore, it provides the foreground colour and other information related to the font style. Superscript and subscript formatting details are defined using the vertAlign/@val. If a text is styled with strikethrough, this element will contain an element called strike.

Background colour
Background colour is defined by the fill element of the styles.xml, fillId="3" maps
 to the following fill[4] element and
 /styleSheet/fills[1]/fill[4]/patternFill[1]/fgColor[1]/@rgb gives the
 background colour information.

 <fill>
 <patternFill patternType="solid">
 <fgColor rgb="FFFFFF00"/>
 <bgColor indexed="64"/>
 </patternFill>
 </fill>

Both of these fgColor and bgColor relate to the background colour of a cell. If a pattern is applied to a cell then bgColor defines the background of the pattern and fgColor defines the foreground of the pattern. For instance if the cell pattern contains 'dots', fgColor is the colour of those dots. However, if it is a solid pattern the fgColor colour can be considered as the background colour and it does not have anything to do with the bgColor as demonstrated in the above example.

Border style
Border style is defined by the border element of the styles.xml, borderId="0" maps to the corresponding border element /styleSheet/borders/border[1]. Border pattern is defined by the /styleSheet/fills[1]/fill[4]/patternFill[1]/@patternType value.
In the example illustrated in Figure 3, the A4 cell has borders in it. The border element defines the left, right, top, bottom and the diagonal border styles and the colour of it.

Number format
In the xf element of the styles.xml it contains the numFmtId attribute which defines the number format of a particular cell value. For instance, numFmtId="171" relates to the <numFmt numFmtId="171" formatCode="0.000%"/> element. The format-number XSLT function can be used with this formatCode to format the cell-value (format-number($value, $format-code)).
Open xml documentation lists a set of format codes, the corresponding numFmt id is
 not explicitly save in the file, so when the styles.xml defines, a numFmtId and when the
 corresponding numFmt element is not present it needs to access the predefined format
 codes.

Column width
It is important to calculate the column width based on the cols element details in the input XML; it specifies the column width as the colwidth attribute of the colspec element in the output CXML.
The XLSX col element is not a mandatory element in the input sheet.xml. The following is an sample input of a table which has 11 columns, This means that from column number 3 to 6 the width is 10.8125 and when it does not mention the column width for 8 to 10 columns, the system considers the default column width which is 11.

 <sheetFormatPr defaultColWidth="11" defaultRowHeight="30" customHeight="1"/>
 <cols>
 <col min="1" max="1" width="28.6875" customWidth="1"/>
 <col min="2" max="2" width="12.6875" customWidth="1"/>
 <col min="3" max="6" width="10.8125" customWidth="1"/>
 <col min="7" max="7" width="15.3125" customWidth="1"/>
 <col min="11" max="11" width="10.8125" customWidth="1"/>
 </cols>

The custom columns are defined as above, and all other columns use the default column width which is defined by the @defaultColWidth or the @baseColWidth in the sheet.xml.
The calculation of the colwidth = (column width/ total width) *100 % (eg: first column
 :- 28.6875/143.75 * 100% = 19.96). This calculation is done using an XSLT function which
 applies the xsl:iterate feature of the XSLT 3.0. The following function can be reused to
 calculate the total column width which needs to be considered in a particular table
 dimension.

 <xsl:function name="tps:get-total-col-width" as="xs:decimal?">
 <xsl:param name="cols" as="element(excel:col)*"/>
 <xsl:param name="default-col-width" as="xs:decimal"/>

 <xsl:iterate select="$cols">
 <xsl:param name="total" as="xs:decimal" select="0"/>
 <xsl:param name="next-min" as="xs:decimal" select="0"/>

 <xsl:on-completion>
 <xsl:sequence select="$total"/>
 </xsl:on-completion>

 <!--Calculate the total width for a particular col element-->
 <xsl:variable name="cur-width" select="xs:decimal(@width * (@max - @min + 1))" as="xs:decimal"/>

 <!--When the custom width is not available consider the default column width-->
 <xsl:variable name="default-col-width-total"
 select="xs:decimal(if($next-min != @min and $next-min != 0)
 then $default-col-width * (@min - $next-min) else 0)" as="xs:decimal"/>
 <xsl:variable name="new-total" as="xs:decimal">
 <xsl:sequence select="$total + $default-col-width-total + $cur-width"/>
 </xsl:variable>

 <xsl:next-iteration>
 <xsl:with-param name="total" select="$new-total"/>
 <xsl:with-param name="next-min" select="xs:decimal(@max + 1)"/>
 </xsl:next-iteration>
 </xsl:iterate>
 </xsl:function>

The sample output for these columns:

 <tps:colspec colname="1" colwidth="19.96%"/>
 <tps:colspec colname="2" colwidth="8.83%"/>
 <tps:colspec colname="3" colwidth="7.52%"/>
 <tps:colspec colname="4" colwidth="7.52%"/>
 <tps:colspec colname="5" colwidth="7.52%"/>
 <tps:colspec colname="6" colwidth="7.52%"/>
 <tps:colspec colname="7" colwidth="10.65%"/>
 <tps:colspec colname="8" colwidth="7.65%"/>
 <tps:colspec colname="9" colwidth="7.65%"/>
 <tps:colspec colname="10" colwidth="7.65%"/>
 <tps:colspec colname="11" colwidth="7.52%"/>

When some sheet.xml files do not contain cols elements, the total column width is calculated as default column width * number of columns.

Custom number formats
The capability of adding custom number formats provides greater flexibility for an Excel user. The following example can be considered to explain this further, ';' is used to separate the format string into different sections.
The following can be considered as a sample customer number format string _("$"* #,##0.00_);_("$"* \(#,##0.00\);_("$"* "-"??_);_(@_)
This number format can include;
	One section: this will be applicable for all the values.

	Two sections: first section applies for positive numbers or zeros, and the second section applies negative numbers.

	Four sections: first section applies to positive numbers, the second section applies to negative numbers, the third section applies to zeros, and the fourth section is for text.

Therefore, the above example has four sections and according to the cell value it considers the corresponding section. The following code segment demonstrates this implementation using XSLT.

 <xsl:variable name="num-formats" select="tokenize(tps:get-number-format($style-index), ';')" as="xs:string*"/>
 <xsl:variable name="section-count" select="count($num-formats)" as="xs:integer"/>

 <xsl:when test="$section-count eq 4 and (. gt 0)">
 <xsl:value-of select="format-number(., $num-formats[1])"/>
 </xsl:when>
 <xsl:when test="$section-count eq 4 and (. < 0)">
 <xsl:value-of select="format-number(., $num-formats[2])"/>
 </xsl:when>
 <xsl:when test="$section-count eq 4 and (. eq 0)">
 <xsl:value-of select="format-number(., $num-formats[3])"/>
 </xsl:when>
 <xsl:when test="$section-count eq 2 and (. >= 0)">
 <xsl:value-of select="format-number(., $num-formats[1])"/>
 </xsl:when>
 <xsl:when test="$section-count eq 2 and (. < 0)">
 <xsl:value-of select="format-number(., $num-formats[2])"/>
 </xsl:when>

Excel provides support for basic colours in custom number format. The following eight colours are specified using the name: [black][white][red][green][blue][yellow][magenta][cyan]. Other colours are considered as index numbers in a custom number format, but this application does not consider those.
For instance in the "$"#,##0.00_);[Red]\("$"#,##0.00\), the second section specifies ‘[Red]\("$"#,##0.00\), this indicates if the cell contains a negative number it should be formatted as ($0.00) with a foreground-color=#FF0000 (the hex value corresponding to 'Red').

Date and time formatting
In the Excel input XML, the dates are indicated as a serial number, it considers
 1899-12-31 as the base date and adds the specified serial number to get the date. Further,
 it uses decimal numbers to specify the time, for instance, 0.5 indicates 06:00. In order
 to process date and time information, this solution provides two functions as explained in
 Table 2.

Conditional formatting
This section explains how conditional formatting is applied using the XSLT transformation. In the following example, it applies conditional formatting where it compares the value of B22 according to the operator (greaterThan) with the formula value; this formula can be a static value as well. If the value matches the given conditions it will read the dxfs[0] according to the dxfId then apply the given foreground-color and the background-color to the B22 cell.

 <conditionalFormatting sqref="B22">
 <cfRule type="cellIs" dxfId="0" priority="1" operator="greaterThan">
 <formula>E12</formula>
 </cfRule>
 </conditionalFormatting>

This dxfId refers to the dxfs element of the styles.xml.

 <dxfs count="1">
 <dxf>

 <color rgb="FF9C0006"/>

 <fill>
 <patternFill>
 <bgColor rgb="FFFFC7CE"/>
 </patternFill>
 </fill>
 </dxf>
 </dxfs>

XLSX with charts and graphs
In order to process charts and graphs, the XLSX chart element is first converted into an SVG file which is then inserted using the @ref in the tps:image element of the CXML.
Figure 4: A flowchart to map the chart.xml
[image:]

Figure 4 illustrates how the solution navigates through the available files to identify the corresponding chart.xml to be processed. When charts and graphs are inserted to the sheet.xml, the 'drawing' element can be found within the elements. It directs the _rels/sheet1.xml.rels to link with the corresponding drawing.xml. Drawing.xml contains the graphic element with the relevant relationship ID to link to the chart.xml. This solution provides separate functions to read each of these files when needed.

 <a:graphic>
 <a:graphicData uri="http://schemas.openxmlformats.org/drawingml/2006/chart">
 <c:chart xmlns:c="http://schemas.openxmlformats.org/drawingml/2006/chart"
 xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships" r:id="rId2"/>
 </a:graphicData>
 </a:graphic>

This research focuses on the chart.xml where it reads the available information to understand which conversion needs to be actioned—pie chart to SVG, line chart to SVG, or bar chart to SVG. Further, it is required to read the theme.xml to get the used colour information.
Table 5 demonstrates the common elements in a XLSX which are related to charts.
Table V
Description of the important chart element

	Xpath	Description
	/c:chartSpace/c:chart/c:title/c:tx/c:rich/a:p/a:r/a:t	Chart title
	/c:chartSpace/c:chart/c:plotArea/c:pieChart	Pie chart
	/c:chartSpace/c:chart/c:plotArea/c:barChart	Bar chart
	/c:chartSpace/c:chart/c:plotArea/c:lineChart	Line chart
	/c:barChart/c:ser/c:cat/c:strRef/c:strCache/c:pt	Categorical data
	/c:barChart/c:ser/c:val/c:numRef/c:numCache/c:pt/c:v	Numeric values
	/c:barChart/c:ser/c:val/c:numRef/c:numCache/c:ptCount/@val	Point count
	/c:barChart/c:ser/c:spPr/a:solidFill/a:schemeClr/@val/c:pieChart/c:ser/c:dPt/c:spPr/a:solidFill/a:schemeClr/@val	Colour value

The following is a sample solidFill element and it is used to read the colour information.

 <a:solidFill>
 <a:schemeClr val="accent1"/>
 </a:solidFill>

 The val="accent1" corresponds to the /a:accent1/a:srgbClr/@val in the
 theme.xml. This system provides access to the theme.xml and to the specific color
 details.
SVG (Scalable Vector Graphics)
Table 6 explains the elements that are available in an output .svg file.
Table VI
SVG element descriptions

	Element	Description
	
 <defs>
 	This is used to store the graphical element to be used in the following segments.
	
 <path>
 	
	M x, y	M x, y
	A	
 Elliptical arc: A rx ry rotate large_arc_flag sweep_flag x y

 This command will draw an elliptical arc from the current point to x, y.

 	rx, ry - radius (major/minor axis)

	rotate - in degrees clockwise

	large_arg_flag and sweep_flag - control which section of the ellipse to use (1, 0)

	L x, y	Line to x, y
	
 <rotate>
 	Rotate (<a> [<x> <y>]) - rotation by <a> degrees about a given point. If [<x> <y>] are not supplied, the rotation is about the origin of the current user coordinate system. y
	
 <clipPath>
 	A clipping path specifies the region to which paint should be applied. Then the parts of the drawing that lie outside of the region bounded by the clipping path are not drawn.
	
 <circle cx="50" cy="50" r="50"/>
 	This command will draw circles based on a centre point and a radius.
	
 <use>
 	This element takes nodes within the SVG document and duplicates them somewhere else.
	
 <rect>
 	This draws rectangles, defined by their position, width, and height.
	
 <text>
 	This element helps to draw graphics elements consisting of text
	
 <line>
 	This creates a line connecting two points

To investigate the possibility of supporting XLSX graphs and charts using XSLT, the solution has considered an input file with a simple pie chart, a line chart, and a bar chart.

XLSX with a pie chart
The XSLT transformation that creates the pie chart uses elliptical arcs and fills them
 with specific colours. The feature available with clipPath in the SVG is used here so only
 the information within the specified region is visualised to the user. The following
 demonstrates the sample input (Figure 5) chart used to implement the pie chart functionality
 and the output (Figure 6 - .svg file) it provides from the proposed XSLT transformation.
Figure 5: Input XLSX pie chart
[image:]

Figure 6: Sample Output SVG of a pie chart
[image:]

XLSX with a line chart
The information available in Table 5 can be used to map the input chart.xml (Figure 7) into the output SVG (Figure 8) which represents a line chart.
Figure 7: Sample XLSX line chart
[image:]

Figure 8: Sample output SVG of a line chart
[image:]

XLSX with a bar chart
Figure 9: Input XLSX bar chart
[image:]

Figure 10: Sample output SVG of a bar chart
[image:]

The following source code shows that the conversion of the bar chart and the line chart are similar, except in the line chart it uses a path and in the bar chart it uses a rect.

 <xsl:template name="chart">
 <xsl:param name="is-line-chart" as="xs:boolean"/>

 <xsl:variable name="max-val" select="xs:decimal(max(c:ser/c:val/c:numRef/c:numCache/c:pt/c:v))" as="xs:decimal"/>
 <xsl:variable name="data-count" select="count(c:ser/c:val/c:numRef/c:numCache/c:pt)" as="xs:integer"/>
 <xsl:variable name="chart-height" select="$max-val + 50" as="xs:decimal"/>

 <svg>
 <g>
 <--Chart title-->
 <text x="{$data-count*50}" y="10" font-size="14px" text-anchor="end">
 <xsl:value-of select="ancestor::c:chart/c:title/c:tx/c:rich/a:p/a:r/a:t"/>
 </text>

 <--Chart axis-->
 <line id="axis-y" x1="40" y1="{$chart-height}" x2="40" y2="20" style="fill:none;stroke:rgb(0,0,0);stroke-width:2"/>
 <line id="axis-x" x1="40" y1="{$chart-height}" x2="{$data-count*100}" y2="{$chart-height}" style="fill:none;stroke:rgb(0,0,0);stroke-width:2"/>

 <xsl:for-each select="c:ser/c:val/c:numRef/c:numCache/c:pt">
 <xsl:variable name="pt" select="." as="element(c:pt)"/>
 <xsl:variable name="color" select="'#' || tps:get-theme-xml()/a:theme/a:themeElements/a:clrScheme/a:*[local-name() eq tps:get-theme-color(current()/(ancestor::c:lineChart[$is-line-chart], ancestor::c:barChart)[1], $pt/@idx)]/a:srgbClr/@val" as="xs:string"/>

 <--Y axis labels-->
 <text x="30" y="{$chart-height - c:v}" font-size="12px" text-anchor="end">
 <xsl:value-of select="c:v"/>
 </text>

 <xsl:choose>
 <--Line chart-->
 <xsl:when test="$is-line-chart">
 <path d="M {50 + (position() - 1)*100},{$chart-height - c:v}
 L {50 + (position())*100}, {$chart-height - following-sibling::c:pt/c:v} Z" stroke="{$color}"/>

 </xsl:when>

 <--Bar chart-->
 <xsl:otherwise>
 <rect x="{40 + (position() - 1)*100}" y="{$chart-height - c:v}" width="50" height="{c:v}" style="fill:{$color};stroke:rgb(0,0,0);stroke-width:0"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>

 <--X axis labels-->
 <xsl:for-each select="c:ser/c:cat/c:strRef/c:strCache/c:pt">
 <text x="{100 + (position()-1)*100}" y="{$chart-height + 20}" font-size="12px" text-anchor="end">
 <xsl:value-of select="c:v"/>
 </text>
 </xsl:for-each>
 </g>
 </svg>
 </xsl:template>

Application of the converter
The use case for Typefi is embedded Excel files within Word documents, but can also be used for standalone Excel documents.
This application considers some input parameters (Table 7.), and the following user interface prompts the user to fill them.
Figure 11: Dialog box of Typefi Writer to get input parameters
[image:]

The following element will be added into the docx file with the user-provided information. <w:instrText>Sheet="Historical Performance" CellRange="C6:J22" FooterRows="0" HeaderRows="2" PreferredWidth="100" PreserveCellStyles="False" PreserveLocalOverrides="False"</w:instrText>
Table VII
Parameter descriptions

	Category	Sample data	Description
	Sheet	Historical Performance	Sheet name
	CellRange	C6:J22	Docx file contains the cell range of the table, which cells were included in the docx file as a table.
	FooterRows	0	Number of footer rows
	HeaderRows	2	Number of header rows
	PreferredWidth	100	This relates to the amount that the table can take up when it is positioned in InDesign.
	PreserveCellStyles	False	Using the Excel cell styles, this maps to the @type attribute on the <entry> in CXML which in turn maps to Cell styles in InDesign.
	PreserveLocalOverrides	False	Add cell-format values to the entry/@style attribute.

The sheet name, cell range, footer/header rows and the referred width values are passed to
 the XSLT as parameters and will be used during the transformation.

 <xsl:param name="sheet" as="xs:string" select="'HistoricalMonthly Performance'"/>
 <xsl:param name="cell_range" as="xs:string" select="'C6:J22'"/>
 <xsl:param name="footer_rows" as="xs:integer" select="0"/>
 <xsl:param name="header_rows" as="xs:integer" select="2"/>
 <xsl:param name="preferred_width" as="xs:integer" select="100"/>

The proposed solution will convert the table information to a tps:table element, and charts and image references to tps:image elements in the CXML. Images and charts are transformed into separate image files and the tps:image element will reference the image file.

Discussion
The previous approach, with the Apache POI, read the XLSX file using the streaming, as it was memory intensive when handling large or memory-intensive files. Ultimately, limitations with this approach prevented us from implementing specific features and maintaining the code with bug fixes. The existing application supports Word documents that are processed using XSLT features. Therefore, our goal is to use a similar approach in the Excel converters.
Meanwhile, the XSLT approach provides the flexibility to read the required cell range of a particular sheet.xml without considering the entire XLSX file. In other words, this custom XSLT implementation will read the XLSX files at the lowest level possible, giving the maximum control and flexibility possible to help bypass the restrictions of the Apache POI API.
Compared to the Java solution, an XSLT developer would find it easier to use XSLT to do these transformations, adding more flexibility by mapping the information into the output XML schema. Finally, XSLT is the globally accepted methodology for XML transformations. Therefore Java code is less suitable than XSLT for document format transforms and conversion to XML.
The XProc pipeline was a new research area that delivered a unique solution to read an
 Excel file and pass it as a collection to the XSLT without writing into the disk. An
 inexperienced user of XML Calabash has to spend a considerable amount of time grasping the
 concepts of XProc language with the available online resources. Even though there are several
 other alternatives to achieve the same objective, we believe this was an ideal problem to
 demonstrate the application of XProc in such a domain. The listed resources related to XProc
 provide guidelines to troubleshoot various errors which occurred in several instances during
 the development of the final XProc pipeline. Several processors implement XProc 3.0 features,
 but XML Calabash was compatible with the ANT script so this solution runs the pipeline using
 it.
This application provides a general approach by delivering the flexibility of converting the XLSX tables into any other XML schema since this research provides a solution around CALS tables. Moreover, the XLSX chart to SVG conversion stores the output chart.svg files in a separate chart folder so it can be easily reused with any other transformation or as a standalone application. Currently, the proposed solution converts the pie chart, line chart and bar chart to an SVG output. It can be improved to support any other chart formats and with complex data; however, as a proof of concept, this solution considers only these types.
Further, the solution provides a separate set of functions to read each file, such as the styles.xml, theme.xml, sharedStrings.xml, and relationship files. For instance, tps:get-total-col-width function is implemented to calculate the total column width in order to calculate the width proportion. In this case, it has used the XSLT 3.0 xsl:iterate feature, and it showcases a great application of that.
This paper presents the possibility of transforming an XLSX file into a different XML
 schema; however, this paper also identifies several limitations and future improvements. For example, the current
 solution does not consider shrinkToFit kind of alignment feature and
 formulas, but this will be implemented as a future improvement. Also, the current
 implementation considers the common input XLSX file structure to read the files in
 corresponding order, but an arbitrary file structure (considering relationship files) will be
 considered in future versions.

Conclusion
This research covers three research areas— XProc pipeline, XLSX table to CALS table
 transformation, and XLSX chart to SVG conversion. The solution uses XProc, XSLT, XPath and ANT
 scripts and provides a CXML file as the final output. This paper explains the input file
 element information and the required information to be fetched to fill the required XML
 output. CALS tables are derived from the information available in the sheet.xml and other
 related files. It further demonstrates how the solution converts the chart.xml into an SVG
 file by explaining the available features of the SVG schema.
The Excel file structure becomes too complex to be processed—with the size and available information of the input file. However, based on the customer files, we decided which features were required to be implemented. Ultimately, the solution will increase the scope in the future.

References
[1] Microsoft Corporation. February 15, 2022. Office
 Implementation Information for ISO/IEC 29500 Standards Support. https://interoperability.blob.core.windows.net/files/MS-OI29500/%5bMS-OI29500%5d.pdf

[2] Spreadsheet styles. http://officeopenxml.com/SSstyles.php

[3] Microsoft Office, API Reference. https://docs.microsoft.com/en-us/dotnet/api/documentformat.openxml.spreadsheet.sheetformatproperties?view=openxml-2.8.1

[4] "Retrieving data from Excel XML using XSLT". https://stackoverflow.com/questions/33422652/retrieving-data-from-excel-xml-using-xslt

[5] "How to turn an XML file into SVG using XSL?" https://stackoverflow.com/questions/8056671/how-to-turn-an-xml-file-into-svg-using-xsl

[6] XSLT to generate SVG tutorial. 2016. http://edutechwiki.unige.ch/en/XSLT_to_generate_SVG_tutorial

[7] Florent Georges. 2008. Simple SVG chart generation with XSLT. http://fgeorges.blogspot.com/2008/04/simple-svg-chart-generation-with-xslt.html

[8] Max Froumentin, Vincent Hardy, W3C. Using XSLT and SVG together: a survey of case studies. https://www.w3.org/People/maxf/papers/2002-07-SVGOpen/svgopen.html

[9] SVG attribute reference. https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute

[10] A pure XSLT/SVG pie chart. https://www.sleepingdog.org.uk/svg/chart/pie/

[11] SvgCharts4XSL. https://franklinefrancis.github.io/SvgCharts4Xsl/

[12] Adrian McMenamin. 2011. Using XSLT to manipulate an SVG file. https://cartesianproduct.wordpress.com/2011/07/16/using-xslt-to-manipulate-an-svg-file/

[13] SVG: Scalable Vector Graphics. https://developer.mozilla.org/en-US/docs/Web/SVG

[14] Ben Hauser. Content XML 3.0 and earlier. https://help.typefi.com/hc/en-us/articles/228240428-Content-XML-3-0-and-earlier

[15] Laura Powers. 2021. "Local style overrides". https://help.typefi.com/hc/en-us/articles/360001491415#h_3be5e014-f255-49b8-8454-6c7681861b1a

[16] Erik Bruchez. "Unzipping an Excel 2007 .xlsx file
 and extracting data in XPL/XSLT". https://gist.github.com/ebruchez/1245692

[17] Dave Bruns. "Excel customer number formats". https://exceljet.net/custom-number-formats

[18] Appendix A: Full XML schema. https://docs.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/6624db33-496c-47f7-a562-a54cb01b133f

[19] Apache POI - HSSF and XSSF Limitations. https://poi.apache.org/components/spreadsheet/limitations.html

[20] Harvey Bingham. OASIS Technical Resolution TR 9503:1995, Exchange Table Model Document Type Definition. https://www.oasis-open.org/specs/a503.htm

[21] Ari Nordström. 2020. "Pipelined XSLT Transformations". Presented at Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020. Balisage Series on Markup Technologies, vol. 25. https://www.balisage.net/Proceedings/vol25/print/Nordstrom01/BalisageVol25-Nordstrom01.html. doi:https://doi.org/10.4242/BalisageVol25.Nordstrom01

[22] David Maus. 2018. XProc Step by Step: Implementing a DOCX to TEI step. https://dmaus.name/blog/2018.14/index.html

[23] XProc 3.0: An XML Pipeline Language, Community Group Report 1 July 2022. https://spec.xproc.org/master/head/xproc/

[24] Norman Walsh, Achim Berndzen. 2019. "XProc 3.0". Presented at Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019. Balisage Series on Markup Technologies, vol. 23. https://www.balisage.net/Proceedings/vol23/print/Walsh02/BalisageVol23-Walsh02.html. doi:https://doi.org/10.4242/BalisageVol23.Walsh02

[25] Erik Siegel. 2020. XProc 3.0 - Strategies for merging documents. https://www.xml.com/articles/2020/11/16/xproc-30-strategies-merging-documents/#sect-pass-as-collection

[26] "How do I convert Excel Serial Date Numbers in an XML file to mm/dd/yyyy for SQL Server in an SSIS Package?" https://stackoverflow.com/questions/64018372/how-do-i-convert-excel-serial-date-numbers-in-an-xml-file-to-mm-dd-yyyy-for-sql

[27] "How to change date format in Excel and create custom formatting". https://www.ablebits.com/office-addins-blog/2015/03/11/change-date-format-excel/#excel-date-format

Balisage: The Markup Conference

Getting Useful XML out of Microsoft Excel
Gayanthika Udeshani
Typefi Systems Pty Ltd

<gudeshani@typefi.com>
Gayanthika is an Associate Architect at Typefi, where she leads the XSLT team and provides support for other software solutions as well.
Gayanthika holds a Masters of Science (MSc) in Software Architecture from the University of Moratuwa, Sri Lanka. She has over 11 years of experience as a developer and she joined Typefi in 2018.

Balisage: The Markup Conference

content/images/Udeshani01-010.png
90
80
70
60
50
40
30
20
10

Fruits

Apples

Oranges

content/images/Udeshani01-011.png
80

Fruits

Apples

Oranges

content/images/Udeshani01-005.png
sheett.xml

_relsisheett xmi.rels

Target="./drawings/drawing 1 xmI"

chart3xml

arawing1.xmil

Target="./charts/chart3.xmI"
e

drawing? xmi.rels

content/images/Udeshani01-006.png
Fruits
mApples

Oranges

content/images/Udeshani01-007.svg
 Fruits Apples Oranges

content/images/Udeshani01-008.png
90
80
70
60
50
40
30
20
10

Total

Year 2020

Year 2022

content/images/Udeshani01-001.png
Call the XProc Pipeline

XML Calabash

Store the final

collection) sheetData to CALS table. ot

Read from the
XLSX zip fle

workbook.xmi.

chartt.svg
output.cxmi

chartxml

content/images/Udeshani01-012.png
Insert Excel Spreadsheet

Spreadsheet

(C.\Users\ApsaralDownloads\pie.xisx
Sheet

Browse

Sheet1
Table style
Basic Table

Table Dimensions

Cell range

Header rows 0

Formatting

Preferred width 100%

Preserve cell styles

i

DefaultCellRange A1:B3

Footer rows

Preserve local overrides

OK

Cancel

content/images/Udeshani01-002.png
v [_rels

% [Content_Types].xml
v [docProps
“& app.xml
& core.xml
vil@x
v [_rels
workbook.xml.rels
v [charts
v [_rels
chartl.xml.rels
& Chartl.xml
& colors1.xml
& stylel.xml
v [drawings
v [_rels
drawing1.xml.rels
drawing2.xml.rels
& drawingl.xml
& drawing2.xml
v [media
W imagel.png
o styles.xml
v [theme
& themel.xml
& workbook.xml
v [worksheets
v [_rels
sheetl.xml.rels
sheet2.xml.rels
& sheetl.xml
& sheet2.xml

content/images/Udeshani01-003.png
Read XML files
tpsiget-worksheet
tpsiget-stylesheet

tpsiget-sharedstring-table
tpsiget-theme-xmi

tpsiget-chart-xml

Read relationship files
tpsiget-workbook-rels
tpsiget-worksheet-rels

tpsiget-drawing-rels.

tpsiget-rotation

Read syle information tpsiget-align
tpsiget-celis — tpsiget-valign
= > ipsiget-foreground-color

tpsiget-border-style

tpsiget-style

tps:get-pattern-fil —

tpsiget-pattern-fill-type

tpsiget-number-format

tpsiget-background-color

tpsiget-shared-string

VRN

tpsiget-theme-color

tpsiget-cell-count

Read information

tpsis-within-cell-range

tpsiget-date-from-the-serial-no

tps:get-merged-cell-count

tps:get-time-from-the-value

tpsiget-cell-range-cell-count

tpsiis-hidden-column

tpsis-cell-merged

tpsiget-total-col-width

tps:get-defaut-column-width

content/images/Udeshani01-004.png
A B ©
il X Yy z
22 3 6
5] 8 9 72.00
6 10 12 120
7 all 3 merged
8 I 1st two merged 1 @ end [

9 1@ start last two merged

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Udeshani01-009.png
Total

80

20

Year 2020 Year 2022

