[image: Balisage logo]Balisage: The Markup Conference

A Wonderful Historie of Intertextual Networks: Or, How Not to Index Your Data
Ash Clark

Balisage: The Markup Conference 2023
July 31 - August 4, 2023

Copyright by Ash Clark. This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License,

How to cite this paper
Clark, Ash. "A Wonderful Historie of Intertextual Networks: Or, How Not to Index Your Data." Presented at: Balisage: The Markup Conference 2023, Washington, DC, July 31 - August 4, 2023. In Proceedings of Balisage: The Markup Conference 2023.
 Balisage Series on Markup Technologies vol. 28 (2023). https://doi.org/10.4242/BalisageVol28.Clark01.

Abstract
In 2022, the Women Writers Project (WWP) published Women Writers: Intertextual Networks
 (WWIN), an EXPath web application served out of eXist-db. However, the site was quickly
 plagued with connection issues: a page might take a long time to load, or the connection
 would drop, or the site might be entirely inaccessible. In this paper, the author will
 describe the WWIN’s initial development, analyzing the design decisions and pitfalls.
 Finally, e will describe the process of making the application much more stable and
 efficient.

Balisage: The Markup Conference

 A Wonderful Historie of Intertextual Networks: Or, How Not to Index Your Data

 Table of Contents

 	Title Page

 	Intertextual gestures in Women Writers Online

 	Of summaries and scale

 	Enter the EXPath app

 	This is not where things went wrong

 	Analysis: or, processor pain points
 	Data remodeling

 	Caching more to do less

 	Next steps

 	Takeaways

 	Acknowledgements

 	Appendix A. Overview of WWIN data sources
 	Intertextual gestures

 	Bibliography entries

 	Appendix B. Caching workflow

 	Appendix C. Sample cached response in original format

 	Appendix D. RelaxNG schema for cached responses
 	Sample cached response in revised format

 	About the Author

 A Wonderful Historie of Intertextual Networks: Or, How Not to Index Your Data

In 2022, the Women Writers Project (WWP) published Women Writers: Intertextual
 Networks, an EXPath web application served out of eXist-db. However, the site was
 quickly plagued with connection issues: a page might take a long time to load, or the connection
 would drop, or the site might be entirely inaccessible. In this paper, the author will describe
 the WWIN’s initial development, analyzing the design decisions and pitfalls. Finally, e will
 describe the process of making the application much more stable and efficient.
Intertextual gestures in Women Writers Online
In October 2016, the WWP set out to explore intertextuality as found within the Women
 Writers Online (WWO) corpus. WWO is a collection of over 400 works by women: originally
 published before 1850, now encoded in TEI and published online for subscribing institutions.
 In a grant proposal to the National Endowment for the Humanities, WWP staff reasoned that the
 breadth and complexity of the existing WWO markup would allow us to work towards a much
 clearer and more textured picture of the rhetoric of intertextuality: what female authors
 read, what they felt it important to quote, paraphrase, or cite, and what other subtler
 mechanisms of allusion or unintentional echo were at work that connect their writing to that
 of other authors.[1]
Soon enough, a team of the WWP’s encoders and staff[2] examined, researched, and refined a great deal of rich, dense bibliographic and
 intertextual data. Much later, in 2022, the WWP prepared to release a web interface for
 exploring this data — Women Writers: Intertextual Networks (WWIN).
 The WWP’s goal was to create an interface which would let people view aggregated trends in
 intertextuality throughout Women Writers Online, but which would also let them drill down to
 interesting facets.
All together, WWIN melds data from:	WWO documents, which contain
	Encoded intertextual gestures; and

	A separate XML bibliography, which contains
	An informal taxonomy of topic and genre keywords, and

	Individual bibliography entries.

 As an introduction to the WWIN website and its data, it seems useful to look
 at two WWIN index pages, each of which corresponds closely to a TEI data source.
The first source is the TEI bibliography, a large document comprising all identifiable
 works which have been referenced in WWO.[3] These works have been identified through research, and recorded in TEI
 <biblStruct>s. Besides information about each work’s first known
 publication, the WWP team also classified entries by topic or genre, using the
 @ana attribute. Figure 1 is a simplified
 example of one such entry.
Figure 1: TEI bibliography entry for the novel Zayde

<biblStruct xml:id="IT03823" corresp="#frbr.work" ana="#novel">
 <monogr corresp="#frbr.expression">
 <respStmt>
 <resp>translator</resp>
 <persName gender="unknown" ref="p:pporter.xem">Porter, P.</persName>
 </respStmt>
 <author>
 <persName gender="female" ref="p:mdelave.ksv">de La Fayette, Madame
 (Marie-Madeleine Pioche de la Vergne)</persName>
 </author>
 <title type="display">Zayde: A Spanish History or Romance</title>
 <title type="full">Zayde: A Spanish History or Romance</title>
 <title type="alt" xml:lang="fr">Zayde: Histoire Espagnole</title>
 <imprint corresp="#frbr.manifestation">
 <pubPlace>
 <placeName>London, England</placeName>
 </pubPlace>
 <date when="1678">1678</date>
 </imprint>
 </monogr>
 <note type="public" subtype="general">At the time of publication, the
 authorship of "Zaïde" was attributed to Jean Renaud de Segrais; however, current
 scholarship accepts Madame de La Fayette as the author, with possible assistance
 from Segrais.</note>
</biblStruct>
WWIN bibliography entries generally contain:	an identifier;

	genre or topic keywords;

	one or more titles;

	any contributors, including their
	name,

	presumed gender, and

	WWP personography key;

	information about the first edition published, including	publisher name,

	publication location, and

	publication date;

	pointers to any related bibliography entries; and

	any notes.

For a complete list of fields, see the appendix section “Bibliography entries”.

WWIN can, and does, provide a web page for each bibliography entry. However, the goal of
 the interface was to allow exploration at scale, which is where the index page shines. The
 Bibliography is a paginated index of all bibliography entries, reduced to tabular form. Next
 to the table is a sidebar which lists out the top facets for a number of categories, such as
 the publication location and whether a work has a contributor of a given gender. Using these
 facets, one can start to perceive contours of the dataset, and one also narrow the result set
 to only those bibliography entries matching some criterion.
Figure 2: WWIN Bibliography index, filtered
[image: Screenshot of a table of bibliographic information. The facets sidebar indicates that
 only works by female contributors are shown, for a total of one thousand seventy-three
 results.]

By default, the Bibliography is sorted so that the most referenced entries appear first.
 This information is not part of the TEI bibliography; rather, the WWIN application compiles
 totals by counting references in the WWO markup. In WWO documents, intertextuality is marked
 by <title>s, <rs type="title">s, <quote>s, and
 <bibl>s.Note
For more information on intertextual encoding in WWIN, see the appendix section “Intertextual gestures”, or visit the WWIN
 terminology page.

 These tags have been augmented with identifiers, and attributes point to the
 bibliography entries for the works being referenced. The WWP team calls these phenomena
 intertextual gestures, defined as a reference to, or marked engagement
 with, another work. A simplified example of a <title> appears in Figure 3.
Figure 3: Intertextual gesture toward the novel Zayde

<p><!-- [...] -->The interesting ro­-
<lb/>mance of <title rend="case(smallcaps)" ref="b:IT03823" xml:id="t072"
 ><persName>Zaïde</persName></title> also, and some other
<lb/><rs type="properAdjective">Turkish</rs> tales, shewed her how frequent
<lb/>were such transformations; her romantic
<lb/>mind told her how probable were such ad-­
<lb/>ventures <!-- [...] --></p>
Excerpt from Romance Readers and Romance Writers: A Satirical Novel
 by Sarah Green, published in Women Writers Online by the Northeastern University Women
 Writers Project.

Each intertextual gesture tagged in WWO has some obvious metadata attached to it: an
 identifier, one or more pointers, element name and type. One can process the element itself to
 generate HTML or plain text representations of the gesture’s textual contents. However, there
 is additional complexity because each gesture also carries contextual information inferrable
 from the TEI document around it.
In Figure 3, for instance, the WWIN classifies this gesture as a
 title — if the gesture appeared in an <advertisement> instead
 of running prose, it would be classified as an advertisement instead. From the
 @xml:lang on the outermost element <TEI>, WWIN understands that
 the textual content of this gesture is in English. And, from the lack of an
 @author attribute on any of the element’s ancestors, WWIN can infer that the
 primary author of the WWO text, Sarah Green, made this particular intertextual gesture. See
 the appendix section “Intertextual gestures” for more information on intertextual
 encoding.
All in all, each intertextual gesture comprises a wealth of information about its context,
 as well as whatever can be gleaned from each of the bibliography entries associated with it.
 The WWIN Intertextual Gestures index is similar to the Bibliography index in
 that it takes the form of a table alongside a list of actionable facets. In this case,
 however, the column-heavy table of the Bibliography has been replaced with a table which
 reduces the amount of bibliographic data. The resulting table attempts to make clear the
 relationship between each gesture, its source WWO text, and its referenced works.
Figure 4: WWIN Intertextual Gestures index
[image: Screenshot of the Intertextual Gestures index. There are three groups of columns, for
 the source text, the intertextual gesture, and the referenced work. Bibliographic data
 takes the form of a short citation.]

Of summaries and scale
The Bibliography and Intertextual Gestures index pages form
 the core of WWIN. However, the scale of the data represented in them can make those indexes a
 daunting place for readers to begin exploring. In Figure 4, for
 example, the WWIN interface reports that there are a total of 25,727 intertextual gestures
 across 515 pages of results — far too many to skim for some interesting tidbit. The
 Filter results sidebar helps a great deal, but each category is limited to
 only the top ten filters. One would have to view the JSON or XML data to see all possible
 filters at once.[4] Similarly, sorting allows page one to appear repopulated with a different set of
 results. But even so, there is not much chance that a person will navigate through every page
 of results to build a picture of the full dataset.
As previously mentioned, WWIN was intended to enable exploration: to make the scope of
 intertextuality in WWO visible, to bring patterns into focus, and to showcase the
 interconnectivity of the data. To this end, the bibliography entry pages and two additional
 indexes showcase donut chart visualizations which give a high-level overview of intertextual
 usage across WWO.
Figure 5: Summaries of intertextual gestures by and within the novel Romance Readers and Romance Writers.
[image: A pair of donut charts. The 'References to this work' chart shows two citations in WWO
 reference the novel. The 'Gestures within this work' chart breaks down the 291
 intertextual gestures by type. Nearly half of the gestures within the novel are
 quotes.]Screenshot selected from the Romance Readers and Romance Writers bibliography entry
 page.

These visualizations — donut slices and the legend entries alike — also serve as links
 into the Intertextual Gestures index, allowing readers to easily navigate to a
 table of all relevant gestures. The visualizations summarize and break down the data, yes, but
 they also reward curiosity. The reader can interrogate the data behind the chart by simply
 clicking a link.
It is worth emphasizing that the website user has a lot of power to control their
 experience of WWIN. To enable this level of control, the website must aggregate
 all relevant data in order to display a single page of results. The
 WWIN dataset is not a huge dataset, but it is large enough that aggregation has a heavy
 processing cost.
Another project might have chosen an easier approach; for example, by implementing a
 single index of source documents. Each record might then show a narrative view of all the
 intertextual gestures within that source text. This would have reduced the amount of data that
 we needed to compile. It also would have shifted our development more toward XSLT rather than
 XQuery.
However, this approach and others would have limited WWIN to document-by-document
 explorations of intertextuality. The Women Writers Project was more interested in giving users
 the tools to explore intertextuality across the textbase, working at scale to find patterns of
 use, and then drilling down into the context of each individual gesture.
 As a result, the author focused eir pre-publication efforts on building up the indexes of WWIN.[5]

Enter the EXPath app
Behind the scenes, Women Writers: Intertextual Networks is an EXPath
 application served out of the WWP’s eXist-db instance.[6] The EXPath package contains several XQuery scripts and libraries. One library
 contains functions with RESTXQ annotations, and is used to serve out the WWIN website pages.
 The compiled EXPath package also includes: a clean, publication-friendly version of the XML
 bibliography (no comments, internal notes, or proofing flags, for instance); a JSON
 representation of the bibliography; and a TEI personography derived from keyed contributor
 names.
Besides the bibliography (stored in the application directory) and WWO documents (stored
 in a WWO-specific data directory), the EXPath app maintains a separate directory of
 intertextual data compiled from these two sources. In order to save processing on inferred
 knowledge, the RESTXQ endpoints draw from this data cache, rather than directly querying the
 TEI.
The data cache is generated ahead of time through a series of XQuery scripts. The
 caching process was designed to be modular for debugging and logging purposes.[7] Each XQuery builds off the inferences made by the last, saving its output to a
 staging directory. By the end of the process, a final script has moved all caches out of the
 staging directory and into the publication directory, ready for use. (A thorough description
 of the XQuery workflow can be found in the Caching
 Processes appendix.)
The published caches include: 	each index page’s full dataset, with inferences made explicit;

	lists of identifiers, pre-sorted by the index’s methods;

	complete summaries of the facets available for each index;

	XHTML representations of the bibliography citations and intertextual gestures;
 and

	cached responses for sizable single-filter-applied requests,[8] which themselves contain:	the parameter name and value of the applied filter,

	lists of pre-sorted identifiers, and

	facet summaries specific to this request.

Except for the XHTML serializations, the caches were stored in the W3C’s XML
 serialization of JSON (nicknamed pseudo-JSON by the author).[9] With eXist able to index these files as XML, the web app could identify caches
 that matched a request’s criteria. Cached XML was then parsed as maps or arrays, which could
 be passed around, augmented, and serialized quickly as JSON or XML, or (with a bit more
 effort) as HTML. An example of the cached pseudo-JSON can be found in Appendix C.
By spring 2022, the staging site for WWIN was admittedly a little slow, but stress tests
 with small groups of human users didn’t phase the test server too badly. And so, on May
 25th, 2022, with WWIN freshly installed on the WWP production instance of eXist, the Women
 Writers Project announced the public release of WWIN.

This is not where things went wrong
…because publishing WWIN did not reveal anything new about the quirks and eccentricities
 of the web app. What publishing did was escalate the behaviors that were
 already there, transforming quirks into legitimate problems.
When the Women Writers Project announced that WWIN had been published, traffic
 skyrocketed. This was not just casual users and well-wishers, but also
 bots. Bots which followed every link to every facet, causing the app to
 spend a lot of time generating caches of XML for requests it hadn’t anticipated. The
 processing time could take over a minute, in which case the Apache server would cut the user’s
 connection and display an error. While that user was refreshing the page, eXist might still be
 processing the original request, in which case the WWIN app would begin the process again from
 the start.
Once a response was cached, a subsequent request would get a much speedier response.
 Still, bots were guaranteed to follow every combinatorial iteration of every index, and WWIN
 was struggling to keep up with so much traffic.
The WWP production server was struggling too. The server housed our entire main website,
 as well as WWO and eXist. As eXist consumed more of the server’s memory and computational
 power, the rest of the WWP universe also began to operate with a
 noticable sluggishness.
The author’s first task post-launch was to move eXist off the WWP server and into the
 cloud. E coordinated with Northeastern Library developer and Amazon Web Services whiz Robert
 Chavez to create an Amazon EC2 instance, which would have only one job: to house eXist and
 send content to the WWP production server. We gave this new eXist instance a lot of memory and
 CPUs with which to work. This infrastructural update stabilized the WWIN app, and freed the
 production server to use its resources judiciously.
However, page load times were still high as bots continued to work through the indexes.
 The WWP team was becoming superstitious about using eXist at all, fearful that any
 nonessential request might bring down the database. Work on the WWIN application clearly could
 not stop at publication.

Analysis: or, processor pain points
Let’s step back for a moment to talk about some tasks which may be time-, memory-, and processor-intensive:	making implicit data to be explicit, possibly
 requiring complex XPaths to other resources;

	generating a list of the facets which apply to a
 dataset;

	sorting large datasets;

	serializing large datasets; and

	identifying records which match some given
 criteria.

Of the above tasks, WWIN was originally developed with the first four in mind. As part of
 the caching workflow, implicit data was made explicit, facets were generated, identifiers were
 sorted, and the cache format itself made serialization much easier.
The indexes’ responses were paginated, which reduced the number of full records that
 needed to be retrieved and the amount of transformation work required. However, in order to
 sort or generate facets, the full dataset needed to be accessed even though only a portion
 would be serialized for display.
Data remodeling
Further, the choice to prioritize ease of serialization had significantly impacted
 WWIN’s ability to identify which caches were relevant to any given user
 request. The W3C serialization of JSON as XML uses datatypes as element names, and uses the
 @key attribute to hold the names of JSON object keys. As previously
 mentioned, this serialization is remarkably efficient for converting between XML, JSON, and
 the new map and array structures.
This serialization does not work well with eXist’s Lucene range index,[10] however. The original configuration for WWIN had to rely heavily on a
 @key index in order to get at crucial fields. As the author described the
 problem in an informal presentation to eir coworkers:But… if most elements have a @key attribute…
and you can’t depend on the element name for a field you’re interested in…
You have to index most elements and @key
 attributes, just for the ability to search for the few fields you’re interested
 in.

The usual advice for making efficient use of an index is that your first XPath step
 should be the most precise, narrowly-defined criterion in your index. The eXist
 documentation Tuning the database, for example, contains this bolded
 recommendation: Always process the most selective filter/expression first —If you need multiple steps to select nodes from a larger node set, try to process
 the most selective steps first. The earlier you reduce the node set to process, the
 faster your query.

Unfortunately, with the XML serialization of JSON, each field was so reliant on its
 place in the hierarchy that it was difficult to construct XPaths which could return results
 efficiently.
As an example, WWIN relies heavily on identifiers. In the pseudo-JSON, most identifiers
 were encoded as <fn:string key="id"> — this is one of the few fields where
 the element name was always going to be string. So WWIN defined an index
 field to match all of these identifying strings.
Unfortunately, this index could not account for competing uses of <fn:string
 key="id"> in the cache. Depending on the context, nodes within this index might be
 a record stating its identifier, or a facet’s unique key:
Figure 6: An excerpt of a compiled facets map

<fn:map key="facets">
 <fn:array key="genre">
 <fn:map>
 <fn:string key="id">political-writing</fn:string>
 <fn:number key="count">19</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">speech</fn:string>
 <fn:number key="count">6</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">legal-writing</fn:string>
 <fn:number key="count">3</fn:number>
 </fn:map>
 <!-- ... -->
 </fn:array>
</fn:map>

Even with a reliable encoding pattern, the index for identifiers held a lot of nodes
 that were not useful for querying, but which had to be included — which is to say, they
 could not be excluded.
This problem could only be solved by restructuring the cache, using unique element names
 and attributes which could be indexed separately from each other. The author created a
 RelaxNG schema to draft a container format for the cached responses, capturing information
 about the request endpoint, request parameters, the various sort methods, and compiled
 facets. The latter are still stored as pseudo-JSON XML, since the facets will be serialized
 more often than queried. A copy of the schema can be found in Appendix D, alongside a sample response in the revised format.
Similarly, each bibliography and intertextual gesture record is still stored in
 pseudo-XML for serialization purposes. But now, each <fn:map> is wrapped in
 a <record> element with an @ID attribute — easy to index, easy
 to retrieve.
With the new data storage formats in place, WWIN takes two seconds at
 most to load a page generated from a cached response. This is a far cry from
 the 500 milliseconds that Firefox’s Network tool recommends. It is nonetheless a vast
 improvement over the first WWIN.

Caching more to do less
After reviewing eir work, the author felt that WWIN’s initial implementation was a good
 start, but in many ways did not go far enough. To protect human users from the bots, WWIN
 needed to have more responses cached and ready for pagination and serialization.
To start, the author set the existing script to cache almost all
 simple, one-filter responses, instead of just the sizable
 ones. Because one-filter responses have fewer results than the full dataset, they are better
 starting places when compiling a response for, say, a request for a subset of data with two
 filters applied. WWIN was already set up to find the smallest cached subsets before applying
 filters. By caching more responses, the web application is able to do less processing on the
 filter combinations for which there isn’t yet a cache.
In fact, many complex (multi-filter) responses should also be cached,
 especially responses with lots of results. The author set a target goal for all index pages
 to load within about 15 seconds. E experimented with page load times for complex responses
 of various sizes. The results are summarized in the table below.
Table I
Page load times for the Intertextual Gestures index, already filtered to show only
 quotes.
When this data was collected, cached responses were not available for the below
 combinations.

	Second filter	Total results	DOM load time
	Referenced genre: Political writing	236	6s 470ms
	Source (WWO) text: Bullard’s Reformation	306	7s 660ms
	Referenced work: Revelation	374	10s 210ms
	Referenced work’s genre: Drama	500	11s 410ms
	Referenced work: Internal	703	15s 430ms
	Referenced work’s genre: Theology	926	18s 870ms
	Source text’s genre: Gender commentary	1,076	21s 380ms
	Source text’s genre: Poetry	2,113	39s 510ms
	Source text’s genre: Theology	4,103	1m 16s 800ms
	Referenced work’s genre: Sacred text	4,398	1m 21s

Three more WWIN caching scripts were added in order to cache multi-filter responses. The
 new scripts iteratively identify requests that would yield results over a set amount
 (currently 700), then generate and cache their responses.

Next steps
Improving efficiency in the WWIN application is now a lower priority — further development
 is likely to add functionality to the web interface rather than to the backend. Even so, the
 author has other ideas for further improving WWIN’s performance:	Lower the threshold for pre-caching a complex request. Caching would take longer but
 would cover more requests.

	Run some pre-caching tasks in parallel, to reduce time before publishing a fresh set
 of data.

	Reduce duplication of result sets by allowing more than one
 <request> in cached responses, specifically in cases where adding an a
 given filter would make no difference to the result set.

	For as-yet-uncached responses requested as HTML, return only the paginated records.
 Schedule an XQuery job to compile the response’s facets. In the brower, use Javascript
 to wait a bit before requesting and loading the facets.

Takeaways
This paper described the origins and evolution of the Women Writers: Intertextual Networks
 EXPath application. The application’s scale and choice of interface led to a data ecosystem
 that must do as much processing ahead of publication as possible. This ecosystem had to be
 further optimized for indexing and retrieval of cached data.
In general, the more power you give users to control their own experience of the data, the
 more work you may have to put into caching variations or subsets. If you are contemplating an
 index-heavy application like WWIN, decide ahead of time where you must
 put the work. One of those tasks should be on indexing, both in terms of modelling the XML for
 retrieval, and in defining the index itself. The smaller and more precise the index, the
 quicker you’ll be able to obtain a result. The quicker the result gets to your users, the more
 wonderful their experience will be.

Acknowledgements
The author would like to thank Sarah Connell, Syd Bauman, Julia Flanders, and Rob Chavez
 for their support on this long journey toward a publication e could actually feel proud of.
 Thanks also to Meg McMahon, the Women Writers Project encoders, the Northeastern University
 Library and the Digital Scholarship Group. Finally, thanks to the National Endowment for the
 Humanities for their generosity in funding this ambitious endeavor.
WWIN perserveres today because of the support of all these wonderful people. Thank
 you.

Appendix A. Overview of WWIN data sources
Intertextual gestures
“Intertextual gestures” are references to, or marked engagement with, other works. In
 Women Writers Online, intertextual gestures are given identifiers (unique within the document), and an
 attribute points to the bibliography entry for the referenced work. Each intertextual
 gesture is encoded according to type:	Advertisement
	A notice of a published work.
Encoded in WWO as a <title> or <bibl> within
 <advertisement>.

	Citation
	A prose description of the referenced work.
Encoded as a <bibl>.

	Quote
	A faithful extract from the referenced work.
Encoded as a <quote>.
	Adaptation
	A quote, intentionally modified from the referenced work.
Encoded as a <quote type="adaptation">.

	Parody
	A quote which has been modified for ironic effect.
Encoded as <quote type="parody">.

	Remix
	A combination of extracts, rearranged and adapted from the referenced
 work.
Encoded as <quote type="remix">.

	Title
	A name of the work.
Proper titles are encoded as <title> in WWO. Other names of
 works are marked with <rs type="title"> instead.
When written alongside chapter and verse information, books of the Bible are
 usually not marked by <title> but are instead contained inside the
 WWP custom element <regMe>.

In addition to its own structure and content, an intertextual gesture also carries
 additional context drawn from the markup surrounding it, such as:	language;

	who, specifically, made the gesture.

Figure 7: Original data model for an intertextual gesture
[image: An illustration of an intertextual gesture's data structure.]
An intertextual gesture has few data fields of its own: 	an identifier for its WWIN representation,

	its original @xml:id,

	the type of gesture it is,

	the plain text content of the gesture, and

	any links (this model imagined that WWIN would have a reading interface for
 each WWO document, but that feature was not completed).

In addition, the intertextual gesture includes one or more
 referenced works and one source WWO text, each of which
 points to a bibliography entry.

Bibliography entries
There is one bibliography entry for every book, poem, folk song, etc. which is named,
 quoted, or cited in Women Writers Online. Every work published in WWO is also represented,
 even if it wasn’t referenced elsewhere.
The WWP decided that we were most interested in capturing metadata about the first known
 publication of a work. Even so, bibliography entries frequently have tangled history. For
 example, it may be clear that a WWO author is referencing a popular translation of a French
 or Spanish novel, in which case we may maintain entries for both, making sure the two are
 marked as related.
Figure 8: Original data model for a bibliography entry
[image: An illustration of a bibliography entry's data structure.]

Metadata for bibliography entries
	Unique identifier

	Up to four relevant genre or topic keywords

	Functional Requirements for Bibliographic Records (FRBR) level

	Titles associated with the work	Display title (shortened version of a title)

	Full title

	Alternative titles that could refer to the same work

	Authors, translators, and other contributors	Contributor role

	Personal name (formatted with surname first)

	Gender, if we can make a guess

	A unique personography key

	Earliest publication information available
	Publication date

	Publisher’s name

	Publisher’s location

	Any flags, for example:
	Is this a published WWO work?

	Is this a periodical?

	Is this a fictional or hypothetical work?

	Public notes

	Pointers to related entries

In addition to the fields above, each bibliography entry in the WWIN application
 includes the number of intertextual gestures made to that work. This field can only be added
 after all intertextual gestures have been compiled.

Appendix B. Caching workflow
The following steps are taken to build out the data cache for Women Writers: Intertextual
 Networks.
	Create a clean, public version of the TEI bibliography. This is done locally through
 an Apache Ant task.
	Cache bibliography entries from public bibliography. This is done locally through
 an Apache Ant task.

	Cache contributors’ data from public bibliography. This is done locally through an
 Apache Ant task.

	Generate the WWIN EXPath application with Ant, and install the app into
 eXist.

	Create prepped4publish versions of Women Writers Online source
 documents, using local XSLT stylesheets. Store the munged TEI in the WWO data directory,
 in a development instance of eXist.

	Using a WWIN caching script, transform prepped-for-publish TEI into “source reader”
 TEI. Most content is removed except for structural markup (e.g. <div>) and
 intertextual gestures.

Women Writers: Intertextual Networks contains a modular set of XQuery scripts which
 compile and cache data for quick reference by the app’s RESTXQ endpoints. To prevent the
 webapp from working off of unsynchronized cache files, the WWIN caching scripts write their
 output to an on deck collection. When all caches are generated, all files can
 be moved to the publication folder at the same time.
Caches are generated and tested on the WWP’s development instance of eXist. By default,
 each XQuery marks its progress in the eXist logs, and schedules the next XQuery job.
	Using a WWIN caching script, cache gesture data from source reader TEI. Traits
 inherited from ancestor nodes (e.g. language used) are explicitly stated. This process
 yields one file of records for every WWO document containing intertextual gestures.
	Also, compile gesture facets for each TEI document.

	Also, compile WWO text summaries for each TEI document.

	Using a WWIN caching script, edit cached bibliography entries:
	Add the total number of references made to this entry throughout WWO.

	Also, remove uncited entries (unless published in WWO).

	Using a WWIN caching script, cache data on WWO authors. This data is compiled from
 personography data and the WWO text summaries.

	Using a WWIN caching script, compile lists of sorted identifiers for each index’s
 defined sort methods.

	Using a WWIN caching script, cache responses for requests to the indexes which (1)
 have only one filter applied, and (2) match a set number of records.
In the original version of the script, responses were only pre-cached if they had over
 one thousand results. After refactoring, all single-faceted responses are pre-cached as
 long as there is more than one result.

	Using a WWIN caching script, move all cached data from the on deck
 folder to the cache folder, essentially publishing the new data.

The refactored application has an additional three steps, which were set up to recurse
 over the published response caches:
	Using a WWIN caching script, query the published response cache for facets that
 contain more than a set number of results.
	If there are uncached requests, generate a list and store it in XML.

	If all such requests have been cached, stop.

As of this writing, the script is set to pre-cache combinatorial responses with 700 or
 more results. Future versions may lower the threshold, or introduce a means of iteratively
 lowering the threshold.

	Using a WWIN caching script, use the list of uncached requests to generate and cache
 responses into the on deck folder.

	Using a WWIN caching script, delete the request list and move the new responses into
 the cache folder, effectively publishing them. Return to step 10.

At this point, the pre-production WWIN site is tested and proofed. When all seems
 acceptable, the cache is compressed into a ZIP file. The production instance of eXist
 downloads the compressed cache, expands the files into its own on deck
 collection, and publishes the results.

Appendix C. Sample cached response in original format
This cached response format simply stores the W3C’s XML interpretation of a JSON object.
 The pseudo-JSON format focuses on preserving the datatypes of JSON constructs, with keys
 placed in attributes. This is not particularly helpful for indexing and retrieval, because 	the element names may be different between fields with the same key;

	all @keys share a single index, making it hard for eXist to narrow down to the ones
 you're interested in; and

	because @keys are so dependent on their XML context, writing XPaths to get to them
 is a nontrivial exercise.

<?xml version="1.0" encoding="UTF-8"?>
<fn:map xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <fn:map key="request">
 <fn:string key="genre">political-writing</fn:string>
 <fn:string key="publicationLocation">undetermined</fn:string>
 </fn:map>
 <fn:number key="totalRecords">19</fn:number>
 <fn:array key="responses">
 <fn:map>
 <fn:map key="request">
 <fn:string key="sort">numberOfReferencesTo</fn:string>
 <fn:string key="sortDirection">descending</fn:string>
 </fn:map>
 <fn:array key="results">
 <fn:string>IT01223</fn:string>
 <fn:string>IT07461</fn:string>
 <fn:string>IT01443</fn:string>
 <fn:string>IT07458</fn:string>
 <fn:string>IT07456</fn:string>
 <fn:string>IT00959</fn:string>
 <fn:string>IT07485</fn:string>
 <fn:string>IT03359x</fn:string>
 <fn:string>IT07460</fn:string>
 <fn:string>IT02726x</fn:string>
 <fn:string>IT00498x</fn:string>
 <fn:string>IT02393</fn:string>
 <fn:string>IT02949x</fn:string>
 <fn:string>IT03600</fn:string>
 <fn:string>IT02325</fn:string>
 <fn:string>IT01303</fn:string>
 <fn:string>IT00792x</fn:string>
 <fn:string>IT07459</fn:string>
 <fn:string>IT07457</fn:string>
 </fn:array>
 </fn:map>
 </fn:array>
 <fn:map key="facets">
 <fn:array key="genre">
 <fn:map>
 <fn:string key="id">political-writing</fn:string>
 <fn:number key="count">19</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">speech</fn:string>
 <fn:number key="count">6</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">legal-writing</fn:string>
 <fn:number key="count">3</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">slavery</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">petition</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="hasContributorOfGender">
 <fn:map>
 <fn:string key="id">male</fn:string>
 <fn:number key="count">4</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">not applicable</fn:string>
 <fn:number key="count">3</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">unknown</fn:string>
 <fn:number key="count">2</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">female</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="contributor">
 <fn:map>
 <fn:string key="id">schurchil.bhy</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">rhayne.tqa</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">awedderbu.vtx</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">rwright.izs</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">nmachiave.inf</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="publicationLocation">
 <fn:map>
 <fn:string key="id">undetermined</fn:string>
 <fn:number key="count">19</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="referencing">
 <fn:map>
 <fn:string key="id">isReferenced</fn:string>
 <fn:number key="count">19</fn:number>
 </fn:map>
 </fn:array>
 </fn:map>
</fn:map>

Appendix D. RelaxNG schema for cached responses

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
namespace rng = "http://relaxng.org/ns/structure/1.0"

start =
 ## Data associated with a single RESTful API response.
 element response { el.request?, el.results, el.facets? }

el.request =
 ## Data about the HTTP request to which this response applies.
 element request {
 attribute method { "GET" | "POST" }?,

 ## The request path or URL.
 attribute endpoint { text }?,
 el.parameter*
 }

el.parameter =
 ## A key-value pair corresponding to an HTTP request parameter.
 element parameter {

 ## The HTTP parameter name.
 attribute name { xsd:token },

 ## A single value associated with the current HTTP parameter name.
 element value {

 ## The datatype of this value.
 attribute type { "boolean" | "number" | "string" | xsd:token },
 text
 }*
 }

el.results =
 ## The results returned by this response.
 element results {
 attribute total { xsd:integer },

 ## A sorted group of entity references.
 element sortedSet {

 ## A keyword corresponding to a sort method defined elsewhere.
 attribute by { text },

 ## The direction of the sorted values, from top to bottom.
 attribute direction { "ascending" | "descending" },

 ## An identifier or key for an entity that should appear in the response results.
 element key { xsd:string }*
 }*
 }

el.facets =
 ## Information about the result set, intended for characterizing the results and/or for further filtering.
 element facets { anything }

anything =
 (element * {
 attribute * { text }*,
 anything
 }
 | text)*
Sample cached response in revised format
This cached response format is optimized so that request parameters are indexed
 separately from other interesting XML phenomena.

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <!-- If a set of parameters can produce a predictable endpoint string, the @endpoint
 attribute can be indexed to further improve retrieval time. -->
 <request method="GET"
 endpoint="bibliography?genre=political-writing&publicationLocation=undetermined">
 <parameter name="genre">
 <value type="string">political-writing</value>
 </parameter>
 <parameter name="publicationLocation">
 <value type="string">undetermined</value>
 </parameter>
 </request>
 <results total="19">
 <!-- There can be more than one <sortedSet>, corresponding to defined sort
 methods. Pre-sorting large result sets is important, since sorting can be
 particularly time intensive, even with a separate cache of (all) pre-sorted
 identifiers. -->
 <sortedSet by="numberOfReferencesTo" direction="descending">
 <!-- To reduce duplication, the bibliography entries are stored in a separate
 cache. -->
 <key>IT01223</key>
 <key>IT07461</key>
 <key>IT01443</key>
 <key>IT07458</key>
 <key>IT07456</key>
 <key>IT00959</key>
 <key>IT07485</key>
 <key>IT03359x</key>
 <key>IT07460</key>
 <key>IT02726x</key>
 <key>IT00498x</key>
 <key>IT02393</key>
 <key>IT02949x</key>
 <key>IT03600</key>
 <key>IT02325</key>
 <key>IT01303</key>
 <key>IT00792x</key>
 <key>IT07459</key>
 <key>IT07457</key>
 </sortedSet>
 </results>
 <facets>
 <!-- The <facets> element can hold any text or XML. We could have serialized the
 facets as a JSON string, which would take up less space. Keeping the facets in
 pseudo-JSON, however, will let us use XPath to iteratively generate lists of
 more requests that could be cached, e.g. the above parameters AND genre=speech. -->
 <fn:map xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <fn:array key="genre">
 <fn:map>
 <fn:string key="id">political-writing</fn:string>
 <fn:number key="count">19</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">speech</fn:string>
 <fn:number key="count">6</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">legal-writing</fn:string>
 <fn:number key="count">3</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">slavery</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">petition</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="hasContributorOfGender">
 <fn:map>
 <fn:string key="id">male</fn:string>
 <fn:number key="count">4</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">not applicable</fn:string>
 <fn:number key="count">3</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">unknown</fn:string>
 <fn:number key="count">2</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">female</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="contributor">
 <fn:map>
 <fn:string key="id">schurchil.bhy</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">rhayne.tqa</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">awedderbu.vtx</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">rwright.izs</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 <fn:map>
 <fn:string key="id">nmachiave.inf</fn:string>
 <fn:number key="count">1</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="publicationLocation">
 <fn:map>
 <fn:string key="id">undetermined</fn:string>
 <fn:number key="count">19</fn:number>
 </fn:map>
 </fn:array>
 <fn:array key="referencing">
 <fn:map>
 <fn:string key="id">isReferenced</fn:string>
 <fn:number key="count">19</fn:number>
 </fn:map>
 </fn:array>
 </fn:map>
 </facets>
</response>

[1] Northeastern University Women Writers Project. Intertextual Networks: Reading and Citation in Women's Writing
 1450-1850.
[2] The first Intertextual Networks cohort consisted of Param Ajmera, Matt Bowser, Ash
 Clark, Sarah Connell, Hannah Lee, Adam Mazel, Molly Nebiolo, Kenneth Oravetz, Lara Rose,
 and Katie Woods. For a full list of contributors and collaborators, please visit the WWIN About
 page.
[3] The Bibliography also lists all works published in WWO, whether or not the WWO text
 has any intertextual encoding or is referenced itself.
[4] The ability to see all filters in a category in the HTML site would be very useful,
 and may yet be added in the future. The author initially struggled to represent that
 information in a way that did not distract, overwhelm, or cause navigational problems. Now
 that WWIN has settled into stability, there is more time and space for experimentation and
 improvement.
[5] The author left a narrative view of a WWO source text as a stretch goal for the
 initial release of WWIN. This goal was not met before publication, due to the processing
 issues described in the second half of this paper.
[6] The WWP currently uses eXist-db at version 6.
[7] Initial caching attempts used a single complex XQuery to generate all outputs. This
 led to eXist using exorbitant amounts of memory as it worked through inferences. Also,
 the author found it hard to debug the script — if the script failed, it could be
 difficult to determine which caching step had just been completed, not to mention what
 inferences had been made explicit before the buggy step received its input.To fix this, the author refactored the caching process so that cached data is
 serialized to XML more often. By default, each XQuery will schedule the next in the
 workflow. However, one can set a parameter in a script to halt the caching process. This
 is useful for tasks such as debugging an updated script, checking the cache contents, or
 running garbage collection via eXist’s Monex application.

[8] Originally, sizable meant responses with over a thousand
 results.
[9] The XML serialization of JSON here referred to is the result of processing JSON with
 the XPath 3.1 function fn:json-to-xml. The schema for this serialization is
 available as part of the XPath and XQuery
 Functions and Operators 3.1 W3C recommendation.
[10] The WWP uses eXist’s new range index rather than the legacy version.
 For more information on the Lucene range index, see eXist’s Range
 Index documentation.

Balisage: The Markup Conference

A Wonderful Historie of Intertextual Networks: Or, How Not to Index Your Data
Ash Clark
Ash Clark (e/em/eir) is the XML Applications Developer for the Northeastern University
 Women Writers Project. Ash has studied Writing, Computer Science, and Library and
 Information Science. Now, e is part web developer, part metadata consultant, part XQuery
 enthusiast, and all focused on thoughtful data design and accessible tech. Eir specialties
 are drawing data from TEI-encoded documents; using XML databases to power websites; and
 creating exploratory interfaces out of compiled metadata. A genderqueer individual and a
 casual gamer, Ash lives in Massachusetts with eir magnificently floofy Pomeranian, Frisk.

Balisage: The Markup Conference

content/images/Clark01-005.svg

content/images/Clark01-001.png
Women Writers:

Bibliography Entries [sson .|

The books, articles, poems, songs, and other works referenced in Women Writers Online texts.

1,073 results Sortmethod = Number of Referencest v Direction ~ Descending: Z-A,9-0 v
Page 10f22 ‘ Previous Next ‘
R Number of Publication
Title @ Contributors @ Publication Date @ N Topics & Genres @ Links
Page 1 s B References to Location @
Has Contributor of Gender: female \ X 189 The Female Haywood, Eliza 1745 London, England Gender commentary a ‘ ‘ o
Spectator (Fowler) Gender-addressed
Filter results) i))
154 Traits of the Sigourney, Lydia 1822 Cambridge, Ethnography E o
fGontBio A Aborigines of Howard (Huntley) Massachusetts
America A
Aperson (or organization) whose efforts
shaped the work.
118 Beachy Head: With Si Charlotte 1807 London, England Poetry
58 Barbauld, Anna Laetitia (Aikin) - o 8| o
Other Poems (Turner)
40 Cavendish, Margaret (Lucas),
Duchess of Newcastle v
30 Smith, Charlotte (Turner)
28 Haywood, Eliza (Fowler) N —
97 Philosophical Cavendish, Margaret | 1664 London, England Philosophy.
27 Cowley, Hannah (Parkhouse) a8 o
Letters (Lucas), Duchess of Letter
26 Davies, Lady Eleanor
Newcastle
25| Behn, Aphra (Johnson)
2 Barker, Jane
20 Robinson, Mary (Darby) 81 Z6phiél; or, The Brooks, Maria 1834 Boston, Poetry

content/images/Clark01-002.png
Women Writers:

Intertextual Gestures [sson | an.

The quotations, citations, and other references made by women writers in the WWO collection.

25,727 results Sort method ~ Source Text v Direction Ascending:0-9,A-Z v
Page 10f515 ‘ Previous Next ‘ [)
— Source Text @ . - Gesture @ Referenced Work @
Text Topics & Genres @ Text of the Gesture Gesture Type Text Topics & Genres @
Fllter resu“:s Adams, Hannah. A History. “Hail, O hail My much lov'd quote Dwight, Timothy. Poetry
R ~ ‘Summary History of native land! New Albion hail! Greenfield Hill: A
AT New-England. 1799. The happiest realm, that, Poem in Several Parts.
‘ E ‘ ‘ o ‘ ‘ ‘ round his circling course, The 1794.
1213 quote all searching sun beholds. ‘ E ‘ ‘ o ‘
748 citation ‘ \ 4 ‘ With | read more | = J_ =
5305 fitle
dverti . N " . .
M advertisement Adams, Hannah. A History. Greenfield Hill title Dwight, Timothy. Poetry,
7 adaptation Summary History of Greenfield Hill: A
5y remix New-England. 1799. Poem in Several Parts.
6 parody 1794.
8 j o |
Referenced Work ~ ‘ \/ ‘ e
Awork which has been utilized in an q i . . ’ hi . Ty m .
intertextual gesture within a source text. Adams, Hannah. A History. History of New-Hampshire title Belknap, Jeremy. The | History
Summary History of History of New

content/images/Clark01-003.png
References to this work

Thereare| 2 references to Romance Readers and Romance Writers: A Satirical Novel.

Gestures within this work

Thereare| 201 gestures within Romance Readers and Romance Writers: A Satirical Novel.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Clark01-004.svg

