[image: Balisage logo]Balisage: The Markup Conference

Prying Apart Semantics and Implementation
Generating XML Schemata directly from ontologically sound conceptual models
Bruce Todd Bauman
System Engineer
U.S. Department of Defense

<btbauma@earthlink.net>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 by the author. Used with
 permission.

How to cite this paper
Bauman, Bruce Todd. "Prying Apart Semantics and Implementation." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Bauman01.

Abstract
Central to interoperability is a shared conceptualization of the domain or
 universe of discourse (UoD). A conceptual model (CM) documents this shared
 understanding between people in a formal language, augmenting prose but neutral of
 later implementation decisions. Having such an explicit layer has benefits for
 enhanced interoperability, higher quality implementations, reuse and mapping, and as
 such is recognized as desirable by many modeling frameworks. In this paper, we
 describe our motivation and efforts to date, to use the ontologically well founded
 profile of the Unified Modeling Language (UML) proposed in to create such models. Relevant subsets of a CM form
 the basis for physical data models (PDM) targeting specific technologies, in this
 case the generation of Extensible Markup Language (XML) schemata represented in the
 World Wide Web Consortium (W3C) Schema Language (XSD). These physical data models
 are annotated by a developer, with a set of encoding directives. These encoding
 directives and the custom developed software that interprets them to map concepts in
 the CM to their expression in an XSD, are our principle contribution. The CM
 language, the XSD encoding annotations, and the software are briefly
 described.

Balisage: The Markup Conference

 Prying Apart Semantics and Implementation

 Generating XML Schemata directly from ontologically sound conceptual models

 Table of Contents

 	Title Page

 	Introduction

 	Semantics
 	Endurant Types

 	Attributes and Datatypes.

 	Association

 	Generalization

 	Example

 	Conclusion

 	Design
 	Example

 	Conclusion

 	Software

 	Further Work

 	Conclusion
 	Challenges

 	Accomplishments

 	Appendix A. Physical Encoding Options
 	General Encoding Rules
 	Model Level Properties

 	Name Encoding

 	Multiplicity Encoding

 	Documentation

 	Class Encoding

 	Datatype Encoding

 	Attribute Encoding

 	Relationship Encoding
 	Association Encoding

 	Generalization Encodings

 	About the Author

 Prying Apart Semantics and Implementation
Generating XML Schemata directly from ontologically sound conceptual models

Introduction
Schemata in the World Wide Web Consortium's (W3C) Extensible Markup Language (XML)
 Schema language (XSD), Relax Next Generation (RNG), Structured Query Language (SQL) Data
 Definition Language (DDL), Resource Description Framework Schema (RDFS), or Web Ontology
 Language (OWL)) are typically created directly. A basic text editor can be used,
 although more likely today it will be with a design tool that uses visual symbols with a
 more or less bijective mapping to the constructs in the chosen implementation language.
 Various profiles of the Unified Modeling Language (UML) class diagrams have been
 proposed as a visualization for XSD design [Bernauer-2004]; various forms
 of Entity Relationship Diagrams (ERD)'s are the preferred choice for relational database
 (SQL DDL) design. And then there are the numerous languages specific to a given vendors
 tool.
As useful as these visual design languages are, they are first, representations of a
 design in a specific implementation language, and only secondarily do they reflect the
 semantics of a Universe of Discourse (UoD) or domain.[1] Or as stated in the introduction to [Guizzardi-2005] pages 7
 - 8.Nowadays, many languages exist that are used for the purpose of creating
 representations of real-world conceptualizations. These languages are sometimes
 named domain modeling languages (e.g., LINGO), ontology representation languages
 (e.g., OWL), semantic data modeling languages (e.g., ER), among other terms. ...
 Although these languages are employed in practice for conceptual modeling, they
 are not designed with the specific purpose of being truthful to reality. For
 instance, LINGO (Falbo & Menezes & Rocha, 1998; Falbo & Guizzardi
 & Duarte, 2002) was designed with the specific objective of achieving a
 positive trade-off between expression power of the language and the ability to
 facilitate bridging the gap between the conceptual and implementation levels.
 This preoccupation also seems to be present in Peter Chen's original proposal
 for ER diagrams (Chen, 1976). OWL (Horrocks & Patel-Schneider & van
 Harmelen, 2003) has been designed with the main purpose of achieving
 computational efficiency in an automatic reasoning process. Some other
 languages, such as Z (Spivey, 1988) and CC Technique (Dijkman & Ferreira
 Pires & Joosten, 2001), take advantage of the simplicity of the well-defined
 mathematical framework of set theory. Finally, some of the languages used
 nowadays for conceptual modeling were created for different purposes, the most
 notorious example being the UML (OMG, 2003c), which initially focused on
 software design.

Designs reflect hard engineering trade-offs, starting with the initial
 choice of an implementation language which will have only limited abilities to express
 the full richness of the UoD, and ending with the numerous design choices made (e.g.,
 denormalization, implementing relationships, by reference, vs. by value, collapsing
 generalization hierarchies). This intertwining of implementation design and semantics
 with semantics taking a back seat, means that no formal model representing just the
 semantics remains. The sole guardian of pure semantics is the informal prose, in the
 text box labeled Description.
The use of prose to capture semantics is of course essential, the target audience that
 needs to fully account for semantics are people, and natural language with all its
 richness, complexity, and nuance is essential. The challenge of course with relying only
 on words is their ambiguity. Although formally the interplay of words with meaning is
 studied in fields such as linguistics, semiotics, phenomenology, communication theory
 etc., Humpty Dumpty sums up the problem rather well.

 When I use a word, Humpty Dumpty said, in a rather scornful
 tone, it means just what I choose it to mean, neither more nor less.
 The question is, said Alice, whether you can make words
 mean so many different things.
 The question is, said Humpty Dumpty, which is to be master - that's all. Alice was too much puzzled to say anything; so after a minute Humpty Dumpty began again.
 They've a temper, some of them - particularly verbs: they're the
 proudest - adjectives you can do anything with, but not verbs - however, I
 can manage the whole lot of them! Impenetrability! that's what I say!
 Lewis Carroll, Through the Looking
 Glass

The lack of a separate design neutral, but formal accounting of semantics has several
 drawbacks. The first, is that ultimately for two or more systems to interoperate they
 must share a compatible understanding of the UoD, they needn't necessarily share the
 same design. This task of determining, and ultimately documenting via a mapping,
 compatibility, or recognizing when and where it is not possible is made more difficult.
 Second, when people negotiate to decide on a common language for sharing information,
 the discussion can / will often stray between discussing differences in meaning, and
 differences in design. Its helpful in resolving disagreements to know which of the two
 classes of discussion one is having. Third, it is perfectly reasonable, desirable, and
 necessary to implement the same UoD in multiple implementation languages and/or in
 multiple designs. Capturing explicitly a model of the UoD allows it to be reused. This
 is even more beneficial if the domain is highly complex and/or technical and modeling it
 correctly is expensive, time consuming and difficult.
A solution, is to create a conceptual model (CM). A model that formally represent
 those aspects of the UoD that are deemed relevant for a particular purpose, (e.g., the
 static structural aspects of a domain essential to the development of information
 models), but that is neutral of physical design decisions. Then from that model produce
 though a semi-automated mapping process logical / physical level models, from which,
 because of their isomorphism to a targeted schema language, a schema can be
 automatically produced.
The idea is hardly new.The issue is essentially one of implementation
 independence - the goal (or assumption) that the conceptual data model be
 independent of the implementation language. This view dates at least from Chen
 (1976), is the basis of the conceptualization principle in the ANSI/SPARC
 framework [ISO-TR9007], and has been frequently re-stated ...
 This ideal does not appear to be achieved in practice ([Simsion-2007], p. 51). Nor is the idea unique to the data modeling
 community from which the above quote originates. The Model Driven Architecture (MDA) of
 the Object Management Group (OMG) has the concepts of the Platform Independent Model
 (PIM) and Platform Specific Model (PSM) [OMG-MDA]. The recognition of the
 need for conceptual models to back up XML schema design is also old, dating back to the
 beginning of XML, and XML's predecessor, Standardized Generalized Markup language
 (SGML).[2]
The proposal outlined in the sections that follow is also in one sense nothing new.
 Its strength is not in the idea that a conceptual model is useful, but in what modeling
 language has been pressed into service. The conceptual modeling language outlined below,
 is a subset of that proposed by Giancarlo Guizzardi, principally in [Guizzardi-2005] . In his 2005 work, a foundational ontology in later
 works referred to as the Unified Foundational Ontology (UFO), designed to capture
 agreements about the semantics of a UoD by people and for people, visualized using a
 profile of UML 2.0 is defined. We have changed, only trivially his proposal based on
 some ideas from data modeling [Simsion-2005] and other sources both to
 simplify the language, and make it more familiar to people with a data modeling
 background. The UFO builds upon cross disciplinary knowledge as well as research in
 formal ontology [as applied to computer science] that has occurred in the last fifteen
 years.
From a conceptual model based on this language, multiple physical data models (PDM)
 which subset, and / or extend, the larger conceptual model are generated. A PDM is then
 annotated by a designer with a set of encoding options that specify how the concepts in
 the CM should be represented in the XSD. We have chosen the initial set of encoding
 options based on internal experience with creating UML to XML schema mappings since
 2000-2001 much like those surveyed in [Bernauer-2004]. Software written
 in Extensible Stylesheet Transformations (XSLT) version 2.0 is the primary mechanism by
 which the annotated physical data models are compiled into XML schemata. Figure 1 show an overview of the complete process.
Figure 1: Model Development Process
[image:]

In the following sections, our requirements for a CM modeling language are explained,
 followed by a brief outline of the ontologically well founded language we have selected.
 This is followed by an example physical data model, that has been annotated with XSD
 encoding directives. How those directives drive the compilation of that PDM into an XSD
 is explained. The software implementation in Sybase Power Designer (a commercial data
 modeling / enterprise architecture tool), and in particular the implementation of the
 XSLT code that generates an XML schema from it, is touched on briefly. This is followed
 by a section on further work, and conclusions. Appendix A contains a more complete
 account of the XSD encoding options available.

Semantics
An Ontologically based Conceptual Modeling Language

 All models are wrong, some are useful. George Box

This frequently repeated quote represents a very pragmatic definition of what makes a
 good model and it is the position adopted here for both models, and by extension
 modeling languages and the meta-models / ontologies that they are based on. As such, no
 claims are made that the modeling language briefly introduced below, the foundational
 ontology it is based on, or the models that are described with it, have any lock on a
 single, absolute truth. Instead, the language has been chosen / customized because we
 believe it can meet the following pragmatic requirements[3]: Modeling Language Requirements
	Document an agreement between people, to a reasonable level of
 specificity,[4] those aspects of a UoD or domain that are relevant for the
 design of information/data models, but without committing to a specific
 implementation language.

	Support through human directed action, and to the greatest extent
 possible, the automatic generation of designs and schemata encoded as XSDs
 appropriate for information exchange .

	Similarly support the generation of designs and schemata encoded as SQL
 DDL appropriate for relational data bases.[5]

	If possible, support the generation of designs and schemata encoded in OWL
 Description Logic (DL).[6]

	Be reasonably approachable by personnel trained in traditional logical
 data modeling using ERD notations.[7]

	Reduce the level of construct variability, to support the development of
 models in a distributed environment.[8]

	Accommodate both vertical and horizontal variability, to support the
 integration of multiple different perspectives of the same concept within an
 enterprise.[9]

After attempting to adapt unsuccessfully both standard UML and ERD notations to meet
 the above requirements, the realization through both experience and subsequent
 examination of the literature (e.g., [Simsion-2007]), was that both
 languages, and the informal ontologies that they are based on, were too biased for
 design in a specific technology. This led us to examine how formal ontology[10] could be employed, not in the computer science sense of producing a specific
 artifact, expressed typically in a formal logic variant, but in the philosophical sense.... Formal Ontology deals with formal ontological structures (e.g., theory of
 parts, theory of wholes, types and instantiation, identity, dependence, unity),
 i.e., with formal aspects of objects irrespective of their particular nature.
 The unfolding of Formal Ontology as a philosophical discipline aims at
 developing a system of general categories and their ties, which can be used in
 the development of scientific theories and domain-specific common sense theories
 of reality ([Guizzardi-2005], p. 5).

In the end we settled on the formal foundational ontology, and its representation in
 UML defined in Guizzardi's 2005 PhD thesis [Guizzardi-2005] and
 subsequent research papers [Guizzardi-2006a]
 [Guizzardi-2006b]
 [Guizzardi-2007]
 [Guizzardi-2008] to name just a few, that define the Unified
 Foundational Ontology (UFO). Some small changes in terminology were made to make the UFO
 more approachable to classically trained ERD modelers. Its also important to point out
 that no claim is being made that the UFO is the only upper level ontology that will meet
 the requirements outlined above. What is being claimed is that the selection and
 explicit recognition of a formal upper level ontology as the basis for domain ontologies
 / models is essential to give those models the precise semantic underpinning needed to
 enable interoperability. What follows is a necessarily brief introduction to UFO and its
 representation in UML.
This ontology / language is used to facilitate communication between people, although
 admittedly it is not something that a person, without training will fully grasp.
 [The ontology] aims at capturing the ontological distinctions underlying
 human cognition and common sense.[Guizzardi-2005] The
 ontology is the basis for recording one, (among many possible) conceptualizations of the
 real-world, defining what is a valid state of that world. As such, the language symbols
 designate real-world objects, and not information structures as is the case is the PDMs
 derived from it. Optionality on attributes and relationships is strongly
 discouraged[11], ... from an ontological standpoint, there is no such a thing as an
 optional property and, hence, the representation of optional cardinality leads to
 unsound models (in the technical sense of chapter 2), with undesirable consequences
 in terms of clarity ([Guizzardi-2005], p. 139).
Endurant Types
Like many upper level 'common sense' ontologies the first level distinction is
 between endurants and events, or things that exist in time, and
 maintain their identity, and things that exist of time. Unlike
 in the UFO, and in particular UFO-B, in our subset the concept of an event is not
 further specialized. Endurants are. Endurants (e.g., kind, category, role,
 associative) are specialized based on three basic criteria:	Existential independence: Is the concept existentially independent,
 dependent on exactly one other concept, or dependent on two or more
 other concepts? Existentially dependent concepts, are those that if they
 are not seen in, or inhered in another object, don't exist.

	Single principle of identity: Does the concept convey a unified
 principle of identity? (e.g, all instances of the type have a common way
 in which they are identified; and thus, instances can be counted
 directly).

	Rigidity: Is each instance of a type always of that type? (i.e., the
 instance - type relationship is rigid), or is it only sometimes
 (typically within some period of time), associated with a type (i.e.
 anti-rigid)?

This leads to the following breakdown:Table I
Endurant Types

	Name	Independent	Identity	Rigid	Description
	kind	+	+	+	A «kind» represents a substance sortal whose instances are
 functional complexes. Examples include instances of Natural
 Kinds (such as Person, Dog, Tree) and of artifacts (Chair, Car,
 Television). ([Guizzardi-2005], p.
 317)
	role	+	+	-	A «role» represents a phased-sortal role, i.e. anti-rigid and
 relationally dependent universal. For instance, the role student
 is played by an instance of the kind Person. ([Guizzardi-2005], p. 319)
	category	+	-	+	A «category» represents a rigid and relationally independent
 mixin, i.e., a dispersive universal that aggregates essential
 properties which are common to different substance sortals. For
 example, the category RationalEntity as a generalization of
 Person and IntelligentAgent. ([Guizzardi-2005], p. 319)
	role category	+	-	-	A «role category» represents an anti-rigid and externally
 dependent nonsortal, i.e., a dispersive universal that
 aggregates properties which are common to different roles. In
 includes formal roles such as whole and part, and initiator and
 responder. ([Guizzardi-2005], p. 320)
 Examples include resource, asset, communicant.
	dependent	- (1)	+	+	A <dependent» universal is an intrinsic moment universal.
 Every instance of dependent universal is existentially dependent
 of exactly one entity. Examples include skills, thoughts,
 beliefs, intentions, symptoms, private goals. ([Guizzardi-2005], p. 335)
	associative	- (2 or more)	+	+	Every instance of an <<associative>> universal is
 existentially dependent of at least two distinct entities.
 Associative's are the instantiation of relational properties
 such as marriages, kisses, handshakes, commitments, and
 purchases. ([Guizzardi-2005], p.
 335)

Attributes and Datatypes.
[Model] attributes are used exclusively to represent simple existentially
 dependent concepts such as height, weight, color, a social security number, that can
 be mapped directly to single or multi-dimensional value spaces as represented by
 data types.[12]
Our treatment of datatypes doesn't vary from that found in xsd:schema and other
 languages and so is not elaborated on here. A discussion on the ontological
 foundations of data types as they relate to quality structures, and quale can be
 found in [Guizzardi-2006a] or the work it is based on
 Gärdenfors, P. "Conceptual Spaces: the Geometry of Thought", MIT
 Press, Cambridge, USA, 2000.Table II
Data Types

	Datatype	Description
	primitive	The value space defined by a set of built in data types. (e.g.,
 string, float, integer, octets, boolean, data time, date,
 time).
	domain	A value space based on a primitive type constrained by range /
 length / pattern restrictions.
	enum	A value space based on a primitive type constrained by enumerating
 its possible values.
	struct	A multidimensional value space (e.g., color as hue, saturation,
 intensity).
	union	A value space formed by the union of 2 or more other data
 types.

Association
The representation of associations is the one part of the meta-model that deviates
 somewhat from that defined in [Guizzardi-2005]. Guizzardi specifies
 a number of association types, often specific to the pairs of endurant types being
 related. The position taken here is that a simpler characterization that collapses
 many of the UFO association types into the three types of identifying,
 non-identifying, and aggregation/composition (whole-part) is sufficient. Identifying
 and non-identifying relations are an important distinction made in ERD modeling,
 between those associations linking entities with a shared identity, and those that
 are not. The concepts that do not have independent existence (e.g., dependent,
 associative) must be tied through identifying relations to concepts that do, and can
 thus provide identity to them. Concepts that are independent are tied together with
 non-identifying relations.
A special form of non-identifying relation is the whole-part (meronymic) relation.
 Like UFO, and UML, we define the relationships of aggregation, and composition, and
 adopt UFO's semantics to clarify the ambiguous treatment of them in UML.[13]. Specifically we have adopted the following additional constraints that
 are defined in UFO.Table III
Whole - Part Instance Constraints

	Name	Description	Note	Example
	shareable	Indicates whether an instance of a part can locally be shared by
 more then one instance of a whole.	Shareable is represented as UML aggregation (i.e. an open diamond on
 the whole side of the association). Non-sharable is represented as
 UML composition (e.g., a closed diamond on the whole side of the
 association).	The whole / part relationship between a research group and a
 researcher is locally sharable, meaning that an instance of a
 researcher can belong to more then one research group.
	inseparable	Indicates that the instance of the part is dependent on the instance
 of a whole (i.e. if the instance of the part is removed from the
 instance of its whole, it ceases to exist).	Represented with the UML constraint {inseparable} on the
 association.	The relation between a human body and its brain is inseparable
 (assuming the nonexistence of brain transplants), meaning that if a
 brain is separated from a body, it ceases to exist.
	essential	Indicates that the instance of the whole is dependent on the
 instance of the part (i.e. if the instance of the part is removed
 form the instance of its whole, the whole ceases to exist.)	Represented with the UML constraint {essential} on the
 association.	The relation between a human body and its brain is essential,
 meaning that if a brain is separated from a body, the body ceases to
 exist.

Generalization
Generalization relations are supported between classes, associations, and
 attributes. Generalization between concepts that have a single principle of
 identity, the so called sortals (e.g., kind, role, dependent, associative), and
 those that do not, the so called non-sortals or mixin (e.g., category, role
 category) is treated differently. A concept with identity can only get that identity
 from a single source, and thus only single inheritance is allowed in this context.
 Multiple inheritance is supported between the non-sortals, or between the sortals
 and non-sortals. A solid generalization line (UML generalization) is used for
 generalization between sortals and sortals and between non-sortals and non-sortals.
 A dashed line (UML realization) represents the generalization relation between a
 sortal 'realization' of a non-sortal.
The presence of constructs such as the non-sortals, and the fact that the sortals,
 can use multiple inheritance to relate to them, supports the representation of
 multiple overlapping categorization schemes necessary to reconcile horizontal
 variability. The broad support of generalization between all model concepts (e.g.,
 attributes and associations) supports the need for vertical variability.

Example
The simple model example below demonstrates some of the model constructs described
 above, and will be used as the source for describing the XML encoding options below.
Figure 2: Sample Model
[image:]

Conclusion
There are numerous other constraints implemented in
 UFO and its expression in UML that are not touched upon here. For example the
 pattern for explicitly dealing with <<role>> brings uniformity to the
 expression of a very common concept, that is only informally dealt with in common
 modeling languages like UML and ERD. As another example an anti-rigid type cannot be
 a supertype to a rigid type. These rules together create restrictions on how
 concepts can be related to each other, reducing the likelihood that skilled modelers
 will produce unsound models, and increasing the likelihood that they will use model
 constructs in similar ways (i.e. construct variability will be reduced). These
 additional constraints unfortunately do not make the creation of good models any
 less challenging intellectually, a challenge that will be brought up again later in
 the conclusion.

Design
XML Schema Encoding Annotations
The design phase that ends with the ability to automatically generate an XSD starts by
 creating a copy of some subset of the larger conceptual model. During this generation
 phase the target implementation language is selected, in this case the target language
 is a W3C XML schema. This subset copy, called a physical data model (PDM) is then
 modified in two ways. First, additional diagrams may be added to tell a story customized
 to specific perspective that a customer has over a UoD. Second, the physical model is
 changed. Anything can be changed including the addition or deletion of modeling
 constructs as needed. The more common changes include renaming concepts to reflect
 preferences by a customer.[14], selecting which attributes will function as keys, changing the navigability
 on associations, and the selection of specific XSD encoding options.
Both properties defined by UML 2.0 (e.g., association end navigability) and additional
 properties added as extensions to base UML are used. Some model properties apply
 globally to the entire model, and thus affect the entire XSD being generated (e.g., the
 namespace of the XSD), others apply to the encoding of a specific modeling construct
 (e.g., class, attribute). In some cases the same property can appear both globally and
 locally. If so, precedence is given to the local value. Most encoding options have
 default values (e.g., [UML] attributes get encoded as xsd:element). If an encoding style
 is being used see Appendix A, whole sets of encoding options plus
 built in logic that keys off of the semantic constructs in the model get enabled. Thus a
 default XSD can be produced with minimal effort. Yet fine grained control can also be
 exercised by setting individual encoding properties if desired.
A complete enumeration and explanation of all of the available encoding options is
 beyond the current scope. A brief summary of the most common options is contained in
 Appendix A. Below, a subset of the example model introduced above
 is used to explain how one set of encoding options produces an XSD.
Example
Figure 3: Physical Design
[image:]

Figure 4: XML Sample
<ComputerSystem name="Zulu">
 <CPU-Signature>Intel(R)Pentium(R) M</CPU-Signature>
 <Hardware>
 <ComputerMaker>Dell</ComputerMaker>
 <SerialNum>12345</SerialNum>
 </Hardware>
</ComputerSystem>

Figure 5: W3C XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="ComputerSytem" type="ComputerSystem"/>

 <xsd:complexType name="ComputerSystem">
 <xsd:sequence>
 <xsd:group maxOccurs="unbounded" ref="CPU"/>
 <xsd:element name="Hardware" type="Hardware"/>
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>

 <xsd:group name="CPU">
 <xsd:sequence>
 <xsd:element name="CPUSignature" type="xsd:string"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:complexType name="Hardware">
 <xsd:group ref="ManufacturedItem"/>
 </xsd:complexType>

 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="ComputerMaker" type="xsd:string"/>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:complexType name="Manufacturer">
 <xsd:complexContent>
 <xsd:extension base="Organization"/>
 </xsd:complexContent>

 </xsd:complexType>
 <xsd:complexType name="Organization">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Size" type="organizationSizeEnum"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="organizationSizeEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Starting left to right; bottom to top:	<<kind>> CPU is created as an
 xsd:group. By default an xsd:complexType
 is generated for all of the sortal types, but because an inbound
 association has explicitly been set to encode 'asGroupRef', a group is
 created. Encoding of classes is driven by defaults for its particular
 type (e.g., <<kind>>, <<category>>) and /or by the schema
 structures necessary to honor the needs of inbound relationships. This
 means that any single class could cause the generation of
 xsd:complexType, xsd:group and
 xsd:attributeGroup structures.
Attribute signature is created as an
 xsd:element within the xsd:group. By
 default [UML] attributes get represented as xsd:element.
 The name created for the element is "CPUSignature" based on the default
 setting for a global default that controls the name syntax applied to
 the creation of XML elements. In this case because of the group
 reference, a name is chosen that appends the class name to the attribute
 name so as to not lose needed context when the created XML element is
 referenced from 'ComputerSystem'.

	<<kind>> ComputerSystem is created as an
 xsd:complexType, and as a global
 xsd:element declaration. The UML visibility property on
 a class controls whether a global complex type and element (visibility =
 'public'), a global element with an anonymous complex type (visibility =
 'protected'), or just a complex type (visibility = 'private') is
 created.
Attribute name is encoded as an
 xsd:attribute based on the encoding="asAttribute"
 setting attached to it.
An xsd:group ref="" with a maxOccurs set to
 unbounded to the group CPU is
 created based on the encoding option set for the navigable outbound
 relation to it.
Finally an xsd:element reference is created to represent
 the outbound relation to Hardware. The
 xsd:element reference construct is used for two
 reasons. Broadly, the encoding of relationships takes two forms, by
 value, and by reference, with multiple by reference styles to choose
 from. By reference encodings require keys (one or more attributes whose
 values can be uniquely used to identify a single instance of the
 targeted class) to reference the construct. Because no keys are
 available a by value encoding is used. Because the visibility property
 of Hardware is public, a xsd:element
 ref="" is used.

	<<kind>> Hardware is created as a global
 xsd:complexType and xsd:element.
An xsd:group ref="" is created to represent the
 realization relationship to ManuracturedItem. An
 xsd:group reference is used because the default
 encoding for ManufacturedItem as a
 <<category>> is xsd:group.

	<<category>> ManufactureredItem is by
 default encoded as an xsd:group. The mixin / non-sortal
 class types of <<category>> and <<role category>> can be
 used to cross-categorize the sortal class types. As such its quite
 possible that a sortal will have generalization relations (represented
 as UML realization visually) to many of them; effectively allowing for
 multiple inheritance. Because of this group / group referencing is used
 by default.
Attribute serialNum is created as an xsd:element
 by default.
The outbound association manufacturedBy gets
 encoded as an xsd:element called Manufacturer with a
 datatype of string and whose value represents the key of the class
 Organization. The key of
 Organization is the [UML] attribute
 name as indicated by the <<PK>>
 stereotype. The reason this construct is created to represent the
 relationship manufacturedBy is as follows: By a
 settable default, associations to classes that have available keys use
 those key(s) to implement a relationship by reference. If there is only
 a single key, the name of the class being pointed at is used to name the
 relationship.

	<<role>> Manufacturer is by default encoded
 as a global xsd:complexType and xsd:element.
 Because it has a generalization relation to another sortal type, and
 there can be only once such generalization relation present per the
 modeling language constraints, complex type extension can safely be used
 to implement it. Because the default setting is to generate substitution
 groups, one is created for Manufacturer and
 Organization.

	<<kind>> Organization is by default encoded
 as a global xsd:complexType and
 xsd:element.
Attribute name is by default encoded as an
 xsd:element.

Conclusion
By no means does the set of encoding options available exercise every last corner
 of the W3C XML schema specification, but they do allow, especially when used in
 combination, for a surprising variability in encoding choices. New options are added
 as they are needed, and thus far, elegant solutions to generate a given encoding
 choice have always been possible without requiring that the models be changed in any
 way other than with the addition of new encoding annotations. In essence the
 implementation level decisions are effectively segregated and do not perturb the
 semantic representation.

Software
The creation and maintenance of multiple layers of models and the subsequent
 generation of XSDs would not be feasible without the correct tooling. The modeling tool
 we use is Sybase Power Designer; a market leading tool in traditional [relational] data
 modeling. It was selected for a variety of reasons, not the least of which is its
 extensive ability to be customized, and ability to generate / merge / compare / track
 the relations between multiple models. It has been customized to support and enforce the
 rules of the conceptual modeling language outlined above. This has involved extending
 the meta-model that underlies Power Designer with additional [extended] properties,
 modifying the forms displayed under certain menus, and writing additional trigger code
 to enforce the rules of the conceptual modeling language (e.g., section “Conclusion”). The code that create the XSD has been implemented
 outside of Power Designer to avoid coupling it to a particular vendor's product.
The architecture for this XSD complier, called unimaginatively
 Model2XSD is shown below Figure 6. A
 relatively simple routine written inside Power Designer in visual basic script
 serializes the model as XML based on a custom designed markup language.[15] An XSLT 2.0 pipeline is then called to compile the XML into an XSD. The XSLT
 program consists of several processing stages and supporting libraries of functions and
 configuration files. The Model2XSD-Preprocessor is used to add
 additional constructs to the serialized model file if needed based on selected encoding
 options. The Model2XSD-Processor creates the XSD. Finally the
 Model2XSD-Postprocessor, optionally, does certain XSD clean-up
 activities that can simplify the resultant schema.[16] All of these pieces of code are backed up by two function libraries,
 Model-Utility primarily contains functions that navigate the physical
 model as represented in XML (e.g., getting a concept's supertype, all its subtypes,
 etc.). This library does not contain any functions specific to the generation of an XSD
 and thus could be reused in other generation tasks.Model2XSD-Utility"
 contains functions specific to the generation of XSD files.
Figure 6: Model2XSD Process Flow
[image:]

Further Work
Our application of the techniques outlined above is in its infancy. As we continue to
 gain experience, refinements in both the conceptual modeling language, the encoding
 rules for XSD, and the software support for all of the above are inevitable. It is
 possible that we will see the benefit of adopting more of the UFO, or possibly less. As
 we develop more XSDs we will undoubtedly have requirements for incrementally adding to
 our tool box of encoding annotations. It is a testament to the strength of the
 conceptual modeling language that thus far we have been able to algorithmically generate
 any necessary encoding we need.
In roughly priority order these are the current areas of interest we are
 pursuing:
	The processes and tooling needed to support the maintenance, change
 management, and synchronization between a set of related models (conceptual,
 physical,) and schemata (XSD) that are expected to evolve on independent time
 lines, with differing constraints (e.g., the physical models and resultant XSD
 files will be subject to pressures to maintain backwards and/or forward
 compatibility for some period of time) and likely to be changed by independent
 groups.

	Work on how the physical data models are visually represented. As these models
 are based on the conceptual model, but lead to an XSD, a tension naturally
 arises as to how they should be visualized. Should the visualization reflect its
 semantic roots in the CM, or the structure of the resultant XSD? And how do all
 of the XSD specific encoding directives get represented visually? Currently many
 are not, which makes it needlessly difficult to make the leap from model to XSD.
 Our hope is that we can keep the physical data model visualization more closely
 aligned with its conceptual roots, and through graphical overlays show the XSD
 encoding annotations, but this remains to be seen.

	Create code that automatically adds documentation into the generated XSDs that
 reflect semantic distinctions present in the conceptual model that are
 intentionally excluded from the resultant XSD. This occurs, for example, when an
 XSD is generated that has collapsed what are multiple subclasses in the CM into
 a superclass. All of the attributes and relations present in the sub-classes
 become optional in the super. It's not that there is a fundamental change in the
 conceptualization of the domain when this is done, it's much more likely that
 the enforcement of a set of constraints is being moved from the schema to
 software. It should be possible to generate additional documentation and embed
 it into the XSD to make note of these relevant rules.

	Prototype the software needed to generate other implementations (e.g., DDL,
 OWL).

	Explore whether, when different physical designs all originating from
 overlapping parts of the same conceptual model are created, it is possible to at
 least partially automatically create the needed XSLT code that would be required
 to translate between them.

Conclusion
The adoption of a multi-layered model development process consisting of one (or a
 small number of) conceptual models as the basis for potentially many physical
 implementation models; the selection / customization of the UFO visually represented as
 UML class diagrams, as a conceptual modeling language; the design of rules for compiling
 these models into an XSD; and the implementation of all of the above using Sybase Power
 Designer and XSLT is all still relatively new. We have only recently started exercising
 this methodology fully to deliver products (XSDs) to internal customers. We are still
 learning, and further customizing our techniques and their implementation in software.
 So far our experience with using these techniques is anecdotal. It is both sobering and
 promising...
Challenges
... the short story is that good design involves hard thinking. And that
 means it’s just hard [Sperberg-McQueen-2008]. Although the quantification of what is
 good design, is an interesting challenge in and of itself, it is
 indeed very hard, both to do, and often to justify taking the time to do. On the one
 hand the conceptual modeling language outlined above, with its more restrictive
 rules can aid a good modeler in coming up with better, more sound models. The whole
 methodology with its emphasis on semantics can lead to higher quality XSDs, at least
 in the sense that they are semantically well grounded. But the bar for creating good
 models is still high if not higher. To create a truly good design all the way from
 creating a conceptual model to creating a good physical design takes quite a rare
 skill set. Design activities require distinct skills - and arguably certain
 personal characteristics. ([Simsion-2007], p. 8)
 Detailed knowledge of the domain being modeled, detailed knowledge about how best to
 conceptualize a domain, in particular knowing what level of abstraction to use, and
 recognizing how to separate out, and deal with some of the orthogonal concerns that
 creep in[17], how to effectively represent and communicate that conceptualization in
 a modeling language, and how best to represent it in a chosen technology are all
 needed. Of course these skills can be split across several individuals, but that
 splitting leads to its own challenges. Finding, or training people to do this work
 well is difficult Data modeling is notoriously difficult to learn and
 teach. ([Simsion-2007] , p.8)
And then there is the problem of finding the time to do this work. It is hoped
 that the techniques outlined above, specifically meeting requirements 1 and 2 will lead to
 greater reuse possibilities, and thus allow for the quick repackaging of already
 done hard work. None the less, creating high quality, semantically well-founded
 designs takes time, and time is a precious resource in many projects, whose use must
 be justified.
Any group of systems that are information focused, and need to share that
 information either through exchange or a shared data store, get coupled to the
 information designs that underpin them. If these systems need to have a deep
 understanding of the semantics behind the information (i.e., software is directly
 creating, modifying, taking action on what the information means vs. just storing /
 presenting it and leaving the heavy semantic lifting to people), the coupling is
 tight, and changing the information design very expensive. So too is creating a deep
 semantic mapping between different, typically underspecified designs, or conversely
 recognizing that they can't be mapped. This expense leads to the conclusion that in
 many cases the up-front investment in good design is well worth it.
Finally there is the lack of adequate tool support. We have taken an industry
 leading data modeling tool and augmented it to support ontology development leading
 to an XML schema. It has required a reasonable amount of customization. Even with
 these customizations there are many things that we would like the tool to do that it
 can't. Nor are we aware of any tool that has the full feature set we need to truly
 create and maintain requirements models mapped to implementation neutral conceptual
 models coupled with implementation specific design models from which XSD, DDL, and
 OWL can be generated, and to do so on a large enterprise wide scale.

Accomplishments
 Looking back at the requirements we set out for ourselves “Modeling Language Requirements”:	The selected modeling language is helping our internal team
 communicate and reach agreement on conceptualisations of the UoD(1. It is also helping us to clarify our
 prose descriptions of a UoD. Unlink ERD and UML in practice, where the
 visualization reflects the implementation, conceptual models based on
 UFO reflect the semantics, and these semantics should be mirrored in the
 prose.[18] On many occasions we have created model concepts, then
 written their prose definitions and found that the model and the prose
 contradict each other. When this happens this points to a fundamental
 problem and either the prose or the model has to be changed.

	 The semantic richness, precision, and design neutrality of the
 conceptual modeling language, coupled with the flexibility of the XSD
 encoding rules, and the fact that implementation models are kept
 distinct from, but tied to, the conceptual model grant great flexibility
 in creating XSDs well tailored to a customers need 2. This flexibility has been exercised twice,
 when our team was tasked with creating a conceptual model reverse
 engineered[19] from existing format specifications and then
 forward-engineer back to a new XSD with very specific encoding
 constraints.

	Support of using the same conceptual models to support designs in
 other implementation languages 3, 4, is promising, but unproven at this point. If it
 were proven it would both re-enforce that the conceptual modeling
 language is indeed largely independent of implementation design biases,
 and add to the business case of investing in the development of models
 that could be more widely reused.

	Early evidence does support the claim that construct variability 6 is reduced, primarily in the use of
 attributes, and for representing roles.

	Likewise, early experience is that the conceptual modeling language is
 better at documenting horizontal and vertical variability 7 and representing how different
 choices relate to one another. Representing this variability in the same
 conceptual model, however does complicate the resulting models and their
 presentation visually.

	An additional benefit that was not directly sought is that the code
 that generates the XSD files partially mitigates the need for the
 modelers using it to fully grasp all of syntactic and grammatical
 nuances of the XSD language.

Appendix A. Physical Encoding Options
This section describes some of the more commonly used encoding options available to
 map from a XSD PDM to an actual XSD. It is by no means a complete accounting of the many
 encoding options available, nor how they can be used together to create a large variety
 of different schema structures.
The information in this section is largely presented as a series of tables. Two basic
 table structures exist, the first describes model properties present in the model that
 affect the XSD. The origin field in this table contains two values, "Build In" or
 "Extended" that reflect whether the property is part of UML and thus is built in to a
 UML tool, or whether it is an extended property that we have added. The second table
 type focuses in particular on an extended property called 'encoding' that drives much
 how the schema will look. Included in this table are example XSD fragments and XML
 fragments that reflect the behaviour of the various encoding options.
General Encoding Rules
This section describes some of the model properties and encoding options available
 that affect the entire schema or are common across many model concepts.
Model Level Properties
Model level properties are set once per model (and thus XSD file) and have
 global effects. They are as follows:Table IV
Model Level Encoding

	Property	Origin	Description	Use	Note
	Target Namespace and Namespace Prefix	Extended	The target namespace and namespace prefix of the generated
 XSD.	Used to set the targetNamespace information of the XSD.	When one physical model references a concept in another, needed
 namespace declarations, namespace prefixing and
 xsd:import statements are generated
 automatically if the concept is in another namespace. Otherwise,
 needed xsd:include statements are generated.
	Prune Group	Extended	A boolean controlling whether xsd:group and
 xsd:attributeGroup structures referenced only
 once will be eliminated from the XSD with their elements /
 attributes collapsed into the referencing concept.	Used to create schema's that have the minimal number of group /
 attribute groups defined.	Default is true.
	Encoding Style	Extended	Selects which encoding style to use. An encoding style effects a
 whole set of different encoding options to produce schema's of a
 particular style.	An encoding style, is analogous to the scene modes on digital
 cameras. It allows one to select a whole set of other encoding
 options that together with some additional programming logic
 that wraps them, create schemata in a particular style.	Default is the internal style used on our team.
	[Default] Association Encoding	Extended	Selects which association end encoding to use by default.	Controls the default association end encoding that will
 occur. Table XVI	Default is 'asElement'.
	[Default] Name Encodings (e.g., for XSD attributes, elements,
 types and groups.	Extended	Selects the default name encoding for all schema
 constructs.	See Table VI	Default is 'leadingUpperCase' for XML elements, 'leading
 Lowercase' for XML attributes and 'preserve' for XSD
 simpletypes, complex types and groups.

Name Encoding
The generated names of XSD declarations are controlled by many settings.
 Defaults at the model level can be set, and overridden as needed on an
 individual concept. Any given name consists of two parts, a prefix and a root.
 The root is always the name of the concept. The prefix depends on what type of
 concept it is, as described below. Many more styles are available then described
 here. In addition, more complex naming rules are applied in certain association
 encoding situations where foreign keys are being generated, and/or where a group
 reference is effectively merging two concepts together. These rules
 automatically start adding additional context to the generated names so that for
 example, a primary key called 'identifier' in the target class of an
 association, doesn't simply remain 'identifier' when it becomes a foreign key in
 the source class, where it could potentially clash with an existing 'identifier'
 attribute.

 Table V
Prefix and Root Sources

	Concept	Prefix
	Class, Domain, Enumeration, Structure, Union 	Model Code
	Attribute	Class Code
	Association	Association End Class Codes

 Table VI
Name Encoding Options[image:]

	Name Encoding	Concept	Prefix	Root	Final XSD Name
	leadingUpperCase	Class	N/A	ComputerSystem	ComputerSystem
	Attribute	N/A	name	Name
	Association	N/A	has	Has
	lowerCamelCase	Class	Computer	ComputerSystem	computerComputerSystem
	Attribute	ComputerSystem	name	computerSystemName
	Association	ComputerSystem CPU	has	computerSystemHasCPU
	lowerCaseConcatenate	Class	Computer	ComputerSystem	computer-computerSystem
	Attribute	ComputerSystem	name	computerSystem-name
	Association	ComputerSystem CPU	has	comuterSystem-has-CPU
	Preserve	Class	N/A	ComputerSystem	ComputerSystem
	Attribute	N/A	name	name
	Association	N/A	has	has

Multiplicity Encoding
Both [model] attributes and associations have multiplicity encoding
 parameters. They get mapped to minOccurs and maxOccurs in an XSD in the obvious
 way. When a multiplicity greater then one is combined with an encoding that will
 result in an [XML] attribute, a list structure is automatically created for that
 attribute. If the creation of list content for an element is required, instead
 of the default behaviour to simply allow the element to repeat, an extended
 property called multiplicityEncoding can be explicitly set to the value
 'asList'.

Documentation
XSD's produced can optionally included embedded annotations. These annotations
 are extensive, taking advantage of the definitions embedded in every concept in
 the model, as well as automatically generated boiler plate definitions created
 when new XSD constructs are generated (e.g., the creation of foreign key
 structures representing associations, See Table XVI). Additional code is available to take
 definitions and represent them in a tab delimited form for a tabular
 presentation as well as conversion to an alternative XML representation used to
 load a searchable web based data element dictionary tool.

Class Encoding
This section describes the common properties and encoding options used to
 represent classes (e.g., kind, role, category) in a schema.

 Table VII
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the class.	Used as the name for the generated schema construct subject to any
 name encoding rules in effect.	
	visibility	Built In	The visibility of the class.	When a global xsd:complexType will be generated the visibility
 property will have the following effect.	
	public - a global element and a global xsd:complexType are
 generated.
	protected - a global element containing an anonymous xsd:complexType
 is created.	
	private - only a global xsd:complexType is created.	
	skip	Extended	Directs a class to not be encoded. All of its properties will be
 merged with its subtype if it exists or its supertype it the
 generalization relation is set to be navigable in that direction.
 See section “Generalization Encodings”	This is very useful if a relationship needs to be encoded, but its
 target class does not need to, or if one wants to collapse
 generalization hierarchies.	In initial prototyping efforts, the encoding option to not encode is
 used quite widely.

 Table VIII
Class Encodings

	Default Encoding for Class type	Example	Description	XSD Fragment	XML
	
 	<<kind>>

	<<event>>

	<<role>>

	<<dependent>>

	<<associative>>

 	
 [image:]
 	
 By default, a complex type is generated. A group can also be
 generated if required by an inbound relationship.

 	
 <xsd:complexType name="Manufacturer"> ...

 	
 <Manufacturer/>

	
 	<<category>>

	<<role category>>

 	
 [image:]
 	
 By default, a group is generated. A complex type can also be
 generated if required by an inbound relationship.

 	
 <xsd:group name="ManufactureredItem> ...
and / or
<xsd:attributeGroup name="ManufacturedItem"> ...

 	
 N/A

Datatype Encoding
This section describes the common properties and encoding options used to
 represent datatypes (e.g., primitive, domain, enum) in a schema.

 Table IX
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the class.	Used as the name for the generated schema construct subject to any
 name encoding rules in effect.	

 Table X
Datatype Encodings

	Datatype Type	Example	Description	XSD Fragment
	
 <<primitive>>

 	
 No graphic symbol

 	
 Mapped via a datatype mapping file to the appropriate built in
 schema simple type.
 [20]

 	
 N/A

	
 <<domain>>

 	
 [image:]
 	
 Either mapped via a mapping table to an appropriate built in
 schema simple type, or a simple type with the appropriate facets
 is created.[21]

 	
 <xsd:simpleType name="uuid">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}"/>
 </xsd:restriction>
</xsd:simpleType>

	
 <<enum>>

 	
 [image:]
 	
 A simple type with enumerated facets is created.[21]

 	
 <xsd:simpleType name="colorEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="red"/>
 <xsd:enumeration value="yellow"/>
 <xsd:enumeration value="blue"/>
 <xsd:enumeration value="green"/>
 </xsd:restriction>
</xsd:simpleType>

	
 <<struct>>

 	
 [image:]
 	
 Processed as would be a class encoding as a complexType with
 the following exception; If the attributes of the structure are
 all set to encode "asValue", a simple list type is created (see
 example).

 	
 <xsd:simpleType name="rgbColorStruct">
 <xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

	
 <<union>>

 	
 [image:]
 	
 A simple union type that unions together the set of unique
 datatypes present.

 	
 <xsd:simpleType name="colorUnion">
 <xsd:union memberTypes="rgbColorStruct colorEnum"/>
</xsd:simpleType>

Attribute Encoding

 [image:]
 Table XII
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the attribute.	Used as the name for the generated schema construct subject to any
 name encoding rules in effect.	
	encoding	Extended	Controls how an attribute will be encoded. See Table XIII		
	skip	Extended	Directs an attribute to not be encoded.		

Table XIII
Attribute Encodings

	Encoding	Description	XSD Fragment	XML Example
	asAttribute	
 The model attribute is represented as an XML attribute within
 a complex type.

 	
 <xsd:complexType name="CPU">
 <xsd:attribute name="signature" type="xsd:string"/>
</xsd:complexType>

 	
 <CPU signature="Intel(R) Pentium(R) M"/>

	asElement	
 The model attribute is represented as an XML element within
 the complex type.

 	
 <xsd:complexType name="CPU">
 <xsd:sequence>
 <xsd:element name="Signature" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <CPU>
 <Signature>Intel(R) Pentium(R) M</Signature>
</CPU>

	asValue	
 The value of the model attribute is represented as a simple
 content value within the complex type.

 	
 <xsd:complexType name="CPU">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string"/>
 </xsd:simpleContent>
</xsd:complexType>

 	
 <CPU>Intel(R) Pentium(R) M</CPU>

Table XIV
Attribute Encoding Combinations and there affect on the XSD

	asAttribute	AsElement	asValue	XSD Construct Created
	+	-	-	
 A complex type with attributes.

	-	+	-	
 A complex type with complex element content.

	-	-	+	
 A complex type with simple content.

	+	+	-	
 A complex with complex element and attribute content.

	+	-	+	
 A complex type with attributes and simple content.

	-	+	+	
 A complex type with complex element and mixed content.

	+	+	+	
 A complex type with complex element, attribute and mixed
 content.

Relationship Encoding
Association Encoding
This section describes the common properties and encoding options used to
 represent association relationships in a schema.

 [image:]
 Note
In the example above the association encoded is called
 'manufacturedBy' with a source class of 'ManufacturedItem' and a target
 class of 'Manufacturer'. The label 'computerMaker' is a UML role applied
 to the 'Manufacturer' side of the association.

Association End
Association End encodings create structures that get embedded in a source
 class and point to a target class through a variety of means that can be
 grossly categorized as the by value options (asNested, asGroupRef) that
 directly represent all of the target class within the source class, and the
 by reference options that rely on primary keys in the target class to point
 from source to target.

 Table XV
Relevant Properties

	Property	Origin	Description	Use	Note
	roleA/B code	Built In	The implementation name of the RoleA / RoleB association
 end.	Used as the name for the generated schema construct subject
 to any name encoding rules in effect.	If there is no RoleA / RoleB code set, then the 'code' of
 the target class is used.
	roleA/B navigability	Built In	Represents which direction(s) an association can be
 transversed.	Used to control whether the association is encoded. For
 every navigable end pointing to a 'target' class, a
 construct in the source class will be generated to implement
 the association in that direction.
	roleA/B encoding	Extended	Controls how an association end will be encoded. See Table XVIII		

 Table XVI
Association End Encodings

	Encoding	Description	XSD Fragment	XML Example
	asAttribute	Keys of the target class are represented as attributes in
 the source class.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:attributeGroup name="ManufacturedItem">
 <xsd:attribute name="computerMaker" use="required" type="Manufacturer"/>
</xsd:attributeGroup>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="ManufacturedItem"/>
</xsd:complexType>

 	
 <Hardware computerMaker="Dell">
 <SerialNum>1234</SerialNum>
</Hardware>

	asElement	Keys of the target class are represented as elements in the
 source class.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="ComputerMaker" type="xsd:string"/>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <Hardware>
 <ComputerMaker>Dell</ComputerMaker>
 <SerialNum>1234</SerialNum>
</Hardware>

	asElementKey	An element representing the relationship is created. Keys of
 the target class are represented as attributes on it.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="ComputerMaker">
 <xsd:complexType>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <Hardware>
 <ComputerMaker name="Dell"/>
 <SerialNum>1234</SerialNum>
</Hardware>

	asElementNestedKey	An element representing the relationship is created. Keys of
 the target class are represented as elements within it.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="ComputerMaker">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <Hardware>
 <ComputerMaker>
 <Name>Dell</Name>
 </ComputerMaker>
 <SerialNum>1234</SerialNum>
</Hardware>

	asGroupRef	A group reference is created to the target class.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:group ref="Manufacturer"/>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <Hardware>
 <ManufacturerName>Dell</ManufacturerName>
 <ManufacturerSize>large</ManufacturerSize>
 <SerialNum>1234</SerialNum>
</Hardware>
[22]

	
 asNested

 	The target class is directly nested within the source
 class.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="ComputerMaker" type="Manufacturer"/>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <Hardware>
 <ComputerMaker>
 <Name>Dell</Name>
 <Size>Large</Size>
 </ComputerMaker>
 <SerialNum>1234</SerialNum>
</Hardware>

	asXlink	An element representing the relationship is created. An
 attribute group reference is created to bring in link simple
 link attributes.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="ComputerMaker">
 <xsd:complexType>
 <xsd:attributeGroup ref="xlink:XlinkSimple"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <Hardware>
 <ComputerMaker xlink:href="Dell"/>
 <SerialNum>1234</SerialNum>
</Hardware>

Association Encoding
Association encodings create structures that directly represent the
 association as either an independent global complexType, or as an additional
 layer within an association end encoding. Directly representing an
 association is less common then representing then using the association end
 encodings.
Table XVII
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the association.	Used as the name for the generated schema construct subject to
 any name encoding rules in effect.	
	visibility	Extended	The visibility of the association.	When a global xsd:complexType will be generated the visibility
 property will have the following effect.	This only has an effect if encoding = 'asComplexType'.
	public - a global element and a global xsd:complexType are
 generated.
	protected - a global element containing an anonymous
 xsd:complexType is created.	
	private - only a global xsd:complexType is created.	
	encoding	Extended	Controls how an association will be encoded. See Table XVIII		By default associations are not explicitly encoded as global
 type declarations. Instead association-end encodings create
 needed structures directly in the source class.

Table XVIII
Association Encodings

	Encoding	Description	XSD Fragment	XML Example
	
 asNested

 	The association is explicitly represented as an additional
 nested layer within association end encodings. The association
 end encoding used is 'asElement'.	
 <xsd:group name="ManufacturedItem">
 <xsd:sequence>
 <xsd:element name="ManufacturedBy">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ComputerMaker" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="SerialNum" type="xsd:string"/>
 </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
 <xsd:sequence>
 <xsd:group ref="ManufacturedItem"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <Hardware>
 <ManufacturedBy>
 <ComputerMaker>Dell</ComputerMaker>
 </ManufacturedBy>
 <SerialNum>1234</SerialNum>
</Hardware>

	asComplexType	The association is explicitly represented as a global complex
 types. The association end encodings point out from the
 relationship to the target classes. The association end encoding
 used is 'asElement'. With this example, this encoding option
 makes no sense, as only one of the association ends encoded is
 navigable.	
 <xsd:complexType name="ManufacturedBy">
 <xsd:sequence>
 <xsd:element name="ComputerMaker" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

 	
 <ManufacturedBy>
 <ComputerMaker>Dell</ComputerMaker>
</ManufacturedBy>

Associations ending at a Mixin (e.g., category, roleCategory).
Associations whose target class is a non-sortal (i.e. a mixin) can be
 encoded as any other target class, however by default a mixin is encoded by
 creating an xsd:choice group that encodes the relationship to the mixin as
 if the association were drawn directly to each of the subclasses that the
 mxin subsumes. In essence a relationship to a category results in an
 encoding as if the relationship were drawn directly to each of the members
 of the category.

Generalization Encodings
This section describes the common properties and encoding options used to
 represent generalization / realization relations in a schema.

 [image:]
 Table XIX
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the class.	Used as the name for the generated schema construct subject to
 any name encoding rules in effect.	
	encoding	Extended	Controls how a generalization will be encoded.	By default generalization relations between sortals are encoded
 using xsd:extension and generalization relations
 between sortals and non-sortals, or between non-sortals and
 non-sortals as xsd:group and / or
 xsd:attributeGroup references.
	navigability	Extended	Represents which direction(s) a generalization can be
 transversed (e.g., subtype to supertype, or supertype to
 subtype).	Normally generalizations encode with the supertype navigable
 from the subtype as indicated by the arrow head in the UML
 representation. Occasionally its useful to navigate in the other
 direction to implement a collapsing of a set of subtypes into
 their common supertype.	

Table XX
Generalization Encodings

	Encoding	Navigability	Description	XSD Fragement	XML Example
	asExtension	Subtype to Supertype	A complexType is created for 'Printer', 'BWPrinter', and
 'ColorPrinter' with the later two extending the first.	
 <xsd:complexType name="ColorPrinter">
 <xsd:complexContent>
 <xsd:extension base="Printer">
 <xsd:sequence>
 <xsd:element name="colorLevel" type="xsd:positiveInteger"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

 	
 <ColorPrinter type="ColorPrinter">
 <Name>ColorPrinter1</Name>
 <ColorLevel>8</ColorLevel>
</ColorPrinter>

	asGroupRef	Subtype to Supertype	A complexType is created for 'BWPrinter' and 'ColorPrinter".
 Both a group and attributeGroup are created as needed depending
 on the encoding of the attributes in the 'Printer' class. These
 groups are referenced by 'BWPrinter' and 'ColorPrinter'.	
 <xsd:complexType name="ColorPrinter">
 <xsd:sequence>
 <xsd:group ref="Printer"/>
 <xsd:element name="ColorLevel" type="xsd:positiveInteger"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="Printer"/>
</xsd:complexType>

 	
 <ColorPrinter type="ColorPrinter">
 <Name>ColorPrinter1</Name>
 <ColorLevel>8</ColorLevel>
</ColorPrinter>

	asNested	Supertype to Subtype	A complexType is created for 'Printer', 'BWPrinter' and
 'ColorPrinter' with the first directly including the latter two.
 An optional choice group reflects the choice between these two
 mutually exclusive subtypes.	
 <xsd:complexType name="Printer">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:choice minOccurs="0">
 <xsd:element name="BWPrinter" type="BWPrinter"/>
 <xsd:element name="ColorPrinter" type="ColorPrinter"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="type" use="required" type="xsd:string"/>
</xsd:complexType>

 	
 <Printer type="ColorPrinter">
 <Name>ColorPrinter1</Name>
 <ColorPrinter>
 <ColorLevel>8</ColorLevel>
 </ColorPrinter>
</Printer>

	asGroupRef	Supertype to Subtype	A complexType is created for 'Printer'. Both a group and / or
 attributeGroup are created as needed for each of 'BWPrinter' and
 'ColorPrinter' depending on the encoding of the attributes in
 each of them. An optional choice group reflects the choice
 between these two mutually exclusive subtypes. 	
 <xsd:complexType name="Printer">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:choice minOccurs="0">
 <xsd:group ref="BWPrinter"/>
 <xsd:group ref="ColorPrinter"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="type" use="required" type="xsd:string"/>
</xsd:complexType>

 	
 <Printer type="ColorPrinter">
 <Name>ColorPrinter1</Name>
 <ColorLevel>8</ColorLevel>
</Printer>

References
[Bernauer-2004] Bernauer, Martin, Gerti Kappel, Gerhard Kramler,
 Representing XML Schema in UML - A Comparison of Approaches
 , Technical Report, 2004.
[Fowler-2000] Fowler, Martin, Kendall Scott, UML Distilled -
 Second Edition, Addison-Wesley, 2000.
[Guizzardi-2005] Guizzardi, Giancarlo,
 Ontological Foundations for Structural Conceptual Models
 , Ph.D. Thesis, University of Twente, The Netherlands, 2005.
[Guizzardi-2006a] Guizzardi, Giancarlo,
 "Agent Roles, Qua
 Individuals and The Counting Problem"
 doi:https://doi.org/10.1007/11738817_9
 , Software Engineering of Multi-Agent Systems, vol. IV, P. Giorgini, A.Garcia,
 C. Lucena, R. Choren (eds.), Springer-Verlag, 2006.
[Guizzardi-2006b] Guizzardi, Giancarlo.; C. Masolo.; S.Borgo,
 "In the Defense of a
 Trope-Based Ontology for Conceptual Modeling: An Example with the Foundations of
 Attributes, Weak Entities and Datatypes"
 doi:https://doi.org/10.1007/11901181_10
 , 25th International Conference on Conceptual Modeling (ER’2006), Arizona, USA,
 2006.
[Guizzardi-2007] Guizzardi, Giancarlo.
 Modal Aspects
 of Object Types and Part-Whole Relations and the de re/de dicto
 distinction
 doi:https://doi.org/10.1007/978-3-540-72988-4_2
 , 19th International Conference on Advanced Information Systems Engineering
 (CAISE’07), Trondheim, 2007, Lecture Notes in Computer Science 4495,
 Springer-Verlag.
[Guizzardi-2008] Guizzardi, Giancarlo, Gerd Wagner,
 "What's in a Relationship: An Ontological Analysis"
 doi:https://doi.org/10.1007/978-3-540-87877-3_8
 , 27th International Conference on Conceptual Modeling (ER'2008), Barcelona,
 Spain, Lecture Notes in Computer Science. , v.5231, p.83 - 97, 2008.
[ISO-TR9007] ISO/TR9007:1987(E) Information processing systems -
 Concepts and terminology for the conceptual schema and information base,
 1987.
[Nečaský-2006] Nečaský, Martin,
 Conceptual Modeling for XML: A Survey
 , Proceedings of the Dateso 2006 Annual International Workshop on DAtabases,
 TExts, Specifications and Objects, Desna, Czech Republic, April 26-28,
 2006.
[OMG-MDA] OMG.
 MDA Guide Version
 1.0.1
 OMG Document omg.2003-06-01, 2003.
[Simsion-2005] Simsion, Graeme, Grahm Witt Data Modeling
 Essentials, Analysis, Design and Innovation, Third Edition, Morgan
 Kaufmann Publishers, 2005.
[Simsion-2007] Simsion, Graeme, Data Modeling Theory and
 Practice, Technics Publications, LLC, U.S.A, 2007.
[Sperberg-McQueen-2008] Sperberg-McQueen, C. M.
 But wait, there's more!
 doi:https://doi.org/10.4242/BalisageVol1.Sperberg-McQueen02, Presented at Balisage: The Markup Conference, 12 - 15 August 2008. In
 Proceedings of Balisage: The Markup Conference (2008).
[Verelst-2004] Verelst, J. Variability in Conceptual
 Modeling, University of Antwerp, 2004.

[1] Surprisingly the claim that these visual languages represent an
 implementation, and do not directly model the UoD is controversial in some
 communities of practitioners. A well written, and thorough treatment of this
 topic in the data modeling community can be found in [Simsion-2007]
[2] A survey of some of the conceptual modeling proposals that have been made for
 XML can be found in [Nečaský-2006]
[3] As opposed to those aspects of a modeling language that should always be
 generally true. Guizzardi explores this in chapter 2 of [Guizzardi-2005]. An informal description of desirable properties
 of a model can be found at
 http://www.idiagram.com/ideas/models.html
[4] The phrase reasonable level of specificity is
 simply an acknowledgement that no formal modeling language can
 capture all of the nuance of a concept necessary for human
 understanding. Prose is still essential. Instead the requirement is
 that the modeling language at least convey enough information so
 that all the people who read [and understand it] find themselves on
 the same street, if not in the same house.
[5] Although this is a requirement, it has not yet been proven.
 Because of the extensive expertise of the team that worked on this
 project in relational database design, it does seem quite likely
 that this will work when we get around to creating the necessary
 software.
[6] Once again, this has yet to be proven. An initial assessment as to
 the feasibility of this is promising. It would potentially require
 the adoption of additional constructs defined in the UFO. The rules
 (and resulting code) to map it into OWL DL would likely be easier
 then the rules / code currently in place to generate an XML schema.
 This is due to the very direct mapping between the constructs in the
 conceptual modeling language and OWL DL, and to the fact that
 relationship encoding in RDF is prescribed, where as in general XML
 the variability in how relationships are encoded is considerable.

[7] This requirement is driven by the practical resource constraints
 of being able to find people with the correct skill set for creating
 conceptual models for information systems.
[8] Construct variability, defined in [Verelst-2004],
 is the use of different modeling constructs (e.g., attribute vs.
 entity) to represent the same real-world concept.
[9] Horizontal and vertical variability is defined in [Verelst-2004]. Vertical variability is the use of
 different levels of generalization / abstraction to conceptualize
 the same UoD. Horizontal variability is the use of different
 categorizations at the same level of generalization / abstraction.

[10] Ontology is not the sole discipline that can shed light on conceptual
 modeling. Epistemology, phenomonology, semiotcs, linguistics, cognitive
 psychology, and communication theory are but a few that have something to add,
 and are indeed used in Guizzardi's work.
[11] Optionality is fine on whole-part relations, where optional parts are a
 perfectly reasonable thing.
[12] It is hoped that the strict definition of what it is to be an attribute,
 will reduce the construct variability that is often present in models where
 attributes are used to represent both simple properties and
 relationships.
[13] In the pre-UML days, people were usually rather vague on what was
 aggregation and what was association. Whether vague or not, they were
 always inconsistent with everyone else. As a result, many modelers think
 that aggregation is important, although for different reasons. So the
 UML included aggregation, but with hardly any semantics. ([Fowler-2000] , p. 85)
[14] Name changes are typically necessary to accommodate local conventions in
 terminology, and local syntactic naming standards. In a conceptual model names
 are chosen for clarity, and can be long, and will not necessarily agree with
 jargon spoken by a specific community.
[15] The XML Metamodel Interchange (XMI) format was briefly considered as a choice
 for the serialization of the model. It does in fact have all of the needed
 information. It was not chosen because its structure, optimized to exchange
 [complete] models between modeling tools, is not ideal for creating clean XSLT
 code for transformation into an XSD. In addition, the benefits of using a
 standard tool-neutral serialization of a UML model are partially obviated by the
 inconsistent and limited implementation of the standard in some modeling tools.
 That said, the use of XMI is something that will be considered the future. An
 appropriate XSLT 2.0 function library could be used to hide the complexities of
 the XMI format.
[16] An example of such clean-up is the removal of any xsd:group or
 xsd:attributeGroup structures that are only referenced once, by
 collapsing them within their referent.
[17] Its quite challenging to keep straight all of the orthogonal concerns,
 some subset of which much all come together in the final physical design,
 but which should be thought about and modeled separately at the conceptual
 level. For example, for any given information structure in a PDM, the
 following different concerns might need to be addressed in addition to the
 real-world object that the information structure is describing. How is
 temporal change of that object's properties handled; how is the provenance
 of the information (e.g., origin, trustworthiness) recorded; how is system
 related metadata (e.g., who created it, when it will be deleted, access
 control, versioning) represented, etc.
[18] Sperberg-McQueen touches on the desirability of You
 have to say everything twice in [Sperberg-McQueen-2008]. The longer term goal of
 this work is to say things many times, in prose, in the
 conceptual modeling language, and in designs for XSD, DDL, and
 OWL.
[19] This reverse engineering is necessarily manual. The mapping
 between a given implementation back up to a conceptual model is
 many to one. This is unlike a mapping between a schema language
 and a simple visualization of it, as is typically implemented in
 tools today.
[20]
 Table XI
Primitive Type Map

	Conceptual Model	XSD
	
 string

 	
 xsd:string

	
 float

 	
 xsd:float

	
 integer

 	
 xsd:integer

	
 date time

 	
 xsd:dateTime

	
 date

 	
 xsd:date

	
 time

 	
 xsd:time

	
 boolean

 	
 xsd:boolean

	
 octets

 	
 xsd:base64Binary

[21] The primitive type on which the user defined data type
 is a restriction of, is recorded directly as a property
 in the modeling tool. If a user defined datatype is a
 restriction of another user defined datatype, it is
 represented as a generalization relation.
[22] The element names are created by selecting a name
 encoding option that combines an attributes name
 with its class name.

Balisage: The Markup Conference

Prying Apart Semantics and Implementation
Generating XML Schemata directly from ontologically sound conceptual models
Bruce Bauman
System Engineer
U.S. Department of Defense

<btbauma@earthlink.net>
Mr. Bauman's first introduction to markup was in the early 1990's where he
 oversaw the tagging of foreign language dictionaries in compliance with the Text
 Encoding Initiative (TEI) standards and led a development team that produced
 multi-lingual retrieval tool for those dictionaries based on the Standard
 Generalized Markup Language (SGML) . Mr. Bauman became interested in using SGML
 and then XML to solve entrenched interoperability problems. This led him to look
 seriously at information / data modeling and now ontology for answers to
 interoperabilities' persistent questions. Twelve years later he has yet to solve
 those entrenched problems (this is really hard).
Mr. Bauman has been attending [off and on] the Balisage series of conferences
 since the HyTime days, and has watched XML grow up over its 11 year history.
Mr. Bauman holds a BS in Computer Engineering and an MS in Computer
 Science.

Balisage: The Markup Conference

content/images/Bauman01-006.jpg
<<role>>
Manufacturer

content/images/Bauman01-007.jpg
<<category>>
Manufactureditem

seriaum: stringl1]

content/images/Bauman01-008.jpg
<<domain>>
wuid

content/images/Bauman01-009.jpg
<<enum>>
colorEnum

red
yelon
blue

green

content/images/Bauman01-002.jpg
<<kind>>
ey

<<kind>>
Computer System

1

<<assadative>>

Manurfactured

<<kind>>
Organization

name: stringl1]
size: organizaton size enu{1]

dater datel1]

<<category>>
Manufactured Item

<erial number: stringl1]

signature stringl1]

name: stringl1]

is supported by

<<kind>>
Computer Hardware

manufactured by

"

<ralen>
Manufacturer

<<enum>>
organization size enum

amal
medum
large

content/images/Bauman01-013.jpg
<<kind>>
Organization

<<PK>>name stringl1]
size: organizationsizeErum{1]

i manufactured by “+computerhaker prmraTY
e e] natnaer
serilhom: strngl1]_| 1

<<kind>>
Hardware

content/images/Bauman01-003.jpg
<<category>>
Manufactureditem

<<kind>>
Organization

<<PK>>name stringl1]
size: onganizationsizeErum{1]

manufactured by +computertiefer <<role>>

seriaum: stringl1]

st e el
<<nd>> <<kind>> supported®y
o Computersystem il |
sgnature: stringl1] name:strnglt] | 0" 4

Manufacturer
1

<<enum>>
organizationSizeEnum

amal
medum
large

content/images/Bauman01-014.jpg
<<kind>>
Printer

<<PK>>name stringl1]
type: string[1]

<<kind>> <<kind>>
BWPrinter ColorPrinter

reyscaleLevel: postivelntegerl1] colorLevel: postivelnteger[1]

content/images/Bauman01-004.jpg
Model2¢sD

Model245D Preprocessor

Model24SD Pracessor

Model24sD PostPracessor

Seriaization of PO

uamented Serialzation

501

(Ceaned Up 5301

content/images/Bauman01-005.jpg
<<kind>> o [<>
Computersystem |, Py

name: stringl1] has signature stringl1]

content/images/Bauman01-010.jpg
<<struct>>
rgbColorstruct

hue: ntegerl1]
saturation: rteger(1]
intensity: integer[1]

content/images/Bauman01-011.jpg
<<union>>
colorUnion

rabColorruct: rgbColorstruct[1]
calorEnum: colorEnum1]

content/images/Bauman01-001.jpg
® eeairanents Gt [Upate Y Grate [Upde PO Tt e

Requirements Mods! [Conceptuel Model (1] [Physical Data Model (PO Annotated PO 501

content/images/Bauman01-012.jpg
<<kind>>
ey

signature stringl1]

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

