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Abstract
Central to interoperability is a shared conceptualization of the domain or
                universe of discourse (UoD). A conceptual model (CM) documents this shared
                understanding between people in a formal language, augmenting prose but neutral of
                later implementation decisions. Having such an explicit layer has benefits for
                enhanced interoperability, higher quality implementations, reuse and mapping, and as
                such is recognized as desirable by many modeling frameworks. In this paper, we
                describe our motivation and efforts to date, to use the ontologically well founded
                profile of the Unified Modeling Language (UML) proposed in  to create such models. Relevant subsets of a CM form
                the basis for physical data models (PDM) targeting specific technologies, in this
                case the generation of Extensible Markup Language (XML) schemata represented in the
                World Wide Web Consortium (W3C) Schema Language (XSD). These physical data models
                are annotated by a developer, with a set of encoding directives. These encoding
                directives and the custom developed software that interprets them to map concepts in
                the CM to their expression in an XSD, are our principle contribution. The CM
                language, the XSD encoding annotations, and the software are briefly
                described.
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   Prying Apart Semantics and Implementation
Generating XML Schemata directly from ontologically sound conceptual models

Introduction
Schemata in the World Wide Web Consortium's (W3C) Extensible Markup Language (XML)
            Schema language (XSD), Relax Next Generation (RNG), Structured Query Language (SQL) Data
            Definition Language (DDL), Resource Description Framework Schema (RDFS), or Web Ontology
            Language (OWL)) are typically created directly. A basic text editor can be used,
            although more likely today it will be with a design tool that uses visual symbols with a
            more or less bijective mapping to the constructs in the chosen implementation language.
            Various profiles of the Unified Modeling Language (UML) class diagrams have been
            proposed as a visualization for XSD design [Bernauer-2004]; various forms
            of Entity Relationship Diagrams (ERD)'s are the preferred choice for relational database
            (SQL DDL) design. And then there are the numerous languages specific to a given vendors
            tool.
As useful as these visual design languages are, they are first, representations of a
            design in a specific implementation language, and only secondarily do they reflect the
            semantics of a Universe of Discourse (UoD) or domain.[1] Or as stated in the introduction to [Guizzardi-2005] pages 7
            - 8.Nowadays, many languages exist that are used for the purpose of creating
                    representations of real-world conceptualizations. These languages are sometimes
                    named domain modeling languages (e.g., LINGO), ontology representation languages
                    (e.g., OWL), semantic data modeling languages (e.g., ER), among other terms. ...
                    Although these languages are employed in practice for conceptual modeling, they
                    are not designed with the specific purpose of being truthful to reality. For
                    instance, LINGO (Falbo & Menezes & Rocha, 1998; Falbo & Guizzardi
                    & Duarte, 2002) was designed with the specific objective of achieving a
                    positive trade-off between expression power of the language and the ability to
                    facilitate bridging the gap between the conceptual and implementation levels.
                    This preoccupation also seems to be present in Peter Chen's original proposal
                    for ER diagrams (Chen, 1976). OWL (Horrocks & Patel-Schneider & van
                    Harmelen, 2003) has been designed with the main purpose of achieving
                    computational efficiency in an automatic reasoning process. Some other
                    languages, such as Z (Spivey, 1988) and CC Technique (Dijkman & Ferreira
                    Pires & Joosten, 2001), take advantage of the simplicity of the well-defined
                    mathematical framework of set theory. Finally, some of the languages used
                    nowadays for conceptual modeling were created for different purposes, the most
                    notorious example being the UML (OMG, 2003c), which initially focused on
                    software design.


Designs reflect hard engineering trade-offs, starting with the initial
            choice of an implementation language which will have only limited abilities to express
            the full richness of the UoD, and ending with the numerous design choices made (e.g.,
            denormalization, implementing relationships, by reference, vs. by value, collapsing
            generalization hierarchies). This intertwining of implementation design and semantics
            with semantics taking a back seat, means that no formal model representing just the
            semantics remains. The sole guardian of pure semantics is the informal prose, in the
            text box labeled Description.
The use of prose to capture semantics is of course essential, the target audience that
            needs to fully account for semantics are people, and natural language with all its
            richness, complexity, and nuance is essential. The challenge of course with relying only
            on words is their ambiguity. Although formally the interplay of words with meaning is
            studied in fields such as linguistics, semiotics, phenomenology, communication theory
            etc., Humpty Dumpty sums up the problem rather well. 

            When I use a word, Humpty Dumpty said, in a rather scornful
                        tone, it means just what I choose it to mean, neither more nor less.
                    The question is, said Alice, whether you can make words
                    mean so many different things.
                    The question is, said Humpty Dumpty, which is to be master - that's all. Alice was too much puzzled to say anything; so after a minute Humpty Dumpty began again.
                        They've a temper, some of them - particularly verbs: they're the
                        proudest - adjectives you can do anything with, but not verbs - however, I
                        can manage the whole lot of them! Impenetrability! that's what I say! 
                            Lewis Carroll, Through the Looking
                    Glass



        
The lack of a separate design neutral, but formal accounting of semantics has several
            drawbacks. The first, is that ultimately for two or more systems to interoperate they
            must share a compatible understanding of the UoD, they needn't necessarily share the
            same design. This task of determining, and ultimately documenting via a mapping,
            compatibility, or recognizing when and where it is not possible is made more difficult.
            Second, when people negotiate to decide on a common language for sharing information,
            the discussion can / will often stray between discussing differences in meaning, and
            differences in design. Its helpful in resolving disagreements to know which of the two
            classes of discussion one is having. Third, it is perfectly reasonable, desirable, and
            necessary to implement the same UoD in multiple implementation languages and/or in
            multiple designs. Capturing explicitly a model of the UoD allows it to be reused. This
            is even more beneficial if the domain is highly complex and/or technical and modeling it
            correctly is expensive, time consuming and difficult.
A solution, is to create a conceptual model (CM). A model that formally represent
            those aspects of the UoD that are deemed relevant for a particular purpose, (e.g., the
            static structural aspects of a domain essential to the development of information
            models), but that is neutral of physical design decisions. Then from that model produce
            though a semi-automated mapping process logical / physical level models, from which,
            because of their isomorphism to a targeted schema language, a schema can be
            automatically produced.
The idea is hardly new.The issue is essentially one of implementation
                independence - the goal (or assumption) that the conceptual data model be
                independent of the implementation language. This view dates at least from Chen
                (1976), is the basis of the conceptualization principle in the ANSI/SPARC
                    framework [ISO-TR9007], and has been frequently re-stated ...
                This ideal does not appear to be achieved in practice ([Simsion-2007], p. 51). Nor is the idea unique to the data modeling
            community from which the above quote originates. The Model Driven Architecture (MDA) of
            the Object Management Group (OMG) has the concepts of the Platform Independent Model
            (PIM) and Platform Specific Model (PSM) [OMG-MDA]. The recognition of the
            need for conceptual models to back up XML schema design is also old, dating back to the
            beginning of XML, and XML's predecessor, Standardized Generalized Markup language
                (SGML).[2]
The proposal outlined in the sections that follow is also in one sense nothing new.
            Its strength is not in the idea that a conceptual model is useful, but in what modeling
            language has been pressed into service. The conceptual modeling language outlined below,
            is a subset of that proposed by Giancarlo Guizzardi, principally in [Guizzardi-2005] . In his 2005 work, a foundational ontology in later
            works referred to as the Unified Foundational Ontology (UFO), designed to capture
            agreements about the semantics of a UoD by people and for people, visualized using a
            profile of UML 2.0 is defined. We have changed, only trivially his proposal based on
            some ideas from data modeling [Simsion-2005] and other sources both to
            simplify the language, and make it more familiar to people with a data modeling
            background. The UFO builds upon cross disciplinary knowledge as well as research in
            formal ontology [as applied to computer science] that has occurred in the last fifteen
            years.
From a conceptual model based on this language, multiple physical data models (PDM)
            which subset, and / or extend, the larger conceptual model are generated. A PDM is then
            annotated by a designer with a set of encoding options that specify how the concepts in
            the CM should be represented in the XSD. We have chosen the initial set of encoding
            options based on internal experience with creating UML to XML schema mappings since
            2000-2001 much like those surveyed in [Bernauer-2004]. Software written
            in Extensible Stylesheet Transformations (XSLT) version 2.0 is the primary mechanism by
            which the annotated physical data models are compiled into XML schemata. Figure 1 show an overview of the complete process.
Figure 1: Model Development Process
[image: ]


In the following sections, our requirements for a CM modeling language are explained,
            followed by a brief outline of the ontologically well founded language we have selected.
            This is followed by an example physical data model, that has been annotated with XSD
            encoding directives. How those directives drive the compilation of that PDM into an XSD
            is explained. The software implementation in Sybase Power Designer (a commercial data
            modeling / enterprise architecture tool), and in particular the implementation of the
            XSLT code that generates an XML schema from it, is touched on briefly. This is followed
            by a section on further work, and conclusions. Appendix A contains a more complete
            account of the XSD encoding options available.

Semantics
An Ontologically based Conceptual Modeling Language

            All models are wrong, some are useful. George Box



        
This frequently repeated quote represents a very pragmatic definition of what makes a
            good model and it is the position adopted here for both models, and by extension
            modeling languages and the meta-models / ontologies that they are based on. As such, no
            claims are made that the modeling language briefly introduced below, the foundational
            ontology it is based on, or the models that are described with it, have any lock on a
            single, absolute truth. Instead, the language has been chosen / customized because we
            believe it can meet the following pragmatic requirements[3]: Modeling Language Requirements
	Document an agreement between people, to a reasonable level of
                        specificity,[4] those aspects of a UoD or domain that are relevant for the
                        design of information/data models, but without committing to a specific
                        implementation language.

	Support through human directed action, and to the greatest extent
                        possible, the automatic generation of designs and schemata encoded as XSDs
                        appropriate for information exchange .

	Similarly support the generation of designs and schemata encoded as SQL
                        DDL appropriate for relational data bases.[5]

	If possible, support the generation of designs and schemata encoded in OWL
                        Description Logic (DL).[6]

	Be reasonably approachable by personnel trained in traditional logical
                        data modeling using ERD notations.[7]

	Reduce the level of construct variability, to support the development of
                        models in a distributed environment.[8]

	Accommodate both vertical and horizontal variability, to support the
                        integration of multiple different perspectives of the same concept within an
                            enterprise.[9]



After attempting to adapt unsuccessfully both standard UML and ERD notations to meet
            the above requirements, the realization through both experience and subsequent
            examination of the literature (e.g., [Simsion-2007] ), was that both
            languages, and the informal ontologies that they are based on, were too biased for
            design in a specific technology. This led us to examine how formal ontology[10] could be employed, not in the computer science sense of producing a specific
            artifact, expressed typically in a formal logic variant, but in the philosophical sense.... Formal Ontology deals with formal ontological structures (e.g., theory of
                    parts, theory of wholes, types and instantiation, identity, dependence, unity),
                    i.e., with formal aspects of objects irrespective of their particular nature.
                    The unfolding of Formal Ontology as a philosophical discipline aims at
                    developing a system of general categories and their ties, which can be used in
                    the development of scientific theories and domain-specific common sense theories
                    of reality ([Guizzardi-2005], p. 5).



In the end we settled on the formal foundational ontology, and its representation in
            UML defined in Guizzardi's 2005 PhD thesis [Guizzardi-2005] and
            subsequent research papers [Guizzardi-2006a]
            [Guizzardi-2006b]
            [Guizzardi-2007]
            [Guizzardi-2008] to name just a few, that define the Unified
            Foundational Ontology (UFO). Some small changes in terminology were made to make the UFO
            more approachable to classically trained ERD modelers. Its also important to point out
            that no claim is being made that the UFO is the only upper level ontology that will meet
            the requirements outlined above. What is being claimed is that the selection and
            explicit recognition of a formal upper level ontology as the basis for domain ontologies
            / models is essential to give those models the precise semantic underpinning needed to
            enable interoperability. What follows is a necessarily brief introduction to UFO and its
            representation in UML.
This ontology / language is used to facilitate communication between people, although
            admittedly it is not something that a person, without training will fully grasp.
                [The ontology ] aims at capturing the ontological distinctions underlying
                human cognition and common sense.[Guizzardi-2005] The
            ontology is the basis for recording one, (among many possible) conceptualizations of the
            real-world, defining what is a valid state of that world. As such, the language symbols
            designate real-world objects, and not information structures as is the case is the PDMs
            derived from it. Optionality on attributes and relationships is strongly 
            discouraged[11], ... from an ontological standpoint, there is no such a thing as an
                optional property and, hence, the representation of optional cardinality leads to
                unsound models (in the technical sense of chapter 2), with undesirable consequences
                in terms of clarity ([Guizzardi-2005], p. 139).
Endurant Types
Like many upper level 'common sense' ontologies the first level distinction is
                between endurants and events, or things that exist in time, and
                maintain their identity, and things that exist of time. Unlike
                in the UFO, and in particular UFO-B, in our subset the concept of an event is not
                further specialized. Endurants are. Endurants (e.g., kind, category, role,
                associative) are specialized based on three basic criteria:	Existential independence: Is the concept existentially independent,
                            dependent on exactly one other concept, or dependent on two or more
                            other concepts? Existentially dependent concepts, are those that if they
                            are not seen in, or inhered in another object, don't exist.

	Single principle of identity: Does the concept convey a unified
                            principle of identity? (e.g, all instances of the type have a common way
                            in which they are identified; and thus, instances can be counted
                            directly).

	Rigidity: Is each instance of a type always of that type? (i.e., the
                            instance - type relationship is rigid), or is it only sometimes
                            (typically within some period of time), associated with a type (i.e.
                            anti-rigid)?


This leads to the following breakdown:Table I
Endurant Types

	Name	Independent	Identity	Rigid	Description
	kind	+	+	+	A «kind» represents a substance sortal whose instances are
                                    functional complexes. Examples include instances of Natural
                                    Kinds (such as Person, Dog, Tree) and of artifacts (Chair, Car,
                                    Television). ([Guizzardi-2005], p.
                                317)
	role	+	+	-	A «role» represents a phased-sortal role, i.e. anti-rigid and
                                    relationally dependent universal. For instance, the role student
                                    is played by an instance of the kind Person. ([Guizzardi-2005], p. 319)
	category	+	-	+	A «category» represents a rigid and relationally independent
                                    mixin, i.e., a dispersive universal that aggregates essential
                                    properties which are common to different substance sortals. For
                                    example, the category RationalEntity as a generalization of
                                    Person and IntelligentAgent. ([Guizzardi-2005], p. 319)
	role category	+	-	-	A «role category» represents an anti-rigid and externally
                                    dependent nonsortal, i.e., a dispersive universal that
                                    aggregates properties which are common to different roles. In
                                    includes formal roles such as whole and part, and initiator and
                                    responder. ([Guizzardi-2005], p. 320)
                                Examples include resource, asset, communicant.
	dependent	- (1)	+	+	A <dependent» universal is an intrinsic moment universal.
                                    Every instance of dependent universal is existentially dependent
                                    of exactly one entity. Examples include skills, thoughts,
                                    beliefs, intentions, symptoms, private goals. ([Guizzardi-2005], p. 335)
	associative	- (2 or more)	+	+	Every instance of an <<associative>> universal is
                                    existentially dependent of at least two distinct entities.
                                    Associative's are the instantiation of relational properties
                                    such as marriages, kisses, handshakes, commitments, and
                                    purchases. ([Guizzardi-2005], p.
                                335)



Attributes and Datatypes.
[Model] attributes are used exclusively to represent simple existentially
                dependent concepts such as height, weight, color, a social security number, that can
                be mapped directly to single or multi-dimensional value spaces as represented by
                data types.[12]
Our treatment of datatypes doesn't vary from that found in xsd:schema and other
                languages and so is not elaborated on here. A discussion on the ontological
                foundations of data types as they relate to quality structures, and quale can be
                found in [Guizzardi-2006a] or the work it is based on
                Gärdenfors, P. "Conceptual Spaces: the Geometry of Thought", MIT
                    Press, Cambridge, USA, 2000.Table II
Data Types

	Datatype	Description
	primitive	The value space defined by a set of built in data types. (e.g.,
                                string, float, integer, octets, boolean, data time, date,
                                time).
	domain	A value space based on a primitive type constrained by range /
                                length / pattern restrictions.
	enum	A value space based on a primitive type constrained by enumerating
                                its possible values.
	struct	A multidimensional value space (e.g., color as hue, saturation,
                                intensity).
	union	A value space formed by the union of 2 or more other data
                                types.



Association
The representation of associations is the one part of the meta-model that deviates
                somewhat from that defined in [Guizzardi-2005]. Guizzardi specifies
                a number of association types, often specific to the pairs of endurant types being
                related. The position taken here is that a simpler characterization that collapses
                many of the UFO association types into the three types of identifying,
                non-identifying, and aggregation/composition (whole-part) is sufficient. Identifying
                and non-identifying relations are an important distinction made in ERD modeling,
                between those associations linking entities with a shared identity, and those that
                are not. The concepts that do not have independent existence (e.g., dependent,
                associative) must be tied through identifying relations to concepts that do, and can
                thus provide identity to them. Concepts that are independent are tied together with
                non-identifying relations.
A special form of non-identifying relation is the whole-part (meronymic) relation.
                Like UFO, and UML, we define the relationships of aggregation, and composition, and
                adopt UFO's semantics to clarify the ambiguous treatment of them in UML.[13]. Specifically we have adopted the following additional constraints that
                are defined in UFO.Table III
Whole - Part Instance Constraints

	Name	Description	Note	Example
	shareable	Indicates whether an instance of a part can locally be shared by
                                more then one instance of a whole.	Shareable is represented as UML aggregation (i.e. an open diamond on
                                the whole side of the association). Non-sharable is represented as
                                UML composition (e.g., a closed diamond on the whole side of the
                                association).	The whole / part relationship between a research group and a
                                researcher is locally sharable, meaning that an instance of a
                                researcher can belong to more then one research group.
	inseparable	Indicates that the instance of the part is dependent on the instance
                                of a whole (i.e. if the instance of the part is removed from the
                                instance of its whole, it ceases to exist).	Represented with the UML constraint {inseparable} on the
                                association.	The relation between a human body and its brain is inseparable
                                (assuming the nonexistence of brain transplants), meaning that if a
                                brain is separated from a body, it ceases to exist.
	essential	Indicates that the instance of the whole is dependent on the
                                instance of the part (i.e. if the instance of the part is removed
                                form the instance of its whole, the whole ceases to exist.)	Represented with the UML constraint {essential} on the
                                association.	The relation between a human body and its brain is essential,
                                meaning that if a brain is separated from a body, the body ceases to
                                exist.



Generalization
Generalization relations are supported between classes, associations, and
                attributes. Generalization between concepts that have a single principle of
                identity, the so called sortals (e.g., kind, role, dependent, associative), and
                those that do not, the so called non-sortals or mixin (e.g., category, role
                category) is treated differently. A concept with identity can only get that identity
                from a single source, and thus only single inheritance is allowed in this context.
                Multiple inheritance is supported between the non-sortals, or between the sortals
                and non-sortals. A solid generalization line (UML generalization) is used for
                generalization between sortals and sortals and between non-sortals and non-sortals.
                A dashed line (UML realization) represents the generalization relation between a
                sortal 'realization' of a non-sortal.
The presence of constructs such as the non-sortals, and the fact that the sortals,
                can use multiple inheritance to relate to them, supports the representation of
                multiple overlapping categorization schemes necessary to reconcile horizontal
                variability. The broad support of generalization between all model concepts (e.g.,
                attributes and associations) supports the need for vertical variability.

Example
The simple model example below demonstrates some of the model constructs described
                above, and will be used as the source for describing the XML encoding options below. 
Figure 2: Sample Model
[image: ]



Conclusion
There are numerous other constraints implemented in
                UFO and its expression in UML that are not touched upon here. For example the
                pattern for explicitly dealing with <<role>> brings uniformity to the
                expression of a very common concept, that is only informally dealt with in common
                modeling languages like UML and ERD. As another example an anti-rigid type cannot be
                a supertype to a rigid type. These rules together create restrictions on how
                concepts can be related to each other, reducing the likelihood that skilled modelers
                will produce unsound models, and increasing the likelihood that they will use model
                constructs in similar ways (i.e. construct variability will be reduced). These
                additional constraints unfortunately do not make the creation of good models any
                less challenging intellectually, a challenge that will be brought up again later in
                the conclusion.


Design
XML Schema Encoding Annotations
The design phase that ends with the ability to automatically generate an XSD starts by
            creating a copy of some subset of the larger conceptual model. During this generation
            phase the target implementation language is selected, in this case the target language
            is a W3C XML schema. This subset copy, called a physical data model (PDM) is then
            modified in two ways. First, additional diagrams may be added to tell a story customized
            to specific perspective that a customer has over a UoD. Second, the physical model is
            changed. Anything can be changed including the addition or deletion of modeling
            constructs as needed. The more common changes include renaming concepts to reflect
            preferences by a customer.[14], selecting which attributes will function as keys, changing the navigability
            on associations, and the selection of specific XSD encoding options.
Both properties defined by UML 2.0 (e.g., association end navigability) and additional
            properties added as extensions to base UML are used. Some model properties apply
            globally to the entire model, and thus affect the entire XSD being generated (e.g., the
            namespace of the XSD), others apply to the encoding of a specific modeling construct
            (e.g., class, attribute). In some cases the same property can appear both globally and
            locally. If so, precedence is given to the local value. Most encoding options have
            default values (e.g., [UML] attributes get encoded as xsd:element). If an encoding style
            is being used see Appendix A, whole sets of encoding options plus
            built in logic that keys off of the semantic constructs in the model get enabled. Thus a
            default XSD can be produced with minimal effort. Yet fine grained control can also be
            exercised by setting individual encoding properties if desired. 
A complete enumeration and explanation of all of the available encoding options is
            beyond the current scope. A brief summary of the most common options is contained in
                Appendix A. Below, a subset of the example model introduced above
            is used to explain how one set of encoding options produces an XSD.
Example
Figure 3: Physical Design
[image: ]


Figure 4: XML Sample
<ComputerSystem name="Zulu">
    <CPU-Signature>Intel(R)Pentium(R) M</CPU-Signature>
    <Hardware>
        <ComputerMaker>Dell</ComputerMaker>
        <SerialNum>12345</SerialNum>
    </Hardware>
</ComputerSystem>


Figure 5: W3C XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <xsd:element name="ComputerSytem" type="ComputerSystem"/>

    <xsd:complexType name="ComputerSystem">
        <xsd:sequence>
            <xsd:group maxOccurs="unbounded" ref="CPU"/>
            <xsd:element name="Hardware" type="Hardware"/>
        </xsd:sequence>
        <xsd:attribute name="name" use="required" type="xsd:string"/>
    </xsd:complexType>

    <xsd:group name="CPU">
        <xsd:sequence>
            <xsd:element name="CPUSignature" type="xsd:string"/>
        </xsd:sequence>
    </xsd:group>

    <xsd:complexType name="Hardware">
        <xsd:group ref="ManufacturedItem"/>
    </xsd:complexType>

    <xsd:group name="ManufacturedItem">
        <xsd:sequence>
            <xsd:element name="ComputerMaker" type="xsd:string"/>
            <xsd:element name="SerialNum" type="xsd:string"/>
        </xsd:sequence>
    </xsd:group>

    <xsd:complexType name="Manufacturer">
        <xsd:complexContent>
            <xsd:extension base="Organization"/>
        </xsd:complexContent>

    </xsd:complexType>
    <xsd:complexType name="Organization">
        <xsd:sequence>
            <xsd:element name="Name" type="xsd:string"/>
            <xsd:element name="Size" type="organizationSizeEnum"/>
        </xsd:sequence>
    </xsd:complexType>

    <xsd:simpleType name="organizationSizeEnum">
        <xsd:restriction base="xsd:string">
            <xsd:enumeration value="small"/>
            <xsd:enumeration value="medium"/>
            <xsd:enumeration value="large"/>
        </xsd:restriction>
    </xsd:simpleType>
</xsd:schema>



Starting left to right; bottom to top:	<<kind>> CPU is created as an
                                xsd:group. By default an xsd:complexType
                            is generated for all of the sortal types, but because an inbound
                            association has explicitly been set to encode 'asGroupRef', a group is
                            created. Encoding of classes is driven by defaults for its particular
                            type (e.g., <<kind>>, <<category>>) and /or by the schema
                            structures necessary to honor the needs of inbound relationships. This
                            means that any single class could cause the generation of
                                xsd:complexType, xsd:group and
                                xsd:attributeGroup structures.
Attribute signature is created as an
                                xsd:element within the xsd:group. By
                            default [UML] attributes get represented as xsd:element.
                            The name created for the element is "CPUSignature" based on the default
                            setting for a global default that controls the name syntax applied to
                            the creation of XML elements. In this case because of the group
                            reference, a name is chosen that appends the class name to the attribute
                            name so as to not lose needed context when the created XML element is
                            referenced from 'ComputerSystem'.

	<<kind>> ComputerSystem is created as an
                                xsd:complexType, and as a global
                                xsd:element declaration. The UML visibility property on
                            a class controls whether a global complex type and element (visibility =
                            'public'), a global element with an anonymous complex type (visibility =
                            'protected'), or just a complex type (visibility = 'private') is
                            created.
Attribute name is encoded as an
                                xsd:attribute based on the encoding="asAttribute"
                            setting attached to it. 
An xsd:group ref="" with a maxOccurs set to
                                unbounded to the group CPU is
                            created based on the encoding option set for the navigable outbound
                            relation to it. 
Finally an xsd:element reference is created to represent
                            the outbound relation to Hardware. The
                                xsd:element reference construct is used for two
                            reasons. Broadly, the encoding of relationships takes two forms, by
                            value, and by reference, with multiple by reference styles to choose
                            from. By reference encodings require keys (one or more attributes whose
                            values can be uniquely used to identify a single instance of the
                            targeted class) to reference the construct. Because no keys are
                            available a by value encoding is used. Because the visibility property
                            of Hardware is public, a xsd:element
                                ref="" is used.

	<<kind>> Hardware is created as a global
                                xsd:complexType and xsd:element.
An xsd:group ref="" is created to represent the
                            realization relationship to ManuracturedItem. An
                                xsd:group reference is used because the default
                            encoding for ManufacturedItem as a
                            <<category>> is xsd:group.

	<<category>> ManufactureredItem is by
                            default encoded as an xsd:group. The mixin / non-sortal
                            class types of <<category>> and <<role category>> can be
                            used to cross-categorize the sortal class types. As such its quite
                            possible that a sortal will have generalization relations (represented
                            as UML realization visually) to many of them; effectively allowing for
                            multiple inheritance. Because of this group / group referencing is used
                            by default.
Attribute serialNum is created as an xsd:element
                            by default. 
The outbound association manufacturedBy gets
                            encoded as an xsd:element called Manufacturer with a
                            datatype of string and whose value represents the key of the class
                                Organization. The key of
                                Organization is the [UML] attribute
                                name as indicated by the <<PK>>
                            stereotype. The reason this construct is created to represent the
                            relationship manufacturedBy is as follows: By a
                            settable default, associations to classes that have available keys use
                            those key(s) to implement a relationship by reference. If there is only
                            a single key, the name of the class being pointed at is used to name the
                            relationship.

	<<role>> Manufacturer is by default encoded
                            as a global xsd:complexType and xsd:element.
                            Because it has a generalization relation to another sortal type, and
                            there can be only once such generalization relation present per the
                            modeling language constraints, complex type extension can safely be used
                            to implement it. Because the default setting is to generate substitution
                            groups, one is created for Manufacturer and
                            Organization.

	<<kind>> Organization is by default encoded
                            as a global xsd:complexType and
                            xsd:element.
Attribute name is by default encoded as an
                                xsd:element.




Conclusion
By no means does the set of encoding options available exercise every last corner
                of the W3C XML schema specification, but they do allow, especially when used in
                combination, for a surprising variability in encoding choices. New options are added
                as they are needed, and thus far, elegant solutions to generate a given encoding
                choice have always been possible without requiring that the models be changed in any
                way other than with the addition of new encoding annotations. In essence the
                implementation level decisions are effectively segregated and do not perturb the
                semantic representation.


Software
The creation and maintenance of multiple layers of models and the subsequent
            generation of XSDs would not be feasible without the correct tooling. The modeling tool
            we use is Sybase Power Designer; a market leading tool in traditional [relational] data
            modeling. It was selected for a variety of reasons, not the least of which is its
            extensive ability to be customized, and ability to generate / merge / compare / track
            the relations between multiple models. It has been customized to support and enforce the
            rules of the conceptual modeling language outlined above. This has involved extending
            the meta-model that underlies Power Designer with additional [extended] properties,
            modifying the forms displayed under certain menus, and writing additional trigger code
            to enforce the rules of the conceptual modeling language (e.g., section “Conclusion”). The code that create the XSD has been implemented
            outside of Power Designer to avoid coupling it to a particular vendor's product.
The architecture for this XSD complier, called unimaginatively
                Model2XSD is shown below Figure 6. A
            relatively simple routine written inside Power Designer in visual basic script
            serializes the model as XML based on a custom designed markup language.[15] An XSLT 2.0 pipeline is then called to compile the XML into an XSD. The XSLT
            program consists of several processing stages and supporting libraries of functions and
            configuration files. The Model2XSD-Preprocessor is used to add
            additional constructs to the serialized model file if needed based on selected encoding
            options. The Model2XSD-Processor creates the XSD. Finally the
                Model2XSD-Postprocessor, optionally, does certain XSD clean-up
            activities that can simplify the resultant schema.[16] All of these pieces of code are backed up by two function libraries,
                Model-Utility primarily contains functions that navigate the physical
            model as represented in XML (e.g., getting a concept's supertype, all its subtypes,
            etc.). This library does not contain any functions specific to the generation of an XSD
            and thus could be reused in other generation tasks.Model2XSD-Utility"
            contains functions specific to the generation of XSD files.
Figure 6: Model2XSD Process Flow
[image: ]



Further Work
Our application of the techniques outlined above is in its infancy. As we continue to
            gain experience, refinements in both the conceptual modeling language, the encoding
            rules for XSD, and the software support for all of the above are inevitable. It is
            possible that we will see the benefit of adopting more of the UFO, or possibly less. As
            we develop more XSDs we will undoubtedly have requirements for incrementally adding to
            our tool box of encoding annotations. It is a testament to the strength of the
            conceptual modeling language that thus far we have been able to algorithmically generate
            any necessary encoding we need. 
In roughly priority order these are the current areas of interest we are
            pursuing:
	The processes and tooling needed to support the maintenance, change
                    management, and synchronization between a set of related models (conceptual,
                    physical,) and schemata (XSD) that are expected to evolve on independent time
                    lines, with differing constraints (e.g., the physical models and resultant XSD
                    files will be subject to pressures to maintain backwards and/or forward
                    compatibility for some period of time) and likely to be changed by independent
                    groups.

	Work on how the physical data models are visually represented. As these models
                    are based on the conceptual model, but lead to an XSD, a tension naturally
                    arises as to how they should be visualized. Should the visualization reflect its
                    semantic roots in the CM, or the structure of the resultant XSD? And how do all
                    of the XSD specific encoding directives get represented visually? Currently many
                    are not, which makes it needlessly difficult to make the leap from model to XSD.
                    Our hope is that we can keep the physical data model visualization more closely
                    aligned with its conceptual roots, and through graphical overlays show the XSD
                    encoding annotations, but this remains to be seen.

	Create code that automatically adds documentation into the generated XSDs that
                    reflect semantic distinctions present in the conceptual model that are
                    intentionally excluded from the resultant XSD. This occurs, for example, when an
                    XSD is generated that has collapsed what are multiple subclasses in the CM into
                    a superclass. All of the attributes and relations present in the sub-classes
                    become optional in the super. It's not that there is a fundamental change in the
                    conceptualization of the domain when this is done, it's much more likely that
                    the enforcement of a set of constraints is being moved from the schema to
                    software. It should be possible to generate additional documentation and embed
                    it into the XSD to make note of these relevant rules.

	Prototype the software needed to generate other implementations (e.g., DDL,
                    OWL).

	Explore whether, when different physical designs all originating from
                    overlapping parts of the same conceptual model are created, it is possible to at
                    least partially automatically create the needed XSLT code that would be required
                    to translate between them.



Conclusion
The adoption of a multi-layered model development process consisting of one (or a
            small number of) conceptual models as the basis for potentially many physical
            implementation models; the selection / customization of the UFO visually represented as
            UML class diagrams, as a conceptual modeling language; the design of rules for compiling
            these models into an XSD; and the implementation of all of the above using Sybase Power
            Designer and XSLT is all still relatively new. We have only recently started exercising
            this methodology fully to deliver products (XSDs) to internal customers. We are still
            learning, and further customizing our techniques and their implementation in software.
            So far our experience with using these techniques is anecdotal. It is both sobering and
            promising...
Challenges
... the short story is that good design involves hard thinking. And that
                    means it’s just hard [Sperberg-McQueen-2008]. Although the quantification of what is
                    good design, is an interesting challenge in and of itself, it is
                indeed very hard, both to do, and often to justify taking the time to do. On the one
                hand the conceptual modeling language outlined above, with its more restrictive
                rules can aid a good modeler in coming up with better, more sound models. The whole
                methodology with its emphasis on semantics can lead to higher quality XSDs, at least
                in the sense that they are semantically well grounded. But the bar for creating good
                models is still high if not higher. To create a truly good design all the way from
                creating a conceptual model to creating a good physical design takes quite a rare
                skill set. Design activities require distinct skills - and arguably certain
                    personal characteristics. ([Simsion-2007], p. 8)
                Detailed knowledge of the domain being modeled, detailed knowledge about how best to
                conceptualize a domain, in particular knowing what level of abstraction to use, and
                recognizing how to separate out, and deal with some of the orthogonal concerns that
                creep in[17], how to effectively represent and communicate that conceptualization in
                a modeling language, and how best to represent it in a chosen technology are all
                needed. Of course these skills can be split across several individuals, but that
                splitting leads to its own challenges. Finding, or training people to do this work
                well is difficult Data modeling is notoriously difficult to learn and
                    teach. ([Simsion-2007] , p.8)
And then there is the problem of finding the time to do this work. It is hoped
                that the techniques outlined above, specifically meeting requirements 1 and 2 will lead to
                greater reuse possibilities, and thus allow for the quick repackaging of already
                done hard work. None the less, creating high quality, semantically well-founded
                designs takes time, and time is a precious resource in many projects, whose use must
                be justified.
Any group of systems that are information focused, and need to share that
                information either through exchange or a shared data store, get coupled to the
                information designs that underpin them. If these systems need to have a deep
                understanding of the semantics behind the information (i.e., software is directly
                creating, modifying, taking action on what the information means vs. just storing /
                presenting it and leaving the heavy semantic lifting to people), the coupling is
                tight, and changing the information design very expensive. So too is creating a deep
                semantic mapping between different, typically underspecified designs, or conversely
                recognizing that they can't be mapped. This expense leads to the conclusion that in
                many cases the up-front investment in good design is well worth it.
Finally there is the lack of adequate tool support. We have taken an industry
                leading data modeling tool and augmented it to support ontology development leading
                to an XML schema. It has required a reasonable amount of customization. Even with
                these customizations there are many things that we would like the tool to do that it
                can't. Nor are we aware of any tool that has the full feature set we need to truly
                create and maintain requirements models mapped to implementation neutral conceptual
                models coupled with implementation specific design models from which XSD, DDL, and
                OWL can be generated, and to do so on a large enterprise wide scale.

Accomplishments
 Looking back at the requirements we set out for ourselves “Modeling Language Requirements”:	The selected modeling language is helping our internal team
                            communicate and reach agreement on conceptualisations of the UoD(1. It is also helping us to clarify our
                            prose descriptions of a UoD. Unlink ERD and UML in practice, where the
                            visualization reflects the implementation, conceptual models based on
                            UFO reflect the semantics, and these semantics should be mirrored in the
                                prose.[18] On many occasions we have created model concepts, then
                            written their prose definitions and found that the model and the prose
                            contradict each other. When this happens this points to a fundamental
                            problem and either the prose or the model has to be changed.

	 The semantic richness, precision, and design neutrality of the
                            conceptual modeling language, coupled with the flexibility of the XSD
                            encoding rules, and the fact that implementation models are kept
                            distinct from, but tied to, the conceptual model grant great flexibility
                            in creating XSDs well tailored to a customers need 2. This flexibility has been exercised twice,
                            when our team was tasked with creating a conceptual model reverse
                                engineered[19] from existing format specifications and then
                            forward-engineer back to a new XSD with very specific encoding
                            constraints.

	Support of using the same conceptual models to support designs in
                            other implementation languages 3, 4, is promising, but unproven at this point. If it
                            were proven it would both re-enforce that the conceptual modeling
                            language is indeed largely independent of implementation design biases,
                            and add to the business case of investing in the development of models
                            that could be more widely reused.

	Early evidence does support the claim that construct variability 6 is reduced, primarily in the use of
                            attributes, and for representing roles.

	Likewise, early experience is that the conceptual modeling language is
                            better at documenting horizontal and vertical variability 7 and representing how different
                            choices relate to one another. Representing this variability in the same
                            conceptual model, however does complicate the resulting models and their
                            presentation visually.

	An additional benefit that was not directly sought is that the code
                            that generates the XSD files partially mitigates the need for the
                            modelers using it to fully grasp all of syntactic and grammatical
                            nuances of the XSD language.





Appendix A. Physical Encoding Options
This section describes some of the more commonly used encoding options available to
            map from a XSD PDM to an actual XSD. It is by no means a complete accounting of the many
            encoding options available, nor how they can be used together to create a large variety
            of different schema structures.
The information in this section is largely presented as a series of tables. Two basic
            table structures exist, the first describes model properties present in the model that
            affect the XSD. The origin field in this table contains two values, "Build In" or
            "Extended" that reflect whether the property is part of UML and thus is built in to a
            UML tool, or whether it is an extended property that we have added. The second table
            type focuses in particular on an extended property called 'encoding' that drives much
            how the schema will look. Included in this table are example XSD fragments and XML
            fragments that reflect the behaviour of the various encoding options.
General Encoding Rules
This section describes some of the model properties and encoding options available
                that affect the entire schema or are common across many model concepts.
Model Level Properties
Model level properties are set once per model (and thus XSD file) and have
                    global effects. They are as follows:Table IV
Model Level Encoding

	Property	Origin	Description	Use	Note
	Target Namespace and Namespace Prefix	Extended	The target namespace and namespace prefix of the generated
                                    XSD.	Used to set the targetNamespace information of the XSD.	When one physical model references a concept in another, needed
                                    namespace declarations, namespace prefixing and
                                        xsd:import statements are generated
                                    automatically if the concept is in another namespace. Otherwise,
                                    needed xsd:include statements are generated.
	Prune Group	Extended	A boolean controlling whether xsd:group and
                                        xsd:attributeGroup structures referenced only
                                    once will be eliminated from the XSD with their elements /
                                    attributes collapsed into the referencing concept.	Used to create schema's that have the minimal number of group /
                                    attribute groups defined.	Default is true.
	Encoding Style	Extended	Selects which encoding style to use. An encoding style effects a
                                    whole set of different encoding options to produce schema's of a
                                    particular style.	An encoding style, is analogous to the scene modes on digital
                                    cameras. It allows one to select a whole set of other encoding
                                    options that together with some additional programming logic
                                    that wraps them, create schemata in a particular style.	Default is the internal style used on our team.
	[Default] Association Encoding	Extended	Selects which association end encoding to use by default.	Controls the default association end encoding that will
                                        occur. Table XVI	Default is 'asElement'.
	[Default] Name Encodings (e.g., for XSD attributes, elements,
                                    types and groups.	Extended	Selects the default name encoding for all schema
                                    constructs.	See Table VI	Default is 'leadingUpperCase' for XML elements, 'leading
                                    Lowercase' for XML attributes and 'preserve' for XSD
                                    simpletypes, complex types and groups.



Name Encoding
The generated names of XSD declarations are controlled by many settings.
                    Defaults at the model level can be set, and overridden as needed on an
                    individual concept. Any given name consists of two parts, a prefix and a root.
                    The root is always the name of the concept. The prefix depends on what type of
                    concept it is, as described below. Many more styles are available then described
                    here. In addition, more complex naming rules are applied in certain association
                    encoding situations where foreign keys are being generated, and/or where a group
                    reference is effectively merging two concepts together. These rules
                    automatically start adding additional context to the generated names so that for
                    example, a primary key called 'identifier' in the target class of an
                    association, doesn't simply remain 'identifier' when it becomes a foreign key in
                    the source class, where it could potentially clash with an existing 'identifier'
                    attribute.

                    Table V
Prefix and Root Sources

	Concept	Prefix
	Class, Domain, Enumeration, Structure, Union 	Model Code
	Attribute	Class Code
	Association	Association End Class Codes


                    Table VI
Name Encoding Options[image: ]

	Name Encoding	Concept	Prefix	Root	Final XSD Name
	leadingUpperCase	Class	N/A	ComputerSystem	ComputerSystem
	Attribute	N/A	name	Name
	Association	N/A	has	Has
	lowerCamelCase	Class	Computer	ComputerSystem	computerComputerSystem
	Attribute	ComputerSystem	name	computerSystemName
	Association	ComputerSystem CPU	has	computerSystemHasCPU
	lowerCaseConcatenate	Class	Computer	ComputerSystem	computer-computerSystem
	Attribute	ComputerSystem	name	computerSystem-name
	Association	ComputerSystem CPU	has	comuterSystem-has-CPU
	Preserve	Class	N/A	ComputerSystem	ComputerSystem
	Attribute	N/A	name	name
	Association	N/A	has	has


                

Multiplicity Encoding
Both [model] attributes and associations have multiplicity encoding
                    parameters. They get mapped to minOccurs and maxOccurs in an XSD in the obvious
                    way. When a multiplicity greater then one is combined with an encoding that will
                    result in an [XML] attribute, a list structure is automatically created for that
                    attribute. If the creation of list content for an element is required, instead
                    of the default behaviour to simply allow the element to repeat, an extended
                    property called multiplicityEncoding can be explicitly set to the value
                    'asList'.

Documentation
XSD's produced can optionally included embedded annotations. These annotations
                    are extensive, taking advantage of the definitions embedded in every concept in
                    the model, as well as automatically generated boiler plate definitions created
                    when new XSD constructs are generated (e.g., the creation of foreign key
                    structures representing associations, See Table XVI). Additional code is available to take
                    definitions and represent them in a tab delimited form for a tabular
                    presentation as well as conversion to an alternative XML representation used to
                    load a searchable web based data element dictionary tool.


Class Encoding
This section describes the common properties and encoding options used to
                represent classes (e.g., kind, role, category) in a schema.

                Table VII
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the class.	Used as the name for the generated schema construct subject to any
                                name encoding rules in effect.	
	visibility	Built In	The visibility of the class.	When a global xsd:complexType will be generated the visibility
                                property will have the following effect.	
	public - a global element and a global xsd:complexType are
                                generated.
	protected - a global element containing an anonymous xsd:complexType
                                is created.	
	private - only a global xsd:complexType is created.	
	skip	Extended	Directs a class to not be encoded. All of its properties will be
                                merged with its subtype if it exists or its supertype it the
                                generalization relation is set to be navigable in that direction.
                                See section “Generalization Encodings”	This is very useful if a relationship needs to be encoded, but its
                                target class does not need to, or if one wants to collapse
                                generalization hierarchies.	In initial prototyping efforts, the encoding option to not encode is
                                used quite widely.


                Table VIII
Class Encodings

	Default Encoding for Class type	Example	Description	XSD Fragment	XML
	
                                	<<kind>>

	<<event>>

	<<role>>

	<<dependent>>

	<<associative>>



                            	
                                [image: ]
                            	
                                By default, a complex type is generated. A group can also be
                                    generated if required by an inbound relationship. 

                            	
                                <xsd:complexType name="Manufacturer"> ...

                            	
                                <Manufacturer/>

                            
	
                                	<<category>>

	<<role category>>



                            	
                                [image: ]
                            	
                                By default, a group is generated. A complex type can also be
                                    generated if required by an inbound relationship.

                            	
                                <xsd:group name="ManufactureredItem> ...
and / or
<xsd:attributeGroup name="ManufacturedItem"> ...

                            	
                                N/A

                            


            

Datatype Encoding
This section describes the common properties and encoding options used to
                represent datatypes (e.g., primitive, domain, enum) in a schema.

                Table IX
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the class.	Used as the name for the generated schema construct subject to any
                                name encoding rules in effect.	


                Table X
Datatype Encodings

	Datatype Type	Example	Description	XSD Fragment
	
                                <<primitive>>

                            	
                                No graphic symbol

                            	
                                Mapped via a datatype mapping file to the appropriate built in
                                    schema simple type.
                                  [20]

                            	
                                N/A

                            
	
                                <<domain>>

                            	
                                [image: ]
                            	
                                Either mapped via a mapping table to an appropriate built in
                                    schema simple type, or a simple type with the appropriate facets
                                    is created.[21]

                            	
                                <xsd:simpleType name="uuid">
    <xsd:restriction base="xsd:string">
        <xsd:pattern value="[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}"/>
    </xsd:restriction>
</xsd:simpleType>

                            
	
                                <<enum>>

                            	
                                [image: ]
                            	
                                A simple type with enumerated facets is created.[21]

                            	
                                <xsd:simpleType name="colorEnum">
    <xsd:restriction base="xsd:string">
        <xsd:enumeration value="red"/>
        <xsd:enumeration value="yellow"/>
        <xsd:enumeration value="blue"/>
        <xsd:enumeration value="green"/>
    </xsd:restriction>
</xsd:simpleType>

                            
	
                                <<struct>>

                            	
                                [image: ]
                            	
                                Processed as would be a class encoding as a complexType with
                                    the following exception; If the attributes of the structure are
                                    all set to encode "asValue", a simple list type is created (see
                                    example).

                            	
                                <xsd:simpleType name="rgbColorStruct">
    <xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

                            
	
                                <<union>>

                            	
                                [image: ]
                            	
                                A simple union type that unions together the set of unique
                                    datatypes present.

                            	
                                <xsd:simpleType name="colorUnion">
    <xsd:union memberTypes="rgbColorStruct colorEnum"/>
</xsd:simpleType>

                            


            

Attribute Encoding

                [image: ]
                Table XII
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the attribute.	Used as the name for the generated schema construct subject to any
                                name encoding rules in effect.	
	encoding	Extended	Controls how an attribute will be encoded. See Table XIII		
	skip	Extended	Directs an attribute to not be encoded.		

Table XIII
Attribute Encodings

	Encoding	Description	XSD Fragment	XML Example
	asAttribute	
                                The model attribute is represented as an XML attribute within
                                    a complex type.

                            	
                                <xsd:complexType name="CPU">
    <xsd:attribute name="signature" type="xsd:string"/>
</xsd:complexType>

                            	
                                <CPU signature="Intel(R) Pentium(R) M"/>

                            
	asElement	
                                The model attribute is represented as an XML element within
                                    the complex type.

                            	
                                <xsd:complexType name="CPU">
    <xsd:sequence>
        <xsd:element name="Signature" type="xsd:string"/>
    </xsd:sequence>
</xsd:complexType>

                            	
                                <CPU>
    <Signature>Intel(R) Pentium(R) M</Signature>
</CPU>

                            
	asValue	
                                The value of the model attribute is represented as a simple
                                    content value within the complex type.

                            	
                                <xsd:complexType name="CPU">
    <xsd:simpleContent>
        <xsd:extension base="xsd:string"/>
    </xsd:simpleContent>
</xsd:complexType>

                            	
                                <CPU>Intel(R) Pentium(R) M</CPU>

                            

Table XIV
Attribute Encoding Combinations and there affect on the XSD

	asAttribute	AsElement	asValue	XSD Construct Created
	+	-	-	
                                A complex type with attributes.

                            
	-	+	-	
                                A complex type with complex element content.

                            
	-	-	+	
                                A complex type with simple content.

                            
	+	+	-	
                                A complex with complex element and attribute content.

                            
	+	-	+	
                                A complex type with attributes and simple content.

                            
	-	+	+	
                                A complex type with complex element and mixed content.

                            
	+	+	+	
                                A complex type with complex element, attribute and mixed
                                    content.

                            



Relationship Encoding
Association Encoding
This section describes the common properties and encoding options used to
                    represent association relationships in a schema.

                    [image: ]
                    Note
In the example above the association encoded is called
                            'manufacturedBy' with a source class of 'ManufacturedItem' and a target
                            class of 'Manufacturer'. The label 'computerMaker' is a UML role applied
                            to the 'Manufacturer' side of the association.


Association End
Association End encodings create structures that get embedded in a source
                        class and point to a target class through a variety of means that can be
                        grossly categorized as the by value options (asNested, asGroupRef) that
                        directly represent all of the target class within the source class, and the
                        by reference options that rely on primary keys in the target class to point
                        from source to target.

                        Table XV
Relevant Properties

	Property	Origin	Description	Use	Note
	roleA/B code	Built In	The implementation name of the RoleA / RoleB association
                                        end.	Used as the name for the generated schema construct subject
                                        to any name encoding rules in effect.	If there is no RoleA / RoleB code set, then the 'code' of
                                        the target class is used.
	roleA/B navigability	Built In	Represents which direction(s) an association can be
                                        transversed.	Used to control whether the association is encoded. For
                                        every navigable end pointing to a 'target' class, a
                                        construct in the source class will be generated to implement
                                        the association in that direction.
	roleA/B encoding	Extended	Controls how an association end will be encoded. See Table XVIII		


                        Table XVI
Association End Encodings

	Encoding	Description	XSD Fragment	XML Example
	asAttribute	Keys of the target class are represented as attributes in
                                        the source class.	
                                        <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:attributeGroup name="ManufacturedItem">
     <xsd:attribute name="computerMaker" use="required" type="Manufacturer"/>
</xsd:attributeGroup>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
    <xsd:attributeGroup ref="ManufacturedItem"/>
</xsd:complexType>

                                    	
                                        <Hardware computerMaker="Dell">
    <SerialNum>1234</SerialNum>
</Hardware>

                                    
	asElement	Keys of the target class are represented as elements in the
                                        source class.	
                                        <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:element name="ComputerMaker" type="xsd:string"/>
        <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
</xsd:complexType>

                                    	
                                        <Hardware>
    <ComputerMaker>Dell</ComputerMaker>
    <SerialNum>1234</SerialNum>
</Hardware>

                                    
	asElementKey	An element representing the relationship is created. Keys of
                                        the target class are represented as attributes on it.	
                                        <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:element name="ComputerMaker">
             <xsd:complexType>
                 <xsd:attribute name="name" use="required" type="xsd:string"/>
             </xsd:complexType>
        </xsd:element>
        <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
</xsd:complexType>

                                    	
                                        <Hardware>
    <ComputerMaker name="Dell"/>
    <SerialNum>1234</SerialNum>
</Hardware>

                                    
	asElementNestedKey	An element representing the relationship is created. Keys of
                                        the target class are represented as elements within it.	
                                        <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:element name="ComputerMaker">
             <xsd:complexType>
                <xsd:sequence>
                    <xsd:element name="name" type="xsd:string"/>
                </xsd:sequence>
             </xsd:complexType>
        </xsd:element>
        <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
</xsd:complexType>

                                    	
                                        <Hardware>
    <ComputerMaker>
        <Name>Dell</Name>
    </ComputerMaker>
    <SerialNum>1234</SerialNum>
</Hardware>

                                    
	asGroupRef	A group reference is created to the target class.	
                                        <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:group ref="Manufacturer"/>
        <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
</xsd:complexType>

                                    	
                                        <Hardware>
    <ManufacturerName>Dell</ManufacturerName>
    <ManufacturerSize>large</ManufacturerSize>
    <SerialNum>1234</SerialNum>
</Hardware>
[22]
                                    
	
                                        asNested

                                    	The target class is directly nested within the source
                                        class.	
                                        <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:element name="ComputerMaker" type="Manufacturer"/>
        <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
</xsd:complexType>

                                    	
                                        <Hardware>
    <ComputerMaker>
        <Name>Dell</Name>
        <Size>Large</Size>
    </ComputerMaker>
    <SerialNum>1234</SerialNum>
</Hardware>

                                    
	asXlink	An element representing the relationship is created. An
                                        attribute group reference is created to bring in link simple
                                        link attributes.	
                                        <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:element name="ComputerMaker">
            <xsd:complexType>
                <xsd:attributeGroup ref="xlink:XlinkSimple"/>
            </xsd:complexType>
        </xsd:element>
    <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
</xsd:complexType>

                                    	
                                        <Hardware>
    <ComputerMaker xlink:href="Dell"/>
    <SerialNum>1234</SerialNum>
</Hardware>

                                    


                    

Association Encoding
Association encodings create structures that directly represent the
                        association as either an independent global complexType, or as an additional
                        layer within an association end encoding. Directly representing an
                        association is less common then representing then using the association end
                        encodings.
Table XVII
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the association.	Used as the name for the generated schema construct subject to
                                    any name encoding rules in effect.	
	visibility	Extended	The visibility of the association.	When a global xsd:complexType will be generated the visibility
                                    property will have the following effect.	This only has an effect if encoding = 'asComplexType'.
	public - a global element and a global xsd:complexType are
                                    generated.
	protected - a global element containing an anonymous
                                    xsd:complexType is created.	
	private - only a global xsd:complexType is created.	
	encoding	Extended	Controls how an association will be encoded. See Table XVIII		By default associations are not explicitly encoded as global
                                    type declarations. Instead association-end encodings create
                                    needed structures directly in the source class.

Table XVIII
Association Encodings

	Encoding	Description	XSD Fragment	XML Example
	
                                    asNested

                                	The association is explicitly represented as an additional
                                    nested layer within association end encodings. The association
                                    end encoding used is 'asElement'.	
                                    <xsd:group name="ManufacturedItem">
    <xsd:sequence>
        <xsd:element name="ManufacturedBy">
            <xsd:complexType>
                <xsd:sequence>
                    <xsd:element name="ComputerMaker" type="xsd:string"/>
                </xsd:sequence>
            </xsd:complexType>
        </xsd:element>
        <xsd:element name="SerialNum" type="xsd:string"/>
    </xsd:sequence>
</xsd:group>

<xsd:complexType name="Hardware">
    <xsd:sequence>
        <xsd:group ref="ManufacturedItem"/>
    </xsd:sequence>
</xsd:complexType>

                                	
                                    <Hardware>
    <ManufacturedBy>
        <ComputerMaker>Dell</ComputerMaker>
    </ManufacturedBy>
    <SerialNum>1234</SerialNum>
</Hardware>

                                
	asComplexType	The association is explicitly represented as a global complex
                                    types. The association end encodings point out from the
                                    relationship to the target classes. The association end encoding
                                    used is 'asElement'. With this example, this encoding option
                                    makes no sense, as only one of the association ends encoded is
                                    navigable.	
                                    <xsd:complexType name="ManufacturedBy">
    <xsd:sequence>
        <xsd:element name="ComputerMaker" type="xsd:string"/>
    </xsd:sequence>
</xsd:complexType>

                                	
                                    <ManufacturedBy>
    <ComputerMaker>Dell</ComputerMaker>
</ManufacturedBy>

                                


Associations ending at a Mixin (e.g., category, roleCategory).
Associations whose target class is a non-sortal (i.e. a mixin) can be
                        encoded as any other target class, however by default a mixin is encoded by
                        creating an xsd:choice group that encodes the relationship to the mixin as
                        if the association were drawn directly to each of the subclasses that the
                        mxin subsumes. In essence a relationship to a category results in an
                        encoding as if the relationship were drawn directly to each of the members
                        of the category.


Generalization Encodings
This section describes the common properties and encoding options used to
                    represent generalization / realization relations in a schema.

                    [image: ]
                    Table XIX
Relevant Properties

	Property	Origin	Description	Use	Note
	code	Built In	The implementation name of the class.	Used as the name for the generated schema construct subject to
                                    any name encoding rules in effect.	
	encoding	Extended	Controls how a generalization will be encoded.	By default generalization relations between sortals are encoded
                                    using xsd:extension and generalization relations
                                    between sortals and non-sortals, or between non-sortals and
                                    non-sortals as xsd:group and / or
                                        xsd:attributeGroup references.
	navigability	Extended	Represents which direction(s) a generalization can be
                                    transversed (e.g., subtype to supertype, or supertype to
                                    subtype).	Normally generalizations encode with the supertype navigable
                                    from the subtype as indicated by the arrow head in the UML
                                    representation. Occasionally its useful to navigate in the other
                                    direction to implement a collapsing of a set of subtypes into
                                    their common supertype.	

Table XX
Generalization Encodings

	Encoding	Navigability	Description	XSD Fragement	XML Example
	asExtension	Subtype to Supertype	A complexType is created for 'Printer', 'BWPrinter', and
                                    'ColorPrinter' with the later two extending the first.	
                                    <xsd:complexType name="ColorPrinter">
    <xsd:complexContent>
        <xsd:extension base="Printer">
            <xsd:sequence>
                <xsd:element name="colorLevel" type="xsd:positiveInteger"/>
            </xsd:sequence>
        </xsd:extension>
    </xsd:complexContent>
</xsd:complexType>

                                	
                                    <ColorPrinter type="ColorPrinter">
    <Name>ColorPrinter1</Name>
    <ColorLevel>8</ColorLevel>
</ColorPrinter>

                                
	asGroupRef	Subtype to Supertype	A complexType is created for 'BWPrinter' and 'ColorPrinter".
                                    Both a group and attributeGroup are created as needed depending
                                    on the encoding of the attributes in the 'Printer' class. These
                                    groups are referenced by 'BWPrinter' and 'ColorPrinter'.	
                                    <xsd:complexType name="ColorPrinter">
    <xsd:sequence>
        <xsd:group ref="Printer"/>
        <xsd:element name="ColorLevel" type="xsd:positiveInteger"/>
    </xsd:sequence>
    <xsd:attributeGroup ref="Printer"/>
</xsd:complexType>

                                	
                                    <ColorPrinter type="ColorPrinter">
    <Name>ColorPrinter1</Name>
    <ColorLevel>8</ColorLevel>
</ColorPrinter>

                                
	asNested	Supertype to Subtype	A complexType is created for 'Printer', 'BWPrinter' and
                                    'ColorPrinter' with the first directly including the latter two.
                                    An optional choice group reflects the choice between these two
                                    mutually exclusive subtypes.	
                                    <xsd:complexType name="Printer">
    <xsd:sequence>
        <xsd:element name="Name" type="xsd:string"/>
        <xsd:choice minOccurs="0">
            <xsd:element name="BWPrinter" type="BWPrinter"/>
            <xsd:element name="ColorPrinter" type="ColorPrinter"/>
        </xsd:choice>
    </xsd:sequence>
    <xsd:attribute name="type" use="required" type="xsd:string"/>
</xsd:complexType>

                                	
                                    <Printer type="ColorPrinter">
    <Name>ColorPrinter1</Name>
    <ColorPrinter>
        <ColorLevel>8</ColorLevel>
    </ColorPrinter>
</Printer>

                                
	asGroupRef	Supertype to Subtype	A complexType is created for 'Printer'. Both a group and / or
                                    attributeGroup are created as needed for each of 'BWPrinter' and
                                    'ColorPrinter' depending on the encoding of the attributes in
                                    each of them. An optional choice group reflects the choice
                                    between these two mutually exclusive subtypes. 	
                                    <xsd:complexType name="Printer">
    <xsd:sequence>
        <xsd:element name="Name" type="xsd:string"/>
        <xsd:choice minOccurs="0">
            <xsd:group ref="BWPrinter"/>
            <xsd:group ref="ColorPrinter"/>
        </xsd:choice>
    </xsd:sequence>
    <xsd:attribute name="type" use="required" type="xsd:string"/>
</xsd:complexType>

                                	
                                    <Printer type="ColorPrinter">
    <Name>ColorPrinter1</Name>
    <ColorLevel>8</ColorLevel>
</Printer>
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[1] Surprisingly the claim that these visual languages represent an
                    implementation, and do not directly model the UoD is controversial in some
                    communities of practitioners. A well written, and thorough treatment of this
                    topic in the data modeling community can be found in [Simsion-2007]
[2] A survey of some of the conceptual modeling proposals that have been made for
                    XML can be found in [Nečaský-2006]
[3] As opposed to those aspects of a modeling language that should always be
                    generally true. Guizzardi explores this in chapter 2 of [Guizzardi-2005]. An informal description of desirable properties
                    of a model can be found at
                        http://www.idiagram.com/ideas/models.html
[4] The phrase reasonable level of specificity is
                                simply an acknowledgement that no formal modeling language can
                                capture all of the nuance of a concept necessary for human
                                understanding. Prose is still essential. Instead the requirement is
                                that the modeling language at least convey enough information so
                                that all the people who read [and understand it] find themselves on
                                the same street, if not in the same house.
[5] Although this is a requirement, it has not yet been proven.
                                Because of the extensive expertise of the team that worked on this
                                project in relational database design, it does seem quite likely
                                that this will work when we get around to creating the necessary
                                software.
[6] Once again, this has yet to be proven. An initial assessment as to
                                the feasibility of this is promising. It would potentially require
                                the adoption of additional constructs defined in the UFO. The rules
                                (and resulting code) to map it into OWL DL would likely be easier
                                then the rules / code currently in place to generate an XML schema.
                                This is due to the very direct mapping between the constructs in the
                                conceptual modeling language and OWL DL, and to the fact that
                                relationship encoding in RDF is prescribed, where as in general XML
                                the variability in how relationships are encoded is considerable.
                            
[7] This requirement is driven by the practical resource constraints
                                of being able to find people with the correct skill set for creating
                                conceptual models for information systems.
[8] Construct variability, defined in [Verelst-2004],
                                is the use of different modeling constructs (e.g., attribute vs.
                                entity) to represent the same real-world concept.
[9] Horizontal and vertical variability is defined in [Verelst-2004]. Vertical variability is the use of
                                different levels of generalization / abstraction to conceptualize
                                the same UoD. Horizontal variability is the use of different
                                categorizations at the same level of generalization / abstraction.
                            
[10] Ontology is not the sole discipline that can shed light on conceptual
                    modeling. Epistemology, phenomonology, semiotcs, linguistics, cognitive
                    psychology, and communication theory are but a few that have something to add,
                    and are indeed used in Guizzardi's work.
[11] Optionality is fine on whole-part relations, where optional parts are a
                    perfectly reasonable thing.
[12] It is hoped that the strict definition of what it is to be an attribute,
                        will reduce the construct variability that is often present in models where
                        attributes are used to represent both simple properties and
                        relationships.
[13] In the pre-UML days, people were usually rather vague on what was
                            aggregation and what was association. Whether vague or not, they were
                            always inconsistent with everyone else. As a result, many modelers think
                            that aggregation is important, although for different reasons. So the
                            UML included aggregation, but with hardly any semantics.  ([Fowler-2000] , p. 85)
[14] Name changes are typically necessary to accommodate local conventions in
                    terminology, and local syntactic naming standards. In a conceptual model names
                    are chosen for clarity, and can be long, and will not necessarily agree with
                    jargon spoken by a specific community.
[15] The XML Metamodel Interchange (XMI) format was briefly considered as a choice
                    for the serialization of the model. It does in fact have all of the needed
                    information. It was not chosen because its structure, optimized to exchange
                    [complete] models between modeling tools, is not ideal for creating clean XSLT
                    code for transformation into an XSD. In addition, the benefits of using a
                    standard tool-neutral serialization of a UML model are partially obviated by the
                    inconsistent and limited implementation of the standard in some modeling tools.
                    That said, the use of XMI is something that will be considered the future. An
                    appropriate XSLT 2.0 function library could be used to hide the complexities of
                    the XMI format.
[16] An example of such clean-up is the removal of any xsd:group or
                        xsd:attributeGroup structures that are only referenced once, by
                    collapsing them within their referent.
[17] Its quite challenging to keep straight all of the orthogonal concerns,
                        some subset of which much all come together in the final physical design,
                        but which should be thought about and modeled separately at the conceptual
                        level. For example, for any given information structure in a PDM, the
                        following different concerns might need to be addressed in addition to the
                        real-world object that the information structure is describing. How is
                        temporal change of that object's properties handled; how is the provenance
                        of the information (e.g., origin, trustworthiness) recorded; how is system
                        related metadata (e.g., who created it, when it will be deleted, access
                        control, versioning) represented, etc.
[18] Sperberg-McQueen touches on the desirability of You
                                        have to say everything twice in [Sperberg-McQueen-2008]. The longer term goal of
                                    this work is to say things many times, in prose, in the
                                    conceptual modeling language, and in designs for XSD, DDL, and
                                    OWL.
[19] This reverse engineering is necessarily manual. The mapping
                                    between a given implementation back up to a conceptual model is
                                    many to one. This is unlike a mapping between a schema language
                                    and a simple visualization of it, as is typically implemented in
                                    tools today.
[20] 
                                            Table XI
Primitive Type Map

	Conceptual Model	XSD
	
                                                  string

                                                  	
                                                  xsd:string

                                                  
	
                                                  float

                                                  	
                                                  xsd:float

                                                  
	
                                                  integer

                                                  	
                                                  xsd:integer

                                                  
	
                                                  date time

                                                  	
                                                  xsd:dateTime

                                                  
	
                                                  date

                                                  	
                                                  xsd:date

                                                  
	
                                                  time

                                                  	
                                                  xsd:time

                                                  
	
                                                  boolean

                                                  	
                                                  xsd:boolean

                                                  
	
                                                  octets

                                                  	
                                                  xsd:base64Binary

                                                  


                                        
[21] The primitive type on which the user defined data type
                                            is a restriction of, is recorded directly as a property
                                            in the modeling tool. If a user defined datatype is a
                                            restriction of another user defined datatype, it is
                                            represented as a generalization relation.
[22] The element names are created by selecting a name
                                                encoding option that combines an attributes name
                                                with its class name.
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