[image: Balisage logo]Balisage: The Markup Conference

Markup Meaning and Mereology
Claus Huitfeldt
Associate professor
University of Bergen, Norway

<claus.huitfeldt@fof.uib.no>

C. M. Sperberg-McQueen
Black Mesa Technologies LLC

<cmsmcq@blackmesatech.com>

Yves Marcoux
Associate professor
Université a Montréal, Canada

<yves.marcoux@umontreal.ca>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 by the authors. Used with
 			permission.

How to cite this paper
Huitfeldt, Claus, C. M. Sperberg-McQueen and Yves Marcoux. "Markup Meaning and Mereology." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Huitfeldt01.

Abstract
 When marking up a document we chop it up into elements. Elements are parts of the
 document, some of which contain further elements, i.e., have parts of their own. Thus, the
 part-whole relation is central to the way markup works.
Mereology is precisely the theory of part-whole relationships, but has not yet found
 much application in markup theory. In this paper we provide a sketch of how mereology, in
 the form more specifically of Nelson Goodman's Calculus of Individuals, might be applied to
 markup.
We discuss ways of identifying the individuals of marked-up documents and of referencing
 these individuals, and we sketch some ways of applying the calculus to the problem of
 propagation of properties in documents.

Balisage: The Markup Conference

 Markup Meaning and Mereology

 Table of Contents

 	Title Page

 	Introduction

 	The Calculus of Individuals

 	The Calculus applied to XML
 	The element-as-individual approach

 	The tags and PCDATA approach

 	The character-atom approach
 	The approach

 	Examples

 	Statements and inferences

 	Conclusion

 	Property Propagation — a Sketch
 	Dissective and anti-dissective properties

 	Expansive and anti-expansive properties

 	Collective and anti-collective properties

 	The HTML title element

 	The TEI sp, speaker and stage elements

 	The TEI docTitle, docDate and docAuthor elements

 	Problems
 	Empty elements
 	Milestone elements

 	Other empty elements

 	Coextensive elements

 	Conclusion and Future Work

 	About the Authors

 Markup Meaning and Mereology

Introduction
XML documents consist of marked elements, which may in turn contain sequences of marked
 elements, etc. This hierarchy of elements is conveniently represented as a tree in which each
 node stands for an element, in which each arc between elements stand for a parent-child
 relationship, and in which the children of each node are ordered sequentially in accordance
 with their document order.
While it is commonly the case that the generic identifier of an element is understood to
 ascribe a property to the element's content, that elements represented by nodes dominated by
 that element's node in the document tree are also understood to be contained by it, and that
 these nodes are understood to inherit the properties ascribed to their ancestor elements, none
 of this is always or necessarily the case.
As we have pointed out elsewhere [Sperberg-McQueen and Huitfeldt 2008], the parent-child
 relationship may be taken to indicate either a containment relationship, or a dominance
 relationship. Frequently these relationships coincide, and no harm is caused by not
 distinguishing them. When they do not coincide, however, the result may easily be confusing.
One view of the structure of XML documents emphasizing the part-whole relationship is
 this: A document contains elements, i.e., parts. Some of these parts contain further elements,
 i.e., have parts of their own. The generic identifiers of elements ascribe properties to their
 own content and/or to the content of elements related to them by part-whole relationships.
Mereology is precisely the theory of part-whole relationships. Even so, mereology does not
 seem to have found much application in markup theory until now. It may therefore be
 interesting to investigate whether the application of mereology may give insights relevant to
 the understanding of interpretation and processing of marked-up documents.
It is sometimes said that XML provides a formal syntax for document representation, but no
 formal semantics for the interpretation or processing of this syntax. If mereology can be
 brought to bear on the ascription and propagation of properties and relations between parts of
 marked-up documents, it may help in providing a general approach to markup semantics. For
 example, the work presented here may turn out to be of direct relevance for the work on formal
 tag set descriptions and intertextual semantics specifications presented in [Marcoux et al. 2009] and [Sperberg-McQueen et al. 2009a].
Before we proceed, some words on the limitations of this paper are in place. First,
 although our focus is on XML, and although we mention other markup languages in passing, we
 believe that mereology deserves to be studied in relation to markup languages in general (such
 as XML, SGML, TexMecs, LMNL, and others) rather than XML only. We think so partly because
 application of mereology may be equally or more profitable when it comes to some non-XML
 markup systems, and partly because such broader studies might inspire modifications of
 — or alternatives to — any or all of these. We hope to come back to
 applications of mereology to markup more generally in future work.
Second, the concept XML document as used in this paper refers almost
 exclusively to XML in its serialized form. We do not explicitly attempt to apply mereology to
 XML documents considered as graphs of xPath nodes, Infoset items, or the like.
Finally, we limit ourselves to an attempt to apply the so-called Calculus of Individuals,
 a mereological system worked out by Nelson Goodman [Goodman 1977] (initially
 in cooperation with Henry S. Leonard [Leonard and Goodman 1940]). As a further
 simplification, and in order to ensure focus, we will ignore XML attributes, entities,
 declarations, comments, processing instructions, and marked sections; in short, we will regard
 XML documents as consisting of elements and their content only .

The Calculus of Individuals
The origins of mereology go back to ancient Greece, but it was taken up as a formal study
 and developed mathematically only early in the 20th century. Today, it is a well developed
 formal discipline, and there are a number of different mereological systems. The term
 mereology is sometimes used to refer to these formal calculi in particular, sometimes to
 formal as well as non-formalized theories of part-whole relationships in general [Libardi 1994, pp. 13–15].
Early developments of formal mereology were largely motivated by scepticism towards set
 theory and the calculus of classes, and a desire to translate or reduce all
 talk of abstract classes and their members to talk of concrete individuals and their parts.
 Mereology therefore came to be associated with a particular ontological stance, nominalism,
 and to be shunned by most adherents of other ontological views.[1]
Such ontological considerations may or may not motivate, but do not in any way need to
 concern, our attempt to apply mereology to markup languages, however: later work in the field
 is generally taken to demonstrate that mereology and set theory may live merrily together,
 that in fact the one may be seen as an extension of the other, and that the adoption of
 mereology does not by itself commit one to any particular ontological stance.[2]

The part-whole relationships that mereology studies are relationships between entities
 that are, in Goodman's terminology, called individuals. Generally
 speaking an individual may be any thing in a very wide sense of the word
 — a concrete, an abstract, a universal or a particular — i.e., any object
 or entity of which something can be predicated. This is admittedly still pretty general, and
 more specific talk may be in order: As examples of individuals we may take stones, tables,
 chairs, animals and other medium-sized everyday objects; but if we like we may also populate
 our world with individuals such as molecules, atoms, electrons, quarks; or planets, stars and
 galaxies; or for that matter persons, visual after-images, mental images or sense data. If we
 believe in abstract objects we may include numbers, geometrical objects, concepts, etc., and
 according to some applications of mereology there may also be temporal
 individuals such as processes, events, and snippets of time.
 Individuals need not be contiguous, neither in space nor in time. This is one of the
 principles of the Calculus of Individuals which has provoked some discussion. In its defence
 one may point to the fact that we actually do employ the notion of at least some such
 disconnected wholes in everyday language. Thus, to treat the land mass of Japan
 (or any geographic entity which includes two or more islands) as an individual may seem
 unobjectionable. However, according to another principle, the sum of any two individuals is
 always also an individual. This seems to force us to accept as individuals, i.e.,
 wholes, sums of randomly scattered parts such as Caesar's nose and the
 state of Utah [Goodman 1972, p. 37].[3] Goodman bites that bullet, while much of the ensuing debate has been concerned
 with attempts to find ways of distinguishing such scattered and arbitrary sums from more
 cohesive or integral individuals as wholes consisting of parts
 in a more intuitively satisfactory sense.
A formal mereological theory takes conventional first-order predicate logic as its basis.
 We will use conventional modern logical notation for quantifiers, operators, predicates,
 variables and constants. More specifically, we will use (x) for universal and
 (∃x) for existential quantification over x; ¬ for negation, →
 for implication, ∨ for inclusive disjunction, ∧ for conjunction, ⇔ for
 equivalence, and = for identity. We use the small roman letters a, b, c... for constants, x,
 y, z... for variables, and upper roman letters A, B, C... for predicates. We will occasionally
 use the conventional abbreviation iff for if and only if.
The extension which mereology makes to this basis is very modest: In fact the extension
 consists in adding only one single primitive relation to the first-order system. This
 specifically mereological, primitive relation may be chosen from among the
 relations part of, proper part of, discrete from
 or overlapping with. As each of these relations may be defined in terms of any
 of the others, it does not matter much which one we chose as our undefined primitive.[4] With a hopefully obvious appeal to markup theorists, we will follow [Goodman 1977] in choosing overlap for our primitive relation.[5]

Variables are taken to range over individuals only, and predicates are taken to ascribe
 properties of or relations between individuals.
From a mereological point of view, two individuals overlap iff they
 have some content in common. One consequence of this definition may briefly confuse markup
 specialists: since in an XML document a child element and its parent element have some content
 in common (everything contained by the child is also contained by the parent), it follows that
 in the sense introduced here the child and the parent overlap. That is,
 the term overlap, as used in the calculus of individuals, includes proper
 nesting or normal part/whole relations.
Thus, if we think of XML elements as individuals consisting of stretches of consecutive
 character occurrences, and if we consider the following four cases (strictly speaking, the
 first line is not well formed XML and is included only for purposes of illustration):
 <s> <q> </s> </q>
 <s> <q> </q> </s>
 <q> <s> </s> </q>
 <s> </s> <q> </q>

 the first three cases exhibit an overlap between elements s and q.
 Only in the last case do the two elements not overlap, i.e., they are discrete. In contrast,
 markup theorists would probably consider only the first case to be one of overlap.
The overlap operator is written ∘. The following
 condition on ∘ captures the intuitive notion of “having some content in
 common,” and we thus take it as an axiom:[6]
 2.41 x ∘ y ⇔ (∃z)(w)((w ∘ z) → ((w ∘ x) ∧ (w ∘ y)))

 Any relation satisfying this condition is necessarily reflexive and symmetric (but not
 necessarily transitive).
We now state further relation and operator definitions, theorems and axioms. Note that not
 all of them belong to all variants of mereological systems; they do, however, belong to ours.
As already mentioned, the relations part of,
 proper part, and discrete may all be defined in terms of the
 overlap relation.
Iff x is a part of y, then everything that overlaps x also overlaps
 y:
 D2.042 x < y =df (z)((z ∘ x) → (z ∘ y))

 The part relation is reflexive, anti-symmetric and transitive.
 Iff x is a proper part of y, then x is a part of y but y is not a
 part of x:
 D2.043 x ≪ y =df (x < y) ∧ ¬(y < x)

 The proper part relation is irreflexive, anti-symmetric and transitive.
 Iff x and y are discrete, then they have no part in common, i.e.,
 they do not overlap[7]:
 D2.041 x ʅ y =df ¬(x o y)
 The
 discrete relation is irreflexive and symmetric (and thus, non-transitive).
 It is worth noting that identity can be defined in terms of the
 primitive relation:
 D2.044 x = y =df (z)((z o x) ⇔ (z o y))

The product of x and y is the individual which exactly contains their
 common part: D2.045 x · y =df (℩z)(w)((w < z) ⇔ ((w < x) ∧ (w < y)))

The sum of x and y is the individual which contains exactly and
 exhaustively both of them, or, in other words, the individual which overlaps all and only
 those individuals which overlap any of them: D2.047 x + y =df (℩z)(w)((w ∘ z) ⇔ ((w ∘ x) ∨ (w ∘ y)))

 The negate of an individual includes everything which does not
 overlap with that individual (i.e., what is often called its complement, or
 the rest of the world): D2.046 –x =df (℩z)(y)((y ʅ x) ⇔ (y < z))

The difference between x and y is what remains of x after we
 eliminate the parts it has in common with y:
 x – y =df (x · –y)

 There is considerable controversy in the literature over the nil
 individual. The nil individual is the mereological analogue
 of the empty class. If accepted, it is part of any individual. Most mereological systems
 reject its existence, and we will do the same in this paper.[8]
There is less controversy over the existence of the universal
 individual, i.e., the one individual of which every other is a part — the
 world or the universe as an individual. In our case, we are
 not applying the Calculus of Individuals as a Grand Theory of Everything, but
 limit its application to domains consisting of a single document, to collections (not to say
 sets or classes) of documents, or perhaps to documents and whatever else we may need to take
 into consideration to make sense of what these documents say. So we, too, will endorse the
 existence of a universal individual, customarily denoted by the letter W:
 W =df (℩x)(y)(y < x)

Note that, because there is no nil individual:
	the product of x and y can possibly exist only if
 x and y overlap,

	the difference between x and y can possibly exist only if
 x is not a part of y, and

	W (the universe) does not have a negate.

However, the following statements hold, either as axioms or theorems, depending on how one
 elaborates the system:
	(x)(y)(∃z)(z = x + y), i.e., the sum of any
 two individual exists (that is, is an individual),

	(x)(y)((x ∘ y) ⇔ (∃z)(z = x
 · y)), i.e., the product of any two individuals exists iff they
 overlap,

	(x)(¬(x = W) ⇔ (∃z)(z = –x)),
 i.e., the negate of an individual exists iff the individual is not the universe,
 and

	(x)(y)((¬x < y) ⇔ (∃z)(z = x
 – y)), i.e., the difference between any individual x and any
 individual y exists iff x is not a part of
 y.

Do all individuals have parts, or are there some individuals which are not further
 divisible into parts? Whether we take the one or the other position may have wide-reaching
 consequences for other properties of a mereological system, and the literature abounds with
 discussion on the subject. Given our domain of application, however, we believe that any
 system will have to be atomistic — on none of our analyses will
 documents have parts below character-level, or at least we foresee no need to talk about parts
 of characters.

 So we may simply add the axiom of atomicity to our system right away:
 (x)(∃y)((y < x) ∧ ¬(∃z)(z ≪ y))

 [Casati and Varzi 1999, p. 61]

The Calculus applied to XML
What might it mean to apply the Calculus of Individuals to XML documents (or, for short,
 to XML) and what purpose might such an application of the calculus serve? A
 preliminary answer to the first question is that an application of the Calculus of Individuals
 to XML would require us to decide which entities to count as individuals, to decide which of
 these are to count as atomic individuals, as well as which properties they can have and which
 relations hold between them. Given the Calculus of Individual's rules of composition,
 different decisions on these issues will bring us to recognize the existence of individuals
 which may or may not coincide with established ways of viewing the structure of XML documents.
 Identifying rules which replicate such conventional views is, if possible, in itself of
 interest. Identifying rules which provide alternative views of XML documents may be of even
 greater interest, at least if they also suggest alternate and useful ways of analysing the
 parts of a document, of addressing them, and of how to ascribe properties of and relations
 between parts of a document.
A preliminary answer to the second question has thus already been suggested: We suspect
 that an application of the Calculus of Individuals to XML might suggest ways of identifying
 and addressing parts of a document which in some cases, or for some purposes, would be more
 convenient or more powerful than existing methods such as SAX, DOM or xPath. We also suspect
 that some application of the Calculus of Individuals to XML might suggest ways of dealing with
 what is sometimes called the semantics of XML, i.e., how to understand XML
 documents in terms of properties ascribed to and relations indicated between the various parts
 of them indicated by the markup.
 In what follows we have nothing but tentative answers to the general questions just
 posed. Trying to answer the first question, we will present different ways of applying the
 Calculus of Individuals to XML. We will also explore some of their implications for answers to
 the second question. The explorative nature of our work should be emphasized: We do not want
 to suggest that these are the only, or the best, ways of applying the Calculus of Individuals
 to XML, nor do we suggest that we have identified all or even the most important implications
 of the approaches that we consider.
Therefore, each of the following sections begins by suggesting a different answer to the
 question Which are the individuals of a marked-up document? First, we consider
 the possibility that the individuals simply are XML elements. Next, we go down one step in
 level of granularity and identify tags and character strings as individuals. Finally, we
 proceed to a still finer level of granularity in order to see what happens if we recognize
 individual characters as atomic individuals, and distinguish between different kinds of
 individuals built from these atoms.
The element-as-individual approach
What to count as individuals is a matter of choice, a choice which must be made on the
 basis of such criteria as naturalness, convenience, expressiveness, simplicity, etc. We
 begin by simply assuming a one-to-one matching between the elements of
 an XML document and the individuals of our calculus. On this assumption, consider the
 following simple XML document:
 (1) <para>A <quote>rose</quote> is <emph>a</emph> rose.</para>

If each element is an individual, then (1) itself, as well as the elements
 (2) <quote>rose</quote>
(3) <emph>a</emph>

 are individuals. Now, the sum of any two individuals must (by our mereological axioms) be an
 individual. Thus, the sum of (2) and (3) must be an individual and, by our hypothesis, an
 XML element. No matter what model we have in mind for XML elements and documents, it is hard
 to imagine a way in which the sum of (2) and (3) could be an XML element — it
 would be at best two!
In fact, the goal we have set ourselves here turns out to be self-defeating: It is not
 possible to identify XML elements with individuals, without accepting as individuals parts
 of the document which are not XML elements. In other words, if all XML elements are
 individuals, then some XML documents necessarily give rise to individuals which are not XML elements.[9]

An obvious fix would be to retain the decision that every element is an individual, but
 allow for composite individuals having more than one element as their parts. This would
 solve the problem of sums, but others would remain (e.g., what elements can the difference
 (1) – (2) be the sum of?). Even taking the closure of elements under sum and
 difference would still not solve a granularity issue in handling text content: Take, for
 example, the strings
 A
 ,
 is
 , and
 rose.
 ; any given individual would contain either all three or none. There would be no way
 to separate those strings.
Another issue is that the definition of parthood implies nothing about the ordering of
 parts, resulting in the fact that individuals are
 unordered. Thus, there is no way in our approach to say, for example, that (2)
 occurs before (3).
The Calculus of Individuals offers in itself no way of defining ordered pairs [10] — and thus, relations — as individuals. However, relations
 can be represented by predicates on individuals. Thus, we
 can order (either totally or partially) our individuals by defining an appropriate binary
 predicate corresponding to the desired relation.
If we think of individuals as corresponding to objects in an XML data model, and if that
 model allows serializations in which no two distinct elements or characters start at the
 same offset in a serialization[11] (we will need to deal with characters in later sections), then we can induce a
 total ordering of the individuals that correspond to elements and characters, based on the
 total order among the offsets of their XML counterparts in the serialization. We call that
 order relation document order.
Throughout this paper, we assume that document order exists and is well
 defined.
So far we have assumed that XML elements containing no sub-elements have no parts, i.e.,
 that they are atoms in our system. A solution may perhaps be to recognize a more generous
 set of individuals. But before we proceed to investigate this, we pause to make a couple of
 observations on other characteristics of the element-as-individual approach.
	The lack of a fine enough granularity prevents a satisfactory treatment of strings,
 let alone parts of strings.
However we could regard a string as a property of an individual. Thus, although we
 cannot strictly speaking say that in (1) the string rose is a part of the
 string A rose is a rose., we could say that an individual having the
 string rose as a property is part of an individual having the string
 A rose is a rose. as a property. Note that the strings rose
 is or ose i would not be properties of any individual,
 and thus not a part of the document even in this extended sense.

	Building a tree structure in which each node is an individual (i.e., an element), in
 which each arc represents a whole-part relationship, and in which the children of each
 node are ordered in document order, produces a tree which is almost identical to the XML
 tree for the same document, except for PCDATA leaf nodes of mixed content elements,
 which would be lost.[12] (However empty element leaf nodes would appear in the tree.)

The tags and PCDATA approach
Moving one step down in level of granularity, we might take tags and PCDATA
 strings delimited by tags as atomic individuals. Thus (1) would contain the
 following 11 atomic individuals:
 <para>
A
<quote>
rose
</quote>
 is
<emph>
a
</emph>
 rose.
</para>

 From these, we might compose composite individuals such as, for example:
 <para>
<para>A
<para>A <quote>
<para>A <quote>rose
A rose
A rose.
rose a
<para>A <quote>
A <quote>rose </quote> is <emph>
rose </quote> rose.</para>

 As a matter of fact, (1) would give rise to no less than 211-1 =
 2047 individuals on this account (-1 because there is no nil individual) — in the interest of the reader we do not list all of
 them here. Only a handful of these individuals would be well-balanced XML fragments, of
 course.
A total order relation on the atomic individuals based on document order could be
 defined, as in the preceding section. Note that in this case, the sequence of ordered atomic
 individuals is isomorphic to the sequence of events identified by a SAX-like XML
 tokenizer.
 Observe that although many of the individuals
 could be identified or referenced using xPath or similar XML-aware mechanisms, many of them
 could not. In particular, tag atoms could not (or, at least, it is unclear how and in what
 sense they could). However, the interest of being able to refer to tags individually is not
 obvious. Also, since strings are atoms, it is still impossible to handle parts of strings:
 ose i is still not an individual. Therefore, we do not pursue this avenue
 any
 further.

The character-atom approach
The approach
Finally, and moving one further step down in the level of granularity, we take
 character occurrences as the atomic individuals in our application
 of the calculus. For the sake of conciseness, we will use character as a synonym for character
 occurrence, except where confusion might
 arise.

The type of a character occurrence is represented in
 our system by a property of that character occurrence. So any atom (i.e., character
 occurrence) has the property of being an a, or a b, or a
 c, etc., thus populating our vocabulary with one predicate for each of
 the characters of the writing system at hand.[13]

We define a total order relation on atoms, based on document order, represented by the
 predicate PA(x, y), true iff x precedes y in
 document order (“P” stands for “precedes” and “A” indicates it is a predicate on atoms).
 The transitive reduction of PA is represented by the predicate NA(x,
 y), true iff x immediately precedes y in document order
 (“N” stands for “next” and “A” indicates it is a predicate on
 atoms).
Since characters are atomic individuals, all individuals which can be composed on the
 basis of the characters of a document are also individuals, i.e., composite individuals.
 Composite individuals of special interest for our purposes are
 strings. We define strings as individuals which are either atoms, or
 the sum of atoms consecutive in NA order. A string that consists of only one
 character is (also) an atom. There is no such thing as an empty string
 (which would have to be the nil individual). Note that
 strings constitute a tiny fraction of all existing individuals.
Some strings are of particular interest to us. We define a molecular
 string (or molecule) as a string that is
 delimited on both sides (in the serialization underlying document order) by a tag, with no
 other tag intervening in between. A total ordering of molecular strings, represented by
 the predicate P(x, y), is trivially derived from the ordering of atoms
 (itself based on document order). The transitive reduction of P is
 represented by the predicate N(x, y). (“P” stands for “precedes” and “N” for
 “next”.)

 We define an elemental string as a string delimited by the
 matching tags of an XML element (there may be intervening tags). We do not rely on any
 ordering of elemental strings.

For any given string x, we define (for convenience only) the
 label of x as the sequence of the types of the atoms
 composing x, in NA order. That is, for example, a string is
 labelled rose (or has the label rose) iff it is the sum of
 atoms of types r, o, s, and e,
 and those atoms are NA-ordered so that the one of type r comes
 first, the one of type o comes second, etc.
While it might have been plausible to treat tags as a special kind of strings, and
 build elements and nodes with their ordering and parent-child relationship in a way
 similar to that suggested in the tags and PCDATA approach above, instead, we shall regard
 tags simply as delimiting certain string individuals, and ascribing properties to (or
 relations between) those individuals.
 We can now read (1) as follows: 	There are 17 atomic individuals. Their ordered sequence of types is:
 A, , r, o,
 s, e, , i,
 s, , a,
 , r, o, s,
 e, and ..

	There are five molecular string individuals. Their ordered sequence of labels
 is: A , rose,
 is , a, and
 rose..

	There are three elemental string individuals, labelled A rose is a
 rose., rose and
 a.

	The elemental string labelled A rose is a rose. has the property
 indicated by the generic identifier <para>. 	Note that this does not imply that any of its parts, such as the molecular
 strings labelled A , rose, etc., has
 this property.

	The elemental string labelled rose has the property indicated by
 the generic identifier <quote>.

	The elemental string labelled a has the property indicated by the
 generic identifier <emph>. 	Here we have an example of an atom which is also a molecule and an
 elemental string.

We introduce the following predicates:
Table I
	Predicate 	Meaning	Range of x and y
	
	NA(x,y) 	next after x is y (or, x immediately precedes y)	atoms
	 PA(x,y) 	x precedes y	atoms
	N(x,y) 	next after x is y (or, x immediately precedes y)	molecules
	 P(x,y) 	x precedes y	molecules
	A(x) 	x is atomic	any
	M(x) 	x is molecular	any
	E(x) 	x is elemental	any
	ccc(x) 	x has the property assigned by ccc (where ccc is an XML generic identifier) 	any
	T("c",x) 	x is of type c (where c is a character type) 	atoms
	L("ccc",x)	x is labelled ccc (where ccc is a sequence of character types)	any

The last two predicates (T and L) are to be regarded as notational convenience features.[14] We are ignoring potential problems of name conflicts in this presentation
 (which would arise e.g. in the case of a document containing XML generic identifiers
 A, M or E).

Examples
We assign the identifiers i01, i02, i03, etc. [15] to individuals of (1) and state some facts about them as follows:
 Table II
	T("A",i01)	A(i01)	NA(i01,i02)
	T(" ",i02)	A(i02)	NA(i02,i03)
			
	T("r",i03)	A(i03)	NA(i03,i04)
	T("o",i04)	A(i04)	NA(i04,i05)
	T("s",i05)	A(i05)	NA(i05,i06)
	T("e",i06)	A(i06)	NA(i06,i07)
			
	T(" ",i07)	A(i07)	NA(i07,i08)
	T("i",i08)	A(i08)	NA(i08,i09)
	T("s",i09)	A(i09)	NA(i09,i10)
	T(" ",i10)	A(i10)	NA(i10,i11)
			
	T("a",i11)	A(i11)	NA(i11,i12)
			
	T(" ",i12)	A(i12)	NA(i12,i13)
	T("r",i13)	A(i13)	NA(i13,i14)
	T("o",i14)	A(i14)	NA(i14,i15)
	T("s",i15)	A(i15)	NA(i15,i16)
	T("e",i16)	A(i16)	NA(i16,i17)
	T(".",i17)	A(i17)	
			
	i18=i01+i02	M(i18)	N(i18,i19)
	i19=i03+i04+i05+i06	M(i19)	N(i19,i20)
	i20=i07+i08+i09+i10	M(i20)	N(i20,i11)
		M(i11)	N(i11,i21)
	i21=i12+i13+i14+i15+i16+i17	M(i21)	
	i22=i18+i19+i20+i11+i21		
			
	L("A ",i18)		
	L("rose",i19)	E(i19)	quote(i19)
	L(" is ",i20)		
	T("a",i11)	E(i11)	emph(i11)
	L("rose.",i21)		
	L("A rose is a rose.",i22)	E(i22)	para(i22)

The same information may be presented more conspicuously in the following table,
 listing for each individual its identifier, its type, its label, the kind of individual it
 is (A for atoms, M for molecular and E for elemental strings), its assigned properties
 (i.e., properties assigned by an XML generic identifier), its next atom or molecular
 string and its immediate proper parts. [16]
Table III
	Id	Type	Label	Kind	Assigned property	Next atom	Next molecule	Immediate parts
	i01	"A"		A		i02		
	i02	" "		A		i03		
	i03	"r"		A		i04		
	i04	"o"		A		i05		
	i05	"o"		A		i06		
	i06	"e"		A		i07		
	i07	" "		A		i08		
	i08	"i"		A		i09		
	i09	"s"		A		i10		
	i10	" "		A		i11		
	i11	"a"	"a"	A M E	emph	i12	i21	
	i12	" "		A		i13		
	i13	"r"		A		i14		
	i14	"o"		A		i15		
	i15	"s"		A		i16		
	i16	"e"		A		i17		
	i17	"."		A				
	i18		"A "	 M			i19	i01, i02
	i19		"rose"	 M E	quote		i20	i03, i04, i05, i06
	i20		" is "	 M			i11	i07, i08, i09, i10
	i21		"rose."	 M				i12, i13, i14, i15, i16, i17
	i22		"A rose is a rose."	 E	para			i18, i19, i20, i11, i21

The elemental strings i22, i19 and i11 correspond to the XML elements (1)-(3) in a
 fairly straightforward way, and can now be identified for example as follows:
 i22 = (℩x)(para(x) ∧ E(x))
i19 = (℩x)(quote(x) ∧ E(x))
i11 = (℩x)(emph(x) ∧ E(x))

The non-elemental molecules i18, i20 and i21 can be identified for example as follows:
 i18 = (℩x)(∃y)(quote(y) ∧ N(x,y))
i20 = (℩x)(∃y)(emph(y) ∧ N(x,y))
i21 = (℩x)(M(x) ∧ ¬(∃y)N(x,y))

Although in this particular case the denoting expressions identifying individuals are
 fairly simple, identifying individuals by means of denoting expressions may in general
 become rather tedious. For example, in any document with more than one individual assigned
 the property quote, the denoting expression identifying individual i19 above would return
 the sum of all those individuals.
So although we have shown that all atoms, molecular and elemental strings
 of (1) can be identified by our relatively straightforward
 application of the Calculus, some of the above examples draw on the simplicity of the
 example and are rather ad hoc. Therefore, before we proceed to discuss how the Calculus
 can be used to make statements and make inferences about a document, we introduce a
 slightly more complicated (and also more realistic) example.
Consider the following XML document:
 <?xml version="1.0" encoding="UTF-8"?>
<doc>
 A rule:
 <list>
 <item>First:</item>
 <item>
 <list>
 <item>think,</item>
 <item>decide.</item>
 </list>
 </item>
 <item>Then:</item>
 <item>
 <list>
 <item>act,</item>
 <item>regret.</item>
 </list>
 </item>
 </list>
</doc>

Once again we provide identifiers for individuals of the document and present their
 properties and relations in tabular form, but this time we include only the molecular and
 elemental individuals: [17]
Table IV
	Id	Label	Kind	Assigned property	Next molecule	Immediate parts
	i01	A rule: 	M		i02	
	i02	First:	M E	item	i03	
	i03	think,	M E	item	i04	
	i04	decide.	M E	item	i05	
	i05	Then:	M E	item	i06	
	i06	act,	M E	item	i07	
	i07	regret.	M E	item		
	i08		E	list, item		i03, i04
	i09		E	list, item		i06, i07
	i10		E	list		i02, i08, i05, i09
	i11		E	doc		i01, i10

Note that the individuals i08 and i09 are each represented as one individual with two
 assigned properties, rather than as two individuals each with one property. The difference
 between this representation and the conventional XML representation can be illustrated by
 juxtaposing a conventional XML tree of the document (to the left) and what we might call a
 mereological graph (to the right):[18]
 [image:]

Because of our decision not to count tags as part of the document, all coextensive XML
 elements will be represented as one elemental individual. The nesting order of these
 elements in the XML document will not be preserved in this representation. [19]

As before, we can use denoting expressions to refer to any part of the document, for
 example:
 i01 = (℩x)¬(∃y)N(y,x)
i02 = (℩x)(item(x) ∧ ¬(∃y)(item(y) ∧ P(y,x)))
i03 = (℩x)(∃y)(∃z)(w)(v)
 ((x ≪ y) ∧ list(y) ∧
 (y ≪ z) ∧ list(z) ∧
 (N(w,x) → ¬(w ≪ y)) ∧
 (N(v,w) → ¬(v ≪ z)))
i09 = (℩x)(∃y)(∃z)
 (list(x) ∧ (x ≪ y) ∧ list(y) ∧
 list(z) ∧ (z ≪ y) ∧ ¬(x = z) ∧ P(x,z))

Statements and inferences
We can also use the Calculus to make statements about the document —
 unquantified, such as (1)–(4), or quantified, such as (5)–(8):
 (1) list(i09)
(2) item(i09)
(3) i07 ≪ i09
(4) i09 ≪ i10
(5) (x)(y)((list(x) ∧ item(x) ∧ (y ≪ x)) → item(y))
(6) (x)(y)((list(x) ∧ item(x) ∧ (x ≪ y)) → (list(y) ∨ doc(y)))
(7) (x)(item(x) → (∃y)((x ≪ y) ∧ list(y)))
(8) (x)(item(x) → (∃y)(∃z)
 (item(y) ∧ list(z) ∧ (x ≪ z) ∧ (y ≪ z) ∧ ¬(x = y)))

 In order to avoid unnecessary misunderstanding, it should be pointed out that
 (1)–(8) are descriptive statements about this particular document. (In other
 context, such as for example situations where we wanted to express general constraints on
 document structure, we might of course also want to state facts about document
 types, but that is not our issue here.)
From the statements we can make inferences, such as for example:

(9) item(i07)
 [From (1), (2), (3) and (5).]
(10) list(i10) ∨ doc(i10)
 [From (1), (2), (4) and (6).]
(11) (∃y)((i09 ≪ y) ∧ list(y))
 [From (2) and (7).]
(12) (∃y)(∃z)(item(y) ∧ list(z) ∧ (i07 ≪ z) ∧ (y ≪ z) ∧ ¬(i07 = y))
 [From (8) and (9).]

Conclusion
We have shown that strings composed of characters defined as atomic individuals can be
 identified and referenced by denoting expressions, that the Calculus can be used to
 describe the part-whole relationships and ordering relations between parts of the document
 as well as the properties ascribed by generic identifiers. We have also shown that this
 application of the Calculus can be used for making statements about documents and for
 drawing inferences from these statements.
The approach chosen here has at least two obvious problems, or shortcomings; one
 concerns the representation of coextensive elements, one relates to the representation of
 empty elements. Before we discuss these problems, however, we would like to assess one of
 its possible merits. In the next section, we will therefore sketch how this application of
 the Calculus can be used for the formulation of rules for propagation of properties among
 the parts of a document.

Property Propagation — a Sketch
We have assumed that the generic identifier of an element may be seen as assigning a
 property to the PCDATA content of that element, and not to any proper part of that PCDATA
 content. But sometimes, the meaning of the markup is such that that property is not assigned
 (or not only assigned) to the contents of the element itself, but also to all or some of its
 descendants, or to all or some of its ancestors, or to one or more of its siblings, or to only
 specific other elements. Furthermore, what is assigned to the element or elements in question
 may be not a monadic property, but a relation of them to other elements in the same document,
 or even to document elements or other entities outside that document. Thus, the propagation of
 properties ascribed by the generic identifier of an element may follow a large diversity of
 patterns.
Using examples from the TEI and HTML encoding schemes, we will show that some of these
 patterns can conveniently be described by means of our application of the Calculus. We will
 first address some of the general distribution patterns identified by Nelson Goodman, which
 seem to represent important aspects of the intended semantics of certain TEI or HTML element
 types. We will then proceed to more complicated examples.
Dissective and anti-dissective properties
As mentioned, in our application of the Calculus so far we have assumed that the
 property designated by the generic identifier of an XML element is assigned exclusively to
 the individual delimited by the start and end tags of the element, and not to its parts.
 This seems plausible enough for a number of element types, such as paragraphs, list items
 and titles. For example, a part of a paragraph, a list item or a title is not in general
 itself a paragraph, a list item or a title.
TEI element types such as <hi> (highlighting)[20] or <add> (added), however, do not seem to follow this rule. Every
 part of a highlighted or added element is itself presumably highlighted or added. Other
 examples may be (deleted) and <foreign>. The HTML element
 type <i> (italics) may provide an even clearer example here — every
 part of an italicized element is itself in italics.
According to Goodman, a ... predicate is ... dissective if
 it is satisfied by every part of every individual that satisfies it [Goodman 1972, p. 38]. A dissective one-place predicate is defined as
 follows:
 F is dissective iff (x)(y)((F(x) ∧ (y < x)) → F(y))

Consider the following document fragment:

<s>We
 <add>, as all
 purely <hi>human</hi> and
 finite beings,
 </add>
are all fallible.</s>

 As earlier, we represent the properties of this fragment in tabular form. From now on,
 however, in stead of indicating assigned properties for each individual we
 will list relevant statements (some of which may be inferences from statements about the
 properties of other individuals):
Table V
	Id	Label	Kind	Statements	Next	Parts
	i01	We	M		i02	
	i02	, as all 	M		i03	
	i03	purely 	M		i04	
	i04	human	M E	hi(i04)	i05	
	i05	 and	M		i06	
	i06	 finite beings,	M		i07	
	i07	 are all fallible.	M			
	i08		E	del(i08)		i03, i04, i05
	i09		E	add(i09)		i02, i08, i06
	i10		E	s(i10)		i01, i08, i09, i07

 However, if we add the following statements
 to the effect that the properties add, del and hi are dissective:
 (x)(y)((add(x) ∧ (y < x)) → add(y))
(x)(y)((del(x) ∧ (y < x)) → del(y))
(x)(y)((hi(x) ∧ (y < x)) → hi(y))

 — then, we can infer additional properties, with the following result:
Table VI
	Id	Label	Kind	Statements	Next	Parts
	i01	We	M		i02	
	i02	, as all 	M	del(i02) 	i03	
	i03	purely 	M	del(i03), add(i03)	i04	
	i04	human	M E	hi(i04), del(i04), add(i04)	i05	
	i05	 and	M	del(i05), add(i05)	i06	
	i06	 finite beings,	M	del(i06) 	i07	
	i07	 are all fallible.	M			
	i08		E	del(i08), add(i08)		i03, i04, i05
	i09		E	add(i09)		i02, i08, i06
	i10		E	s(i10)		i01, i08, i09, i07

 (Note that this is the first example so far of non-elemental individuals
 carrying assigned properties.)
Goodman observes that In practice, we are usually concerned only with
 disectiveness under some special or systematic limitations... [Goodman 1972, p. 38]. This seems to be the case here, too: While the
 TEI elements <hi>, <add> and and the HTML
 element <i> seem to apply all the way down to every atomic part of an
 individual, an element type like <foreign> hardly applies below word-level.
Furthermore, there seem to be exceptions even in the case of <hi>,
 <add> and : In a transcription, a <note>
 (note) element is normally not intended to inherit the property in question. A more
 generally usable formula for disectiveness may therefore be this:
 (x)(y)(z)((F(x) ∧ (y < x) ∧
 ¬((z < x) ∧ (y < z) ∧ (G(z) ∨ H(z) ∨ ...)))
 → F(y))

 where G, H,... indicate exceptions.
Let us define an anti-dissective one-place predicate as follows: [21]
 F is anti-dissective iff (x)(y)((F(x) ∧ (y ≪ x)) → ¬F(y))

The TEI element <docDate> (document date) and the TEI and HTML
 <body> may serve as examples of anti-dissective properties, — no
 part of a <docDate> or a <body> element is itself a
 <body> or a <docDate>. The HTML <p> (paragraph)
 element is also clearly anti-dissective.
 The TEI <p> element presents a complication. It would seem to be
 anti-dissective, but unlike HTML, TEI allows <p>s nested within
 <p>s. So
 (x)(y)((p(x) ∧ (y ≪ x)) → ¬p(y))

 is true in HTML, but not in TEI. The TEI <p> element can therefore not be said
 to be either dissective or anti-dissective.[22]

Expansive and anti-expansive properties
A one-place predicate is expansive if it is satisfied by
 everything that has a part satisfying it. [Goodman 1972,
 p. 38]. An expansive one-place predicate can be defined as follows:
 F is expansive iff (x)(y)((F(x) ∧ (x < y)) → F(y))

 In more conventional XML terms, while dissective predicates propagate down
 the document tree, expansive predicates propagate upwards in the tree, from
 children to their parents. This might be thought to be unusual, and actually it is difficult
 to find examples of such properties in the TEI and HTML encoding schemes. Element types such
 as <docDate> and <docAuthor> may, as we shall see later, be said
 to ascribe properties to individuals of which they are a part, but that does not make these
 individuals themselves <docDate>s or <docAuthor>s. (Even so, it
 easy to think of expansive properties: — for example, the property of
 containing the word Hamlet would clearly be
 expansive.)
Let us define an anti-expansive property as follows:
 F is anti-expansive iff (x)(y)((F(x) ∧ (x ≪ y)) → ¬F(y))

 The TEI element <foreign> may be an example of a property which is
 anti-dissective, at least up to a certain level, and at least insofar as it seems reasonable
 to assume that if something is marked as foreign, then it is marked off from something which
 is not in a foreign language.

Collective and anti-collective properties
That a one-place predicate is collective means that it is
 satisfied by the sum of every two individuals (distinct or not) that satisfy it
 severally [Goodman 1972, p. 39]. A collective one-place
 predicate can be defined as follows:
 F is collective iff (x)(y)((F(x) ∧ F(y)) → F(x + y))

 Dissective elements like the TEI elements <hi>, <add>,
 and <foreign> and the HTML element <i> seem
 also to be collective: any sum of strings in italics would seem itself to be in italics,
 etc. There probably are examples of expansive and non-dissective or anti-dissective
 properties in TEI or HTML, but so far we have not found any.
Let us define an anti-collective property as follows:
 F is anti-colletive iff (x)(y)((F(x) ∧ F(y) ∧ (x ʅ y)) → ¬F(x + y))

 Both the TEI and the HTML <div> (division) element types seem to be
 anti-collective: no sum of <div>s is itself a <div>.

The HTML title element
So far, we have been concerned only with one-place predicates.[23] Many TEI and HTML elements ascribe properties according to more complicated
 patterns which can more conveniently be accounted for by representing them as relations, or
 predicates with two or more places.
 We begin with a simple example of an element expressing a two-place predicate, the HTML
 title element. From: <!DOCTYPE html SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Simple HTML</title>
 </head>
 <body>
 <p>First para</p>
 <p>Second para</p>
 </body>
 </html>
 we get:
Table VII
	Id	Label	Kind	Statements	Next	Parts
	i01	Simple HTML	M E	head(i01), title(i01)	i02	
	i02	First para	M E	p(i02)	i03	
	i03	Second para	ME 	p(i03)		
	i04		E	body(i04)		i02, i03
	i05		E	html(i05)		i01, i04

 We state the propagation rule that:
 (x)(y)((title(x) ∧ (x < y) ∧ html(y)) → hasTitle(y,x))

 and get for the last line of the previous table:
Table VIII
	Id	Label	Kind	Statements	Next	Parts
	i05		E	html(i05), hasTitle(i05,i01)		i01, i04

The fact that the propagation rule can be made so simple in this case is partly due to
 the fact that we are assuming that the document is valid, and that the relative structural
 positions of the elements are constant. For example, there is no need to state that the
 title element has to be the child of a head element which in turn is directly succeeded by a
 body element etc.

The TEI sp, speaker and stage elements
While it is quite legitimate to assume document validity when stating propagation rules,
 these rules tend to become more complex when more elements are involved, and/or the rules
 for the structural positions of the elements concerned are more complex.
The relation between the TEI elements <sp> (speech),
 <speaker> and <stage> (stage direction) is that a
 <sp> may contain a <speaker>, and if it does, the
 <speaker> element contains the name of the speaker of the rest of the
 <sp> element, except for any <stage>s (stage directions) it
 might contain. From:

 <sp>
 <speaker>Peer</speaker>
 Why
 <stage>(hesitating)</stage>
 swear?
</sp>

 we get:
Table IX
	Id	Label	Kind	Statements	Next	Parts
	i01	Peer	M E	speaker(i01)	i02	
	i02	Why	M		i03	
	i03	(hesitating)	M E	stage(i03)	i04	
	i04	swear?	M			
	i05		E	sp(i05)		i01, i02, i03, i04

 We state the following propagation rule:
 (x)(y)((speaker(x) ∧ (x < y) ∧ sp(y)) →
 (z)(((z < y) ∧ ¬(speaker(z) ∨ stage(z))) → saidBy(z,x)))

 and get:
Table X
	Id	Label	Kind	Statements	Next	Parts
	i01	Peer	M E	speaker(i01)	i02	
	i02	Why	M	saidBy(i02,i01)	i03	
	i03	(hesitating)	M E	stage(i03)	i04	
	i04	swear?	M	saidBy(i04,i01)		
	i05		E	sp(i05)		i01, i02, i03, i04

The TEI docTitle, docDate and docAuthor elements
 The TEI <docTitle> (document title) element may occur directly within
 <titlePage> or <front> (front matter); <titlePage>
 may occur directly within <front> or <back> (back matter), and
 <front> and <back> may occur directly within
 <text>. <docTitle> behaves very much like the HTML
 <title> element:
 (x)(y)((docTitle(x) ∧ (x < y) ∧ text(y)) → hasTitle(y,x))

 <docTitle> assigns the property of being a document title
 to its own content, and the property of having that title to the
 individual which carries the property of being a text, and of which it is itself a part.
 Thus, while no other parts of the elemental text individual have any of these properties,
 all its parts have the property of being the part of an individual
 which carries the title in question.
The <docDate> (document date) element, in turn, behaves very much like the
 <docTitle> element. Although it may occur in a larger variety of positions, it
 assigns the property of being (or identifying) the date of the document
 to its own content, and the property of having that date to the
 individual which carries the property of being a text, and of which it is itself a part.
We may assume, however, that the document date carries over to most or all the parts of
 the text, i.e., that all the parts of the element have the property of having that date,
 too.

 If we are dealing with a transcription of an authorial document which according to the
 <docDate> element dates from a particular year, it may be the case that we
 also know that all parts of the document marked by <add> contain corrections
 in that document made by another person several years later, and that all
 <note>s are editorial notes supplied even later than that, by the creator of
 the electronic version. A propagation rule to this effect may be expressed for example as
 follows:
 (x)(y)(z)(w)((docDate(x) ∧ (x < y) ∧ text(y)) →
 (((z < y) ∧ ¬((z < w) ∧ (add(w) ∨ note(w)))) →
 (hasDate(y,x) ∧ hasDate(z,x))))

 Note, however, that in some situations the TEI <docDate> element gives the date of the
 first edition of the text, while the text actually transcribed by the document comes from a later edition. In such situations
 the semantics of the element is rather different, and the property of having the date given may possibly not propagate to elements below <text> level at all.

The <docAuthor> (document author) element, again, behaves much like the
 <docDate> element. It assigns the property of being the
 name of the author of the document to its own content, and the property of
 having the author of that name to the text of which it is a part.
In the example just discussed, we may again assume that the property, in this case the
 property of having the author in question, is not carried over to later additions and notes.
 Other element types, such as <q> (quote) <cit> (citation), would
 for more or less obvious reasons also have to be considered for exclusion. However, there is
 a further complication: If a person is considered the author of a document, he is normally
 also considered the author of parts of that document, such as its chapters, sections and
 paragraphs. Perhaps authorship may also be attributed to sentences or phrases, but certainly
 not to individual words or letters. Again we are faced with a property which propagates down
 to a certain level, but where it is unclear exactly where that level ends. And as is so
 often the case with markup, it does not help us much to become clear about the level at
 which the propagation ends, be it subparagraphs, sentences or phrases, if it turns out that
 the elements at that level have not been marked up.

Problems
 We have mentioned that there are at least two serious problems with our application of
 the Calculus. One problem, which has already been identified, relates to the representation of
 coextensive elements. The other problem, which relates to the representation of empty
 elements, has only been mentioned in passing. We believe this is the least serious of the two,
 and we will therefore discuss that first.
Empty elements
For the purposes of this discussion, we may conveniently distinguish between milestone
 elements and other empty elements
Milestone elements
Milestones are empty elements which ascribe properties to parts of a document, but
 which for various reasons are represented by empty elements. The reason why some textual
 phenomena are represented by milestones rather than ordinary elements is often a need to
 overcome the XML constraint that element structure must be hierarchical.
Typically, a milestone may be seen as assigning a property to the following parts of
 the document, up to the next milestone element of the same type, up to the occurrence of
 an element of some specific other type, or to the end of the document. We think we have
 already demonstrated that our application of the Calculus to XML documents can handle such
 property assignment.
 We believe that many of the other mechanisms proposed to handle so-called overlapping
 hierarchies in XML (for example, Trojan Horse milestones, [DeRose 2004] and fragmented or virtual elements [TEI P4]) can be
 handled in similar ways, and therefore do not constitute a serious problem for our
 application of the Calculus.

Other empty elements
Empty elements which are not milestones typically stand for and/or ascribe properties
 to some part of the document which cannot straightforwardly be represented as a character
 or string of characters. These empty elements are more difficult to deal with, because
 according to our application of the Calculus something which cannot be said to consist of
 character atoms simply cannot be an individual. And if it is no individual there seems to
 be nothing to which properties can be ascribed; only individuals can have properties.
The TEI elements <ptr> (pointer), <anchor> (anchor point),
 <index> (index entry) and <divGen> (automatically generated
 text division) are some examples. Either they indicate a point in the document, i.e., they
 have no extension in the terms of our application of the Calculus and would
 seem to have to be located in a position between two atoms. Or they do not indicate any
 point or extension in the document, but rather an instruction to generate strings with
 certain properties at the position they are located. In some cases, the problems outlined
 here can be solved by replacing the empty element in question with a character string,
 taken for example from an attribute value of the element in question. In cases where the
 element occupies or points to a location between characters, we might find a practical
 workaround by letting it apply or point instead to the atom immediately before or after
 the relevant location in our model of the document.
A slightly different kind of problem is presented by the TEI <graphic>
 (inline graphic, illustration, or figure) and HTML <graphic> elements. The
 basic meaning of these elements is easy enough to catch: The occurrence of the element
 indicates that an illustration or a figure occurs at a specific location in the document.
 Therefore, a more appropriate solution to this as well as to the previously mentioned
 examples is probably to lift the requirement that all atoms should have a character type
 as a property. A graphics element, for example, might simply be represented in our model
 by a graphics atom.
More generally, this would be a model in which a document consists not of a sequence
 of character atoms, but of a sequence of some more generic kind of atoms. We might, for
 example, agree to call them atomic content objects, and concede that such
 atoms may or may not have a character property, an image property etc.
 Although we have not investigated the matter, we believe that such a modification would
 not drastically change the application of the Calculus described above.

Coextensive elements
We have already exemplified and briefly discussed the problem with coextensive elements:
 If two or more nested elements have exactly the same content, i.e., share exactly the same
 leaf nodes in the XML tree, they will be represented in our application of the Calculus as
 one individual sharing all the properties ascribed by the nested XML elements. What kind of
 problem this is, and whether and how it can be solved, depends on the wider requirements and
 aims for our application of the Calculus to markup. Under certain requirements or
 perspectives, it may cease to be a problem.
If our aim is to establish a representation from which the serialized form of an XML
 document can be regenerated, we obviously have a problem: It is by no means obvious if or
 how this could be done. Likewise, if our aim is to establish a representation from which the
 XML DOM, the XDM or the XML Infoset representation can be generated, or which is isomorphic
 to and/or contains (all) the information given in any of those, then it is perhaps even more
 obvious that we have a problem.
We have two responses to this: On the one hand, the value of the approach presented here
 does not depend on such capabilities. The value of the approach to property propagation, for
 example, may be simply as an ancillary representation of some of the features of marked-up
 documents, a representation which is not intended to capture all the
 information present in XML documents but rather to assist in the processing of such
 documents. Therefore, the problem discussed here is a problem only to the extent that it
 impedes our work to realize this more modest aim. So far, we have not found any indication
 that it does.
On the other hand, we might want to use this representation in order to modify the XML
 documents so represented, and in that case we would clearly need to reserialize them to XML
 or generate an XML-conformant document model of them. For such purposes, we believe that
 information about the XML nesting order of coextensive elements could easily be stored in
 some ancillary data structure which would make reserialization etc possible. It should also
 be mentioned that, although again we have not investigated the matter, it is not
 unreasonable to assume that a representation of documents in the way proposed for our
 application of the Calculus might be a convenient step in the process of converting XML
 documents to certain other markup systems, such as TexMecs or LMNL.
Finally, if our aim is to offer an alternative representation based on a different
 understanding of the structure and semantics of marked-up documents, then we have a problem
 only if it can convincingly be argued that our representation is in some respect inferior to
 these standard ways of modelling documents. We think such a discussion is premature unless
 and until the application sketched here is developed further, but at least two lines of
 argument seem to present themselves as possible responses to the challenge.
First, one might argue that the problem is with XML, and not with the approach discussed
 here. For example, if a TEI <p> (paragraph) and <s> (s-unit,
 sentence) element are coextensive, XML forces us to decide whether we are dealing with a
 paragraph containing a sentence, or a sentence containing a paragraph, and leaves us no
 other option. But we might just as well (or rather) want to say that we are dealing with one
 object which has two properties: that of being a paragraph and that of being a sentence. The
 part-whole relationship which seems forced upon us by XML is an artifact of the
 serialization, a result of one of the limitations of embedded markup.[Raymond et al. 1996]
Second, we might concede that the representation of coextensive elements as conceived in
 the present approach is a problem, and try to solve it by amending our mereological system.
 Part of the solution may be found in allowing more generous set of atoms, as discussed above
 in connection with the problem of empty elements. Another part of the solution might be to
 replace the Calculus of Individuals with some other formal mereological system. For example,
 there seems to be mereological systems which allow for the idea that one individual may be
 part of another even in cases where we cannot identify any part which they do not share. For
 options along these lines, see the discussion of supplementation and closure principles in
 Casati and Varzi 1999 p. 38 f.f.

Conclusion and Future Work
 We have considered some possible applications of the Calculus of Individuals to XML,
 whereof the so-called character-atom approach has seemed the most promising so far. Strings
 composed of characters defined as atomic individuals can be identified and referenced by
 denoting expressions. The part-whole relationships and ordering relations between parts of the
 document as well as the properties ascribed by generic identifiers can be described.
 Statements about the individuals of documents and their properties can be made, and inferences
 can be drawn from these statements.
 We have shown, by means of examples from the TEI and HTML encoding schemes, how this
 application of the Calculus can be used for the formulation of rules describing the
 propagation of properties among the parts of a document.
 We have identified problems or shortcomings concerning the representation of empty
 elements and coextensive elements, and suggested that these problems may be overcome partly by
 allowing a more generous set of atoms, and partly by replacing the Calculus of Individuals
 with some other formal mereological system.
 In order to assess whether the application of formal mereology to markup semantics is
 worth while, we believe that continued work is required along several lines: The application
 to XML should be extended beyond the limitations of the approach presented here to include XML
 the full range of XML mechanisms, such as attributes, entities, declarations, comments,
 processing instructions, and marked sections. While the approach presented here is limited to
 the consideration of XML documents in serialized form, i.e. as character streams, attempts
 should be made at applying formal mereology to XML documents considered as graphs of xPath
 nodes, Infoset items, and the like.
 Furthermore, and as already mentioned, mereological systems beyond the Calculus of
 Individuals should be considered in order to overcome some of the problems encountered in the
 approach presented her. Last, but not least: The application of formal mereological systems
 should be extended to other markup systems such as SGML, TexMecs, LMNL, Goddag and others.

References
[Casati and Varzi 1999] Casati, Roberto and
 Varzi, Achille C. Parts and Places. The Structures of Spatial
 Representation. MIT Press, 1999.
[DeRose 2004] DeRose, Steven J. 2004. Markup
 overlap: A review and a horse. In Proceedings of Extreme Markup Languages
 2004.
[Fitzgerald 2003] Fitzgerald, Henry.
 Nominalist things. Analysis 63.2, OUP, April 2003, pp
 170-71. doi:https://doi.org/10.1093/analys/63.2.170.
[Goodman 1972] Goodman, Nelson. Problems
 and Projects. Hackett, Indianapolis 1972.
[Goodman 1977] Goodman, Nelson. The
 structure of appearance. Third edition. Boston: Reidel, 1977
[Leonard and Goodman 1940] Leonard, Henry
 S. and Goodman, Nelson. The Calculus of Individuals and Its Uses, The
 Journal of Symbolic Logic Vol 5, No. 2, pp 45-55, June 1940. doi:https://doi.org/10.2307/2266169.
[Libardi 1994] Libardi, Massimo. Applications
 and limits of mereology. From the theory of parts to the theory of wholes,
 Axiomathes, n.1, aprile 1994, pp. 13-54.
[Marcoux et al. 2009] Marcoux, Yves, Michael
 Sperberg-McQueen, and Claus Huitfeldt. Formal and informal meaning from documents
 through skeleton sentences: Complementing formal tag-set descriptions with intertextual
 semantics and vice-versa. Presented at Balisage: The Markup Conference 2009,
 Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference
 2009. Balisage Series on Markup Technologies, vol. 3 (2009).
 doi:https://doi.org/10.4242/BalisageVol3.Sperberg-McQueen01.
[Pitkänen] Risto Pitkänen.
 Content Identity. Mind.1976;
 LXXXV: 262–268. doi:https://doi.org/10.1093/mind/LXXXV.338.262.
[Sperberg-McQueen and Huitfeldt 2008] Sperberg-McQueen, C. M., and Claus Huitfeldt. Containment and dominance in Goddag
 structures. Talk given at Conference on Text Technology, Bielefeld, March 2008.
 Forthcoming.

[Raymond et al. 1996] Raymond, Darrell, Frank Wm. Tompa
 and Derick Wood. From Data Representation to Data Model: Meta-Semantic Issues in the
 Evolution of SGML, Computer Standards and Interfaces 18 p.
 25-36 (1996). doi:https://doi.org/10.1016/0920-5489(96)00033-5.
[Sperberg-McQueen et al. 2009a] Sperberg-McQueen, C. M.,
 Claus Huitfeldt and Yves Marcoux. What is transcription? (Part 2). Talk given
 at Digital Humanities 2009, Maryland, June 2009. Forthcoming.
[TEI P4] The TEI Consortium / The Association for
 Computers and the Humanities (ACH); The Association for Computational Linguistics (ACL); The
 Association for Literary and Linguistic Computing (ALLC). TEI P4:
 Guidelines for Electronic Text Encoding and Interchange XML-compatible edition.
 Ed. C. M. Sperberg-McQueen and Lou Burnard; XML conversion by Syd Bauman, Lou Burnard, Steven
 DeRose, and Sebastian Rahtz. Oxford, Providence, Charlottesville, Bergen: TEI Consortium,
 December 2001. http://www.tei-c.org/release/doc/tei-p4-doc/html/

[Varzi 2003] Varzi, Achille. Mereology.
 Stanford Encyclopedia of Philosophy.
 http://plato.stanford.edu/entries/mereology/ First published Tue May 13, 2003; substantive
 revision Thu May 14, 2009.

[1] Goodman, whose work we will take as our basis here, was a well known nominalist,
 however of a peculiar kind. For Goodman, nominalism did not consist in the rejection of
 abstract entities, or even of universals, but in the refusal to admit anything but
 individuals as values of variables.He strongly repudiated all talk of classes as incomprehensible [Goodman 1977, pp. 25-26, Goodman 1972,
 p. 156] and therefore philosophically suspect. He also worked hard to establish a
 foundation for mathematics replacing set theory with the calculus of individuals. But at
 the same time he had no qualms taking abstract objects such as qualia as
 basic constituents of his own ontology [Goodman 1977, chapters IV
 ff].

[2] ...there is no necessary internal link between mereology and the philosophical
 position of nominalism. We may simply think of the former as a theory concerned with the
 analysis of parthood relations among whatever entities are allowed into the domain of
 discourse (including sets and other abstract entities, if one will). [Casati and Varzi 1999]
[3] For an entertaining collection of other candidate sum individuals, see [Fitzgerald 2003].
[4] Equivalent systems (or rather, systems with only minimal and trivial differences) may
 be built whichever we choose as the primitive relation.
[5] In [Leonard and Goodman 1940], Leonard and Goodman chose
 discrete from as the primitive relation. A more common practice seems to
 be the choice of part or proper part.
[6] Numbers in the left margin give references to theorem and definition numbers in [Goodman 1977]. Note that Goodman used a notation slightly different from
 ours, but that we have retained Goodman's use of implicit universal quantification.
[7] Leonard and Goodman use for the discrete from relation a symbol we have
 not been able to locate in Unicode; we use here a fairly close approximation, the symbol
 “ ʅ ”, which usually means
 caution.
[8] This may be seen simply as a reflection of the fact that most mereologists have been
 nominalists (in Goodman's sense). But the topic also has other far-reaching repercussions
 — see [Varzi 2003].
[9] In practice, we may read nearly all for some here.
 Examples of exceptions would be documents consisting of only one element, or in which
 each element has at most one child element. Examples:
 <s>...</s>
<s><t>...</t></s>
<s><t><u>...</u></t></s>

 and so on. Only in such cases may there in fact be a one-to-one correlation between
 elements and individuals.
[10] Goodman 1972, p. 164. But see also Pitkänen p. 268
[11] This is the case if we think of XML documents and elements as consisting of
 stretches of consecutive character occurrences (remember we exclude entity declarations
 and references from our discussion), and also with the xPath data model. It is not necessarily the case with the Infoset data model.
[12] This
 might be considered, by some, an interesting observation, since some markup
 theorists have argued against the use of mixed content, either generally or for
 specific applications or uses of markup.
[13] We might allow a character occurrence to have more than one such property. For
 example, it could have the property of being an a, as well as that of
 being of some other type. Exploiting this option might be interesting in trying to
 account for multiple readings or interpretations in transcription, such as in [Sperberg-McQueen et al. 2009a]. For the time being, however, we will assume that the ascription
 of one such character-type-property to a particular character excludes the ascription
 of any other character-type-property to that character.
[14] In a realsystem, character type indications enclosed within quotes
 and occurring within two-place predicates, like T(A,i01) here, should
 be replaced with one-place predicates using for example Unicode names for character
 values, like T.x0041(i01). Character types are properties, not individuals, and so
 should not really appear as variables in the calculus. One unattractive consequence of
 the shorthand notation used here is that assignment of whitespace characters comes out
 as T(,i2), which is both imprecise and perhaps somewhat
 confusing.As mentioned, saying that an individual is labelled with a string is merely a
 shorthand for saying that it consists of a sequence of atoms each with certain
 character types as their values. So expressions like
 L(is ,i20) in the example below are really
 shorthands for more complex expressions referring to the atomic parts of the
 individual i20 and their next and type properties. Assuming that i20=i07+i08+i09+i10,
 what L(is ,i20) says should be construed as
 something like NA(i07,i08) ∧ NA(i08,i09) ∧ NA(i09,i10) ∧
 T.x0020(i07) ∧ T.x0069(i08)∧ T.x0073(i09)∧
 T.x0020(i10).

[15] In a working system one would probably use more meaningful
 identifiers. The only requirement on identifiers is that they should identify
 individuals uniquely.
[16] At least as long as we are limiting ourselves to XML the notion immediate
 proper part can be given a straightforward and natural definition: x
 is an immediate proper part of y =df (x ≪ y) ∧
 ¬(∃z)((x ≪ z) ∧ (z ≪ y))
[17] We have made life even more comfortable for ourselves by leaving out the
 blankspace molecular atoms which occur between each of the molecules listed in the
 table.
[18] It should be noted that the mereological graph here has been construed so as to
 highlight the differences from XML discussed in this particular example, and that
 other important differences do not come out with this kind of visualization. For example, the nodes of the XML graph are commonly understood to represent XML
 elements, which in this case have been decorated with their generic identifiers. The
 nodes of the mereological graph, however, represent individuals and are decorated with
 what we have here called there assigned properties. Moreover, the nodes visible in the
 mereological graph represent only a tiny fraction of the individuals of the document.
The arcs of the XML graph are commonly understood to represent containment and/or
 dominance relations between elements. In the mereological graph, they represent
 exclusively part-whole relationships. Again, the number of part-whole relationships
 depicted in the graph represent only a fraction of the part-whole relationships
 between the individuals of the document.

[19] It might of course seem that the nesting order is preserved by the order in which
 the assigned properties are mentioned in the table. However the table represents an
 unordered set of statements, so the order is insignificant. More on nesting order of
 coextensive elements further below.
[20] In the following we will often use the expression element or
 element type as short for property ascribed
 to an element by its generic identifier.
[21] The term anti-dissective (and its definition) is ours, not Goodman's.
 The same goes for the terms anti-expansive and
 anti-collective in the following paragraphs.
[22] A reflection upon this fact may also make us change our judgement of the HTML
 <p> element: Perhaps it is just a result of the content model of
 <p> in HTML that it seems anti-dissective. Anyhow, since nested
 <p>s simply do not occur in HTML, it does not matter much whether we
 classify the property as non-dissective or anti-dissective.

[23] We have simply tried to find examples of the patterns Goodman terms
 dissective, expansive and collective, and
 added the corresponding patterns anti-dissective etc. Goodman also
 identifies patterns he terms nucleative, pervasive,
 cumulative and agglomerative [Goodman 1972, p. 39–40]. We do not discuss these here,
 as we have not found any interesting application of them for the present purposes. In
 particular, a nucleative property is a property such that
 F is nucleative iff (F(x) ∧ F(y)) → F(x · y)

 Since XML has no elements which overlap without the one being a part of the other, the
 product of two element strings is always a part of one of them. Therefore, although the
 pattern does not have any interesting applications to XML — it may have for
 markup systems such as xConcur, TexMecs, Goddag, LMNL and others which allow overlapping
 elements.

Balisage: The Markup Conference

Markup Meaning and Mereology
Claus Huitfeldt
Associate professor
University of Bergen, Norway

<claus.huitfeldt@fof.uib.no>
Claus Huitfeldt is Associate Professor at the Department of Philosophy of the
 University of Bergen. His research interests are within philosophy of language, philosophy
 of technology, text theory, editorial philology and markup theory. He was founding
 Director (1990-2000) of the Wittgenstein Archives at the University of Bergen, for which
 he developed the text encoding system MECS as well as the editorial methods for the
 publication of Wittgenstein's Nachlass - The Bergen Electronic Edition (Oxford University
 Press, 2000). He was active in the Text Encoding Initiative (TEI) since 1991, and was
 centrally involved in the foundation of the TEI Consortium. Huitfeldt was Research
 Director (2000-2002) of Aksis (Section for Culture, Language and Information Technology at
 the Bergen University Research Foundation).

C. M. Sperberg-McQueen
Black Mesa Technologies LLC

<cmsmcq@blackmesatech.com>
Sperberg-McQueen, C. M. is an independent consultant for Black Mesa Technologies LLC.
 He currently serves as an editor of the W3C XML Schema Definition Language (XSD)
 1.1.

Yves Marcoux
Associate professor
Université a Montréal, Canada

<yves.marcoux@umontreal.ca>
Yves Marcoux is a faculty member at EBSI, University of Montréal, since 1991. He is
 mainly involved in teaching and research activities in the field of document informatics.
 Prior to his appointment at EBSI, he has worked for 10 years in systems maintenance and
 development, in Canada, the U.S., and Europe. He obtained his Ph.D. in theoretical
 computer science from University of Montréal in 1991. His main research interests are
 document semantics, structured document implementation methodologies, and information
 retrieval in structured documents. Through GRDS, his research group at EBSI, he has been
 principal architect for the Governmental Framework for Integrated Document Management, a
 project funded by the National Archives of Québec and by the Québec Treasury Board.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Huitfeldt01-001.jpg

