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Abstract
 When marking up a document we chop it up into elements. Elements are parts of the
        document, some of which contain further elements, i.e., have parts of their own. Thus, the
        part-whole relation is central to the way markup works.
Mereology is precisely the theory of part-whole relationships, but has not yet found
        much application in markup theory. In this paper we provide a sketch of how mereology, in
        the form more specifically of Nelson Goodman's Calculus of Individuals, might be applied to
        markup.
We discuss ways of identifying the individuals of marked-up documents and of referencing
        these individuals, and we sketch some ways of applying the calculus to the problem of
        propagation of properties in documents. 
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   Markup Meaning and Mereology

Introduction
XML documents consist of marked elements, which may in turn contain sequences of marked
      elements, etc. This hierarchy of elements is conveniently represented as a tree in which each
      node stands for an element, in which each arc between elements stand for a parent-child
      relationship, and in which the children of each node are ordered sequentially in accordance
      with their document order.
While it is commonly the case that the generic identifier of an element is understood to
      ascribe a property to the element's content, that elements represented by nodes dominated by
      that element's node in the document tree are also understood to be contained by it, and that
      these nodes are understood to inherit the properties ascribed to their ancestor elements, none
      of this is always or necessarily the case. 
As we have pointed out elsewhere [Sperberg-McQueen and Huitfeldt 2008], the parent-child
      relationship may be taken to indicate either a containment relationship, or a dominance
      relationship. Frequently these relationships coincide, and no harm is caused by not
      distinguishing them. When they do not coincide, however, the result may easily be confusing. 
One view of the structure of XML documents emphasizing the part-whole relationship is
      this: A document contains elements, i.e., parts. Some of these parts contain further elements,
      i.e., have parts of their own. The generic identifiers of elements ascribe properties to their
      own content and/or to the content of elements related to them by part-whole relationships. 
Mereology is precisely the theory of part-whole relationships. Even so, mereology does not
      seem to have found much application in markup theory until now. It may therefore be
      interesting to investigate whether the application of mereology may give insights relevant to
      the understanding of interpretation and processing of marked-up documents. 
It is sometimes said that XML provides a formal syntax for document representation, but no
      formal semantics for the interpretation or processing of this syntax. If mereology can be
      brought to bear on the ascription and propagation of properties and relations between parts of
      marked-up documents, it may help in providing a general approach to markup semantics. For
      example, the work presented here may turn out to be of direct relevance for the work on formal
      tag set descriptions and intertextual semantics specifications presented in [Marcoux et al. 2009] and [Sperberg-McQueen et al. 2009a].
Before we proceed, some words on the limitations of this paper are in place. First,
      although our focus is on XML, and although we mention other markup languages in passing, we
      believe that mereology deserves to be studied in relation to markup languages in general (such
      as XML, SGML, TexMecs, LMNL, and others) rather than XML only. We think so partly because
      application of mereology may be equally or more profitable when it comes to some non-XML
      markup systems, and partly because such broader studies might inspire modifications of
      — or alternatives to — any or all of these. We hope to come back to
      applications of mereology to markup more generally in future work. 
Second, the concept XML document as used in this paper refers almost
      exclusively to XML in its serialized form. We do not explicitly attempt to apply mereology to
      XML documents considered as graphs of xPath nodes, Infoset items, or the like. 
Finally, we limit ourselves to an attempt to apply the so-called Calculus of Individuals,
      a mereological system worked out by Nelson Goodman [Goodman 1977] (initially
      in cooperation with Henry S. Leonard [Leonard and Goodman 1940]). As a further
      simplification, and in order to ensure focus, we will ignore XML attributes, entities,
      declarations, comments, processing instructions, and marked sections; in short, we will regard
      XML documents as consisting of elements and their content only . 

The Calculus of Individuals
The origins of mereology go back to ancient Greece, but it was taken up as a formal study
      and developed mathematically only early in the 20th century. Today, it is a well developed
      formal discipline, and there are a number of different mereological systems. The term
      mereology is sometimes used to refer to these formal calculi in particular, sometimes to
      formal as well as non-formalized theories of part-whole relationships in general [Libardi 1994, pp. 13–15].
Early developments of formal mereology were largely motivated by scepticism towards set
      theory and the calculus of classes, and a desire to translate or reduce all
      talk of abstract classes and their members to talk of concrete individuals and their parts.
      Mereology therefore came to be associated with a particular ontological stance, nominalism,
      and to be shunned by most adherents of other ontological views.[1]
Such ontological considerations may or may not motivate, but do not in any way need to
      concern, our attempt to apply mereology to markup languages, however: later work in the field
      is generally taken to demonstrate that mereology and set theory may live merrily together,
      that in fact the one may be seen as an extension of the other, and that the adoption of
      mereology does not by itself commit one to any particular ontological stance.[2]
    
The part-whole relationships that mereology studies are relationships between entities
      that are, in Goodman's terminology, called individuals. Generally
      speaking an individual may be any thing in a very wide sense of the word
      — a concrete, an abstract, a universal or a particular — i.e., any object
      or entity of which something can be predicated. This is admittedly still pretty general, and
      more specific talk may be in order: As examples of individuals we may take stones, tables,
      chairs, animals and other medium-sized everyday objects; but if we like we may also populate
      our world with individuals such as molecules, atoms, electrons, quarks; or planets, stars and
      galaxies; or for that matter persons, visual after-images, mental images or sense data. If we
      believe in abstract objects we may include numbers, geometrical objects, concepts, etc., and
      according to some applications of mereology there may also be temporal
      individuals such as processes, events, and snippets of time. 
 Individuals need not be contiguous, neither in space nor in time. This is one of the
      principles of the Calculus of Individuals which has provoked some discussion. In its defence
      one may point to the fact that we actually do employ the notion of at least some such
      disconnected wholes in everyday language. Thus, to treat the land mass of Japan
      (or any geographic entity which includes two or more islands) as an individual may seem
      unobjectionable. However, according to another principle, the sum of any two individuals is
      always also an individual. This seems to force us to accept as individuals, i.e.,
        wholes, sums of randomly scattered parts such as Caesar's nose and the
        state of Utah [Goodman 1972, p. 37].[3] Goodman bites that bullet, while much of the ensuing debate has been concerned
      with attempts to find ways of distinguishing such scattered and arbitrary sums from more
        cohesive or integral individuals as wholes consisting of parts
      in a more intuitively satisfactory sense. 
A formal mereological theory takes conventional first-order predicate logic as its basis.
      We will use conventional modern logical notation for quantifiers, operators, predicates,
      variables and constants. More specifically, we will use (x) for universal and
      (∃x) for existential quantification over x; ¬ for negation, →
      for implication, ∨ for inclusive disjunction, ∧ for conjunction, ⇔ for
      equivalence, and = for identity. We use the small roman letters a, b, c... for constants, x,
      y, z... for variables, and upper roman letters A, B, C... for predicates. We will occasionally
      use the conventional abbreviation iff for if and only if.
The extension which mereology makes to this basis is very modest: In fact the extension
      consists in adding only one single primitive relation to the first-order system. This
      specifically mereological, primitive relation may be chosen from among the
      relations part of, proper part of, discrete from
      or overlapping with. As each of these relations may be defined in terms of any
      of the others, it does not matter much which one we chose as our undefined primitive.[4] With a hopefully obvious appeal to markup theorists, we will follow [Goodman 1977] in choosing overlap for our primitive relation.[5]
    
Variables are taken to range over individuals only, and predicates are taken to ascribe
      properties of or relations between individuals. 
From a mereological point of view, two individuals overlap iff they
      have some content in common. One consequence of this definition may briefly confuse markup
      specialists: since in an XML document a child element and its parent element have some content
      in common (everything contained by the child is also contained by the parent), it follows that
      in the sense introduced here the child and the parent overlap. That is,
      the term overlap, as used in the calculus of individuals, includes proper
      nesting or normal part/whole relations. 
Thus, if we think of XML elements as individuals consisting of stretches of consecutive
      character occurrences, and if we consider the following four cases (strictly speaking, the
      first line is not well formed XML and is included only for purposes of illustration):
                  <s>  <q>   </s> </q>
            <s>  <q>   </q> </s>
            <q>  <s>   </s> </q>
            <s>  </s>  <q>  </q>

      the first three cases exhibit an overlap between elements s and q.
      Only in the last case do the two elements not overlap, i.e., they are discrete. In contrast,
      markup theorists would probably consider only the first case to be one of overlap.
The overlap operator is written ∘. The following
      condition on ∘ captures the intuitive notion of “having some content in
      common,” and we thus take it as an axiom:[6]
      2.41  x ∘ y  ⇔ (∃z)(w)((w ∘ z) → ((w ∘ x) ∧ (w ∘ y)))

      Any relation satisfying this condition is necessarily reflexive and symmetric (but not
      necessarily transitive).
We now state further relation and operator definitions, theorems and axioms. Note that not
      all of them belong to all variants of mereological systems; they do, however, belong to ours.
As already mentioned, the relations part of,
      proper part, and discrete may all be defined in terms of the
      overlap relation.
Iff x is a part of y, then everything that overlaps x also overlaps
      y:
      D2.042 x < y =df (z)((z ∘ x) → (z ∘ y))

      The part relation is reflexive, anti-symmetric and transitive. 
 Iff x is a proper part of y, then x is a part of y but y is not a
      part of x:
      D2.043 x ≪ y =df (x < y) ∧ ¬(y < x)

      The proper part relation is irreflexive, anti-symmetric and transitive.
 Iff x and y are discrete, then they have no part in common, i.e.,
      they do not overlap[7]:
      D2.041 x ʅ y =df ¬(x o y) 
 The
      discrete relation is irreflexive and symmetric (and thus, non-transitive).
 It is worth noting that identity can be defined in terms of the
      primitive relation:
      D2.044 x = y =df  (z)((z o x) ⇔ (z o y))

    
The product of x and y is the individual which exactly contains their
      common part: D2.045 x · y =df (℩z)(w)((w < z) ⇔ ((w < x) ∧ (w < y)))

      
    
The sum of x and y is the individual which contains exactly and
      exhaustively both of them, or, in other words, the individual which overlaps all and only
      those individuals which overlap any of them: D2.047 x + y =df (℩z)(w)((w ∘ z) ⇔ ((w ∘ x) ∨ (w ∘ y)))

      
    
 The negate of an individual includes everything which does not
      overlap with that individual (i.e., what is often called its complement, or
        the rest of the world): D2.046 –x =df (℩z)(y)((y ʅ x) ⇔ (y < z))

      
    
The difference between x and y is what remains of x after we
      eliminate the parts it has in common with y:
      x – y =df (x · –y)

    
 There is considerable controversy in the literature over the nil
      individual. The nil individual is the mereological analogue
      of the empty class. If accepted, it is part of any individual. Most mereological systems
      reject its existence, and we will do the same in this paper.[8]
There is less controversy over the existence of the universal
      individual, i.e., the one individual of which every other is a part — the
        world or the universe as an individual. In our case, we are
      not applying the Calculus of Individuals as a Grand Theory of Everything, but
      limit its application to domains consisting of a single document, to collections (not to say
      sets or classes) of documents, or perhaps to documents and whatever else we may need to take
      into consideration to make sense of what these documents say. So we, too, will endorse the
      existence of a universal individual, customarily denoted by the letter W:
      W =df (℩x)(y)(y < x)

    
Note that, because there is no nil individual:
	the product of x and y can possibly exist only if
          x and y overlap,

	the difference between x and y can possibly exist only if
            x is not a part of y, and

	W (the universe) does not have a negate.


However, the following statements hold, either as axioms or theorems, depending on how one
      elaborates the system:
	(x)(y)(∃z)(z = x + y), i.e., the sum of any
          two individual exists (that is, is an individual),

	(x)(y)((x ∘ y) ⇔ (∃z)(z = x
            · y)), i.e., the product of any two individuals exists iff they
        overlap,

	(x)(¬(x = W) ⇔ (∃z)(z = –x)),
          i.e., the negate of an individual exists iff the individual is not the universe,
        and

	(x)(y)((¬x < y) ⇔ (∃z)(z = x
            – y)), i.e., the difference between any individual x and any
          individual y exists iff x is not a part of
        y.


Do all individuals have parts, or are there some individuals which are not further
      divisible into parts? Whether we take the one or the other position may have wide-reaching
      consequences for other properties of a mereological system, and the literature abounds with
      discussion on the subject. Given our domain of application, however, we believe that any
      system will have to be atomistic — on none of our analyses will
      documents have parts below character-level, or at least we foresee no need to talk about parts
      of characters.
      
      So we may simply add the axiom of atomicity to our system right away:
      (x)(∃y)((y < x) ∧ ¬(∃z)(z ≪ y)) 

        [Casati and Varzi 1999, p. 61] 

The Calculus applied to XML
What might it mean to apply the Calculus of Individuals to XML documents (or, for short,
        to XML) and what purpose might such an application of the calculus serve? A
      preliminary answer to the first question is that an application of the Calculus of Individuals
      to XML would require us to decide which entities to count as individuals, to decide which of
      these are to count as atomic individuals, as well as which properties they can have and which
      relations hold between them. Given the Calculus of Individual's rules of composition,
      different decisions on these issues will bring us to recognize the existence of individuals
      which may or may not coincide with established ways of viewing the structure of XML documents.
      Identifying rules which replicate such conventional views is, if possible, in itself of
      interest. Identifying rules which provide alternative views of XML documents may be of even
      greater interest, at least if they also suggest alternate and useful ways of analysing the
      parts of a document, of addressing them, and of how to ascribe properties of and relations
      between parts of a document. 
A preliminary answer to the second question has thus already been suggested: We suspect
      that an application of the Calculus of Individuals to XML might suggest ways of identifying
      and addressing parts of a document which in some cases, or for some purposes, would be more
      convenient or more powerful than existing methods such as SAX, DOM or xPath. We also suspect
      that some application of the Calculus of Individuals to XML might suggest ways of dealing with
      what is sometimes called the semantics of XML, i.e., how to understand XML
      documents in terms of properties ascribed to and relations indicated between the various parts
      of them indicated by the markup. 
 In what follows we have nothing but tentative answers to the general questions just
      posed. Trying to answer the first question, we will present different ways of applying the
      Calculus of Individuals to XML. We will also explore some of their implications for answers to
      the second question. The explorative nature of our work should be emphasized: We do not want
      to suggest that these are the only, or the best, ways of applying the Calculus of Individuals
      to XML, nor do we suggest that we have identified all or even the most important implications
      of the approaches that we consider. 
Therefore, each of the following sections begins by suggesting a different answer to the
      question Which are the individuals of a marked-up document? First, we consider
      the possibility that the individuals simply are XML elements. Next, we go down one step in
      level of granularity and identify tags and character strings as individuals. Finally, we
      proceed to a still finer level of granularity in order to see what happens if we recognize
      individual characters as atomic individuals, and distinguish between different kinds of
      individuals built from these atoms. 
The element-as-individual approach
What to count as individuals is a matter of choice, a choice which must be made on the
        basis of such criteria as naturalness, convenience, expressiveness, simplicity, etc. We
        begin by simply assuming a one-to-one matching between the elements of
        an XML document and the individuals of our calculus. On this assumption, consider the
        following simple XML document:
        (1) <para>A <quote>rose</quote> is <emph>a</emph> rose.</para>

      
If each element is an individual, then (1) itself, as well as the elements
        (2) <quote>rose</quote>
(3) <emph>a</emph>

        are individuals. Now, the sum of any two individuals must (by our mereological axioms) be an
        individual. Thus, the sum of (2) and (3) must be an individual and, by our hypothesis, an
        XML element. No matter what model we have in mind for XML elements and documents, it is hard
        to imagine a way in which the sum of (2) and (3) could be an XML element — it
        would be at best two!
In fact, the goal we have set ourselves here turns out to be self-defeating: It is not
        possible to identify XML elements with individuals, without accepting as individuals parts
        of the document which are not XML elements. In other words, if all XML elements are
        individuals, then some XML documents necessarily give rise to individuals which are not XML elements.[9]
      
An obvious fix would be to retain the decision that every element is an individual, but
        allow for composite individuals having more than one element as their parts. This would
        solve the problem of sums, but others would remain (e.g., what elements can the difference
        (1) – (2) be the sum of?). Even taking the closure of elements under sum and
        difference would still not solve a granularity issue in handling text content: Take, for
        example, the strings 
          A 
        , 
           is 
        , and 
           rose.
        ; any given individual would contain either all three or none. There would be no way
        to separate those strings.
Another issue is that the definition of parthood implies nothing about the ordering of
        parts, resulting in the fact that individuals are
        unordered. Thus, there is no way in our approach to say, for example, that (2)
          occurs before (3).
The Calculus of Individuals offers in itself no way of defining ordered pairs [10] — and thus, relations — as individuals. However, relations
        can be represented by predicates on individuals. Thus, we
        can order (either totally or partially) our individuals by defining an appropriate binary
        predicate corresponding to the desired relation.
If we think of individuals as corresponding to objects in an XML data model, and if that
        model allows serializations in which no two distinct elements or characters start at the
        same offset in a serialization[11] (we will need to deal with characters in later sections), then we can induce a
        total ordering of the individuals that correspond to elements and characters, based on the
        total order among the offsets of their XML counterparts in the serialization. We call that
        order relation document order.
Throughout this paper, we assume that document order exists and is well
        defined.
So far we have assumed that XML elements containing no sub-elements have no parts, i.e.,
        that they are atoms in our system. A solution may perhaps be to recognize a more generous
        set of individuals. But before we proceed to investigate this, we pause to make a couple of
        observations on other characteristics of the element-as-individual approach.
	The lack of a fine enough granularity prevents a satisfactory treatment of strings,
            let alone parts of strings. 
However we could regard a string as a property of an individual. Thus, although we
            cannot strictly speaking say that in (1) the string rose is a part of the
            string A rose is a rose., we could say that an individual having the
            string rose as a property is part of an individual having the string
              A rose is a rose. as a property. Note that the strings rose
            is or ose i would not be properties of any individual,
            and thus not a part of the document even in this extended sense. 

	Building a tree structure in which each node is an individual (i.e., an element), in
            which each arc represents a whole-part relationship, and in which the children of each
            node are ordered in document order, produces a tree which is almost identical to the XML
            tree for the same document, except for PCDATA leaf nodes of mixed content elements,
            which would be lost.[12] (However empty element leaf nodes would appear in the tree.)



The tags and PCDATA approach
Moving one step down in level of granularity, we might take tags and PCDATA
          strings delimited by tags as atomic individuals. Thus (1) would contain the
        following 11 atomic individuals:
        <para>
A 
<quote>
rose 
</quote>
 is 
<emph>
a
</emph>
 rose.
</para>

        From these, we might compose composite individuals such as, for example:
        <para>
<para>A 
<para>A <quote>
<para>A <quote>rose 
A rose
A  rose.
rose a
<para>A <quote>
A <quote>rose </quote> is <emph>
rose </quote>  rose.</para>

        As a matter of fact, (1) would give rise to no less than 211-1 =
        2047 individuals on this account (-1 because there is no nil individual) — in the interest of the reader we do not list all of
        them here. Only a handful of these individuals would be well-balanced XML fragments, of
        course.
A total order relation on the atomic individuals based on document order could be
        defined, as in the preceding section. Note that in this case, the sequence of ordered atomic
        individuals is isomorphic to the sequence of events identified by a SAX-like XML
        tokenizer.
 Observe that although many of the  individuals
        could be identified or referenced using xPath or similar XML-aware mechanisms, many of them
        could not. In particular, tag atoms could not (or, at least, it is unclear how and in what
        sense they could). However, the interest of being able to refer to tags individually is not
        obvious. Also, since strings are atoms, it is still impossible to handle parts of strings:
          ose i is still not an individual. Therefore, we do not pursue this avenue
        any
        further.
      

The character-atom approach
The approach
Finally, and moving one further step down in the level of granularity, we take
            character occurrences as the atomic individuals in our application
          of the calculus. For the sake of conciseness, we will use character as a synonym for character
          occurrence, except where confusion might
          arise.
        
The type of a character occurrence is represented in
          our system by a property of that character occurrence. So any atom (i.e., character
          occurrence) has the property of being an a, or a b, or a
            c, etc., thus populating our vocabulary with one predicate for each of
          the characters of the writing system at hand.[13]
        
We define a total order relation on atoms, based on document order, represented by the
          predicate PA(x, y), true iff x precedes y in
          document order (“P” stands for “precedes” and “A” indicates it is a predicate on atoms).
          The transitive reduction of PA is represented by the predicate NA(x,
          y), true iff x immediately precedes y in document order
          (“N” stands for “next” and “A” indicates it is a predicate on
          atoms).
Since characters are atomic individuals, all individuals which can be composed on the
          basis of the characters of a document are also individuals, i.e., composite individuals.
          Composite individuals of special interest for our purposes are
          strings. We define strings as individuals which are either atoms, or
          the sum of atoms consecutive in NA order. A string that consists of only one
          character is (also) an atom. There is no such thing as an empty string
          (which would have to be the nil individual). Note that
          strings constitute a tiny fraction of all existing individuals.
Some strings are of particular interest to us. We define a molecular
          string (or molecule) as a string that is
          delimited on both sides (in the serialization underlying document order) by a tag, with no
          other tag intervening in between. A total ordering of molecular strings, represented by
          the predicate P(x, y), is trivially derived from the ordering of atoms
          (itself based on document order). The transitive reduction of P is
          represented by the predicate N(x, y). (“P” stands for “precedes” and “N” for
          “next”.)
          
 We define an elemental string as a string delimited by the
          matching tags of an XML element (there may be intervening tags). We do not rely on any
          ordering of elemental strings.
          
For any given string x, we define (for convenience only) the
            label of x as the sequence of the types of the atoms
          composing x, in NA order. That is, for example, a string is
          labelled rose (or has the label rose) iff it is the sum of
          atoms of types r, o, s, and e,
          and those atoms are NA-ordered so that the one of type r comes
          first, the one of type o comes second, etc.
While it might have been plausible to treat tags as a special kind of strings, and
          build elements and nodes with their ordering and parent-child relationship in a way
          similar to that suggested in the tags and PCDATA approach above, instead, we shall regard
          tags simply as delimiting certain string individuals, and ascribing properties to (or
          relations between) those individuals.
 We can now read (1) as follows: 	There are 17 atomic individuals. Their ordered sequence of types is:
                A,  , r, o,
                  s, e,  , i,
                  s,  , a,
                 , r, o, s,
                  e, and ..
                
              

	There are five molecular string individuals. Their ordered sequence of labels
                is: A , rose,
                 is , a, and
                 rose.. 
                
              

	There are three elemental string individuals, labelled A rose is a
                rose., rose and
                a.
              

	The elemental string labelled A rose is a rose. has the property
                indicated by the generic identifier <para>. 	Note that this does not imply that any of its parts, such as the molecular
                      strings labelled A , rose, etc., has
                      this property.



              

	The elemental string labelled rose has the property indicated by
                the generic identifier <quote>.

	The elemental string labelled a has the property indicated by the
                generic identifier <emph>. 	Here we have an example of an atom which is also a molecule and an
                      elemental string.
                      



              



        
We introduce the following predicates: 
Table I
	Predicate 	Meaning	Range of x and y
	
	NA(x,y) 	next after x is y (or, x immediately precedes y)	atoms
	 PA(x,y) 	x precedes y	atoms
	N(x,y) 	next after x is y (or, x immediately precedes y)	molecules
	 P(x,y) 	x precedes y	molecules
	A(x) 	x is atomic	any
	M(x) 	x is molecular	any
	E(x) 	x is elemental	any
	ccc(x) 	x has the property assigned by ccc (where ccc is an XML generic identifier) 	any
	T("c",x) 	x is of type c (where c is a character type) 	atoms
	L("ccc",x)	x is labelled ccc (where ccc is a sequence of character types)	any



The last two predicates (T and L) are to be regarded as notational convenience features.[14] We are ignoring potential problems of name conflicts in this presentation
          (which would arise e.g. in the case of a document containing XML generic identifiers
            A, M or E). 

Examples
We assign the identifiers i01, i02, i03, etc. [15] to individuals of (1) and state some facts about them as follows:
 Table II
	T("A",i01)	A(i01)	NA(i01,i02)
	T(" ",i02)	A(i02)	NA(i02,i03)
			
	T("r",i03)	A(i03)	NA(i03,i04)
	T("o",i04)	A(i04)	NA(i04,i05)
	T("s",i05)	A(i05)	NA(i05,i06)
	T("e",i06)	A(i06)	NA(i06,i07)
			
	T(" ",i07)	A(i07)	NA(i07,i08)
	T("i",i08)	A(i08)	NA(i08,i09)
	T("s",i09)	A(i09)	NA(i09,i10)
	T(" ",i10)	A(i10)	NA(i10,i11)
			
	T("a",i11)	A(i11)	NA(i11,i12)
			
	T(" ",i12)	A(i12)	NA(i12,i13)
	T("r",i13)	A(i13)	NA(i13,i14)
	T("o",i14)	A(i14)	NA(i14,i15)
	T("s",i15)	A(i15)	NA(i15,i16)
	T("e",i16)	A(i16)	NA(i16,i17)
	T(".",i17)	A(i17)	
			
	i18=i01+i02	M(i18)	N(i18,i19)
	i19=i03+i04+i05+i06	M(i19)	N(i19,i20)
	i20=i07+i08+i09+i10	M(i20)	N(i20,i11)
		M(i11)	N(i11,i21)
	i21=i12+i13+i14+i15+i16+i17	M(i21)	
	i22=i18+i19+i20+i11+i21		
			
	L("A ",i18)		
	L("rose",i19)	E(i19)	quote(i19)
	L(" is ",i20)		
	T("a",i11)	E(i11)	emph(i11)
	L("rose.",i21)		
	L("A rose is a rose.",i22)	E(i22)	para(i22)

                  
  
        
The same information may be presented more conspicuously in the following table,
          listing for each individual its identifier, its type, its label, the kind of individual it
          is (A for atoms, M for molecular and E for elemental strings), its assigned properties
          (i.e., properties assigned by an XML generic identifier), its next atom or molecular
          string and its immediate proper parts. [16] 
Table III
	Id	Type	Label	Kind	Assigned property	Next atom	Next molecule	Immediate parts
	i01	"A"		A		i02		
	i02	" "		A		i03		
	i03	"r"		A		i04		
	i04	"o"		A		i05		
	i05	"o"		A		i06		
	i06	"e"		A		i07		
	i07	" "		A		i08		
	i08	"i"		A		i09		
	i09	"s"		A		i10		
	i10	" "		A		i11		
	i11	"a"	"a"	A M E	emph	i12	i21	
	i12	" "		A		i13		
	i13	"r"		A		i14		
	i14	"o"		A		i15		
	i15	"s"		A		i16		
	i16	"e"		A		i17		
	i17	"."		A				
	i18		"A "	    M			i19	i01, i02
	i19		"rose"	    M E	quote		i20	i03, i04, i05, i06
	i20		" is "	    M			i11	i07, i08, i09, i10
	i21		"rose."	    M				i12, i13, i14, i15, i16, i17
	i22		"A rose is a rose."	         E	para			i18, i19, i20, i11, i21



        
The elemental strings i22, i19 and i11 correspond to the XML elements (1)-(3) in a
          fairly straightforward way, and can now be identified for example as follows:
          i22 = (℩x)(para(x) ∧ E(x))
i19 = (℩x)(quote(x) ∧ E(x))
i11 = (℩x)(emph(x) ∧ E(x))

The non-elemental molecules i18, i20 and i21 can be identified for example as follows:
          i18 = (℩x)(∃y)(quote(y) ∧ N(x,y))
i20 = (℩x)(∃y)(emph(y) ∧ N(x,y))
i21 = (℩x)(M(x) ∧ ¬(∃y)N(x,y))

Although in this particular case the denoting expressions identifying individuals are
          fairly simple, identifying individuals by means of denoting expressions may in general
          become rather tedious. For example, in any document with more than one individual assigned
          the property quote, the denoting expression identifying individual i19 above would return
          the sum of all those individuals.
So although we have shown that all atoms, molecular and elemental strings
          of (1) can be identified by our relatively straightforward
          application of the Calculus, some of the above examples draw on the simplicity of the
          example and are rather ad hoc. Therefore, before we proceed to discuss how the Calculus
          can be used to make statements and make inferences about a document, we introduce a
          slightly more complicated (and also more realistic) example. 
Consider the following XML document:
          <?xml version="1.0" encoding="UTF-8"?>
<doc> 
    A rule:
    <list>
        <item>First:</item>
        <item>
            <list>
                <item>think,</item>
                <item>decide.</item>
            </list>
        </item>
        <item>Then:</item>
        <item>
            <list>
                <item>act,</item>
                <item>regret.</item>
            </list>
        </item>
    </list>
</doc>

Once again we provide identifiers for individuals of the document and present their
          properties and relations in tabular form, but this time we include only the molecular and
          elemental individuals: [17]
Table IV
	Id	Label	Kind	Assigned property	Next molecule	Immediate parts
	i01	A rule: 	M		i02	
	i02	First:	M E	item	i03	
	i03	think,	M E	item	i04	
	i04	decide.	M E	item	i05	
	i05	Then:	M E	item	i06	
	i06	act,	M E	item	i07	
	i07	regret.	M E	item		
	i08		E	list, item		i03, i04
	i09		E	list, item		i06, i07
	i10		E	list		i02, i08, i05, i09
	i11		E	doc		i01, i10



        
Note that the individuals i08 and i09 are each represented as one individual with two
          assigned properties, rather than as two individuals each with one property. The difference
          between this representation and the conventional XML representation can be illustrated by
          juxtaposing a conventional XML tree of the document (to the left) and what we might call a
          mereological graph (to the right):[18]
          [image: ]

        
Because of our decision not to count tags as part of the document, all coextensive XML
          elements will be represented as one elemental individual. The nesting order of these
          elements in the XML document will not be preserved in this representation. [19]
        
As before, we can use denoting expressions to refer to any part of the document, for
          example:
          i01 = (℩x)¬(∃y)N(y,x)
i02 = (℩x)(item(x) ∧ ¬(∃y)(item(y) ∧ P(y,x)))
i03 = (℩x)(∃y)(∃z)(w)(v)
      ((x ≪ y) ∧ list(y) ∧ 
      (y ≪ z) ∧ list(z) ∧
      (N(w,x) → ¬(w ≪ y)) ∧ 
      (N(v,w) → ¬(v ≪ z))) 
i09 = (℩x)(∃y)(∃z)
      (list(x) ∧ (x ≪ y) ∧ list(y) ∧
       list(z) ∧ (z ≪ y) ∧ ¬(x = z) ∧ P(x,z))

        

Statements and inferences
We can also use the Calculus to make statements about the document —
          unquantified, such as (1)–(4), or quantified, such as (5)–(8):
          (1) list(i09)
(2) item(i09)
(3) i07 ≪ i09
(4) i09 ≪ i10
(5) (x)(y)((list(x) ∧ item(x) ∧ (y ≪ x)) → item(y))
(6) (x)(y)((list(x) ∧ item(x) ∧ (x ≪ y)) → (list(y) ∨ doc(y)))
(7) (x)(item(x) → (∃y)((x ≪ y)  ∧ list(y)))
(8) (x)(item(x) → (∃y)(∃z)
   (item(y) ∧ list(z)  ∧ (x ≪ z) ∧ (y ≪ z)  ∧ ¬(x = y)))

          In order to avoid unnecessary misunderstanding, it should be pointed out that
          (1)–(8) are descriptive statements about this particular document. (In other
          context, such as for example situations where we wanted to express general constraints on
          document structure, we might of course also want to state facts about document
            types, but that is not our issue here.) 
From the statements we can make inferences, such as for example:
          
(9) item(i07)
     [From (1), (2), (3) and (5).]
(10) list(i10) ∨ doc(i10)
     [From (1), (2), (4) and (6).]
(11) (∃y)((i09 ≪ y) ∧ list(y))
     [From (2) and (7).]
(12) (∃y)(∃z)(item(y) ∧ list(z) ∧ (i07 ≪ z) ∧ (y ≪ z) ∧ ¬(i07 = y))
     [From (8) and (9).]

        

Conclusion
We have shown that strings composed of characters defined as atomic individuals can be
          identified and referenced by denoting expressions, that the Calculus can be used to
          describe the part-whole relationships and ordering relations between parts of the document
          as well as the properties ascribed by generic identifiers. We have also shown that this
          application of the Calculus can be used for making statements about documents and for
          drawing inferences from these statements.
The approach chosen here has at least two obvious problems, or shortcomings; one
          concerns the representation of coextensive elements, one relates to the representation of
          empty elements. Before we discuss these problems, however, we would like to assess one of
          its possible merits. In the next section, we will therefore sketch how this application of
          the Calculus can be used for the formulation of rules for propagation of properties among
          the parts of a document.



Property Propagation — a Sketch
We have assumed that the generic identifier of an element may be seen as assigning a
      property to the PCDATA content of that element, and not to any proper part of that PCDATA
      content. But sometimes, the meaning of the markup is such that that property is not assigned
      (or not only assigned) to the contents of the element itself, but also to all or some of its
      descendants, or to all or some of its ancestors, or to one or more of its siblings, or to only
      specific other elements. Furthermore, what is assigned to the element or elements in question
      may be not a monadic property, but a relation of them to other elements in the same document,
      or even to document elements or other entities outside that document. Thus, the propagation of
      properties ascribed by the generic identifier of an element may follow a large diversity of
      patterns.
Using examples from the TEI and HTML encoding schemes, we will show that some of these
      patterns can conveniently be described by means of our application of the Calculus. We will
      first address some of the general distribution patterns identified by Nelson Goodman, which
      seem to represent important aspects of the intended semantics of certain TEI or HTML element
      types. We will then proceed to more complicated examples.
Dissective and anti-dissective properties
As mentioned, in our application of the Calculus so far we have assumed that the
        property designated by the generic identifier of an XML element is assigned exclusively to
        the individual delimited by the start and end tags of the element, and not to its parts.
        This seems plausible enough for a number of element types, such as paragraphs, list items
        and titles. For example, a part of a paragraph, a list item or a title is not in general
        itself a paragraph, a list item or a title.
TEI element types such as <hi> (highlighting)[20] or <add> (added), however, do not seem to follow this rule. Every
        part of a highlighted or added element is itself presumably highlighted or added. Other
        examples may be <del> (deleted) and <foreign>. The HTML element
        type <i> (italics) may provide an even clearer example here — every
        part of an italicized element is itself in italics. 
According to Goodman, a ... predicate is ... dissective if
          it is satisfied by every part of every individual that satisfies it [Goodman 1972, p. 38]. A dissective one-place predicate is defined as
        follows:
        F is dissective iff (x)(y)((F(x) ∧ (y < x)) → F(y))

      
Consider the following document fragment:
        
<s>We
   <add>, as all 
      <del>purely <hi>human</hi> and</del> 
   finite beings,
   </add> 
are all fallible.</s>

        As earlier, we represent the properties of this fragment in tabular form. From now on,
        however, in stead of indicating assigned properties for each individual we
        will list relevant statements (some of which may be inferences from statements about the
        properties of other individuals): 
Table V
	Id	Label	Kind	Statements	Next	Parts
	i01	We	M		i02	
	i02	, as all 	M		i03	
	i03	purely 	M		i04	
	i04	human	M E	hi(i04)	i05	
	i05	 and	M		i06	
	i06	 finite beings,	M		i07	
	i07	 are all fallible.	M			
	i08		E	del(i08)		i03, i04, i05
	i09		E	add(i09)		i02, i08, i06
	i10		E	s(i10)		i01, i08, i09, i07



        However, if we add the following statements
        to the effect that the properties add, del and hi are dissective:
        (x)(y)((add(x) ∧ (y < x)) → add(y))
(x)(y)((del(x) ∧ (y < x)) → del(y))    
(x)(y)((hi(x) ∧ (y < x)) → hi(y))

        — then, we can infer additional properties, with the following result:
Table VI
	Id	Label	Kind	Statements	Next	Parts
	i01	We	M		i02	
	i02	, as all 	M	del(i02) 	i03	
	i03	purely 	M	del(i03), add(i03)	i04	
	i04	human	M E	hi(i04), del(i04), add(i04)	i05	
	i05	 and	M	del(i05), add(i05)	i06	
	i06	 finite beings,	M	del(i06) 	i07	
	i07	 are all fallible.	M			
	i08		E	del(i08), add(i08)		i03, i04, i05
	i09		E	add(i09)		i02, i08, i06
	i10		E	s(i10)		i01, i08, i09, i07



        (Note that this is the first example so far of non-elemental individuals
        carrying assigned properties.) 
Goodman observes that In practice, we are usually concerned only with
          disectiveness under some special or systematic limitations... [Goodman 1972, p. 38]. This seems to be the case here, too: While the
        TEI elements <hi>, <add> and <del> and the HTML
        element <i> seem to apply all the way down to every atomic part of an
        individual, an element type like <foreign> hardly applies below word-level. 
Furthermore, there seem to be exceptions even in the case of <hi>,
        <add> and <del>: In a transcription, a <note>
        (note) element is normally not intended to inherit the property in question. A more
        generally usable formula for disectiveness may therefore be this:
        (x)(y)(z)((F(x) ∧ (y < x) ∧ 
   ¬((z < x) ∧ (y < z) ∧ (G(z) ∨ H(z) ∨ ...))) 
   → F(y))

        where G, H,... indicate exceptions. 
Let us define an anti-dissective one-place predicate as follows: [21]
        F is anti-dissective iff (x)(y)((F(x) ∧ (y ≪ x)) → ¬F(y))

      
The TEI element <docDate> (document date) and the TEI and HTML
        <body> may serve as examples of anti-dissective properties, — no
        part of a <docDate> or a <body> element is itself a
        <body> or a <docDate>. The HTML <p> (paragraph)
        element is also clearly anti-dissective.
 The TEI <p> element presents a complication. It would seem to be
        anti-dissective, but unlike HTML, TEI allows <p>s nested within
        <p>s. So
        (x)(y)((p(x) ∧ (y ≪ x)) → ¬p(y))

        is true in HTML, but not in TEI. The TEI <p> element can therefore not be said
        to be either dissective or anti-dissective.[22]
      

Expansive and anti-expansive properties
A one-place predicate is expansive if it is satisfied by
          everything that has a part satisfying it. [Goodman 1972,
        p. 38]. An expansive one-place predicate can be defined as follows:
        F is expansive iff (x)(y)((F(x) ∧ (x < y)) → F(y))

        In more conventional XML terms, while dissective predicates propagate down
        the document tree, expansive predicates propagate upwards in the tree, from
        children to their parents. This might be thought to be unusual, and actually it is difficult
        to find examples of such properties in the TEI and HTML encoding schemes. Element types such
        as <docDate> and <docAuthor> may, as we shall see later, be said
        to ascribe properties to individuals of which they are a part, but that does not make these
        individuals themselves <docDate>s or <docAuthor>s. (Even so, it
        easy to think of expansive properties: — for example, the property of
          containing the word Hamlet would clearly be
        expansive.) 
Let us define an anti-expansive property as follows:
        F is anti-expansive iff (x)(y)((F(x) ∧ (x ≪ y)) → ¬F(y))

        The TEI element <foreign> may be an example of a property which is
        anti-dissective, at least up to a certain level, and at least insofar as it seems reasonable
        to assume that if something is marked as foreign, then it is marked off from something which
        is not in a foreign language.
        
      

Collective and anti-collective properties
That a one-place predicate is collective means that it is
          satisfied by the sum of every two individuals (distinct or not) that satisfy it
        severally [Goodman 1972, p. 39]. A collective one-place
        predicate can be defined as follows:
        F is collective iff (x)(y)((F(x) ∧ F(y)) → F(x + y))

        Dissective elements like the TEI elements <hi>, <add>,
        <del> and <foreign> and the HTML element <i> seem
        also to be collective: any sum of strings in italics would seem itself to be in italics,
        etc. There probably are examples of expansive and non-dissective or anti-dissective
        properties in TEI or HTML, but so far we have not found any.
Let us define an anti-collective property as follows:
        F is anti-colletive iff (x)(y)((F(x) ∧ F(y) ∧ (x ʅ y)) → ¬F(x + y))

        Both the TEI and the HTML <div> (division) element types seem to be
        anti-collective: no sum of <div>s is itself a <div>.

The HTML title element
So far, we have been concerned only with one-place predicates.[23] Many TEI and HTML elements ascribe properties according to more complicated
        patterns which can more conveniently be accounted for by representing them as relations, or
        predicates with two or more places. 
 We begin with a simple example of an element expressing a two-place predicate, the HTML
        title element. From: <!DOCTYPE html SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
    <head>
        <title>Simple HTML</title>
    </head>
    <body>
        <p>First para</p>
        <p>Second para</p>
    </body>
    </html>
 we get: 
Table VII
	Id	Label	Kind	Statements	Next	Parts
	i01	Simple HTML	M E	head(i01), title(i01)	i02	
	i02	First para	M E	p(i02)	i03	
	i03	Second para	ME 	p(i03)		
	i04		E	body(i04)		i02, i03
	i05		E	html(i05)		i01, i04



      
 We state the propagation rule that:
        (x)(y)((title(x) ∧ (x < y) ∧ html(y)) → hasTitle(y,x))

        and get for the last line of the previous table: 
Table VIII
	Id	Label	Kind	Statements	Next	Parts
	i05		E	html(i05), hasTitle(i05,i01)		i01, i04


  
      
The fact that the propagation rule can be made so simple in this case is partly due to
        the fact that we are assuming that the document is valid, and that the relative structural
        positions of the elements are constant. For example, there is no need to state that the
        title element has to be the child of a head element which in turn is directly succeeded by a
        body element etc. 

The TEI sp, speaker and stage elements
While it is quite legitimate to assume document validity when stating propagation rules,
        these rules tend to become more complex when more elements are involved, and/or the rules
        for the structural positions of the elements concerned are more complex. 
The relation between the TEI elements <sp> (speech),
        <speaker> and <stage> (stage direction) is that a
        <sp> may contain a <speaker>, and if it does, the
        <speaker> element contains the name of the speaker of the rest of the
        <sp> element, except for any <stage>s (stage directions) it
        might contain. From: 

        <sp>
    <speaker>Peer</speaker> 
    Why 
    <stage>(hesitating)</stage> 
    swear?
</sp>

 we get: 
Table IX
	Id	Label	Kind	Statements	Next	Parts
	i01	Peer	M E	speaker(i01)	i02	
	i02	Why	M		i03	
	i03	(hesitating)	M E	stage(i03)	i04	
	i04	swear?	M			
	i05		E	sp(i05)		i01, i02, i03, i04



        We state the following propagation rule:
        (x)(y)((speaker(x) ∧ (x < y) ∧ sp(y)) → 
          (z)(((z < y) ∧ ¬(speaker(z) ∨ stage(z))) → saidBy(z,x)))

        and get:
Table X
	Id	Label	Kind	Statements	Next	Parts
	i01	Peer	M E	speaker(i01)	i02	
	i02	Why	M	saidBy(i02,i01)	i03	
	i03	(hesitating)	M E	stage(i03)	i04	
	i04	swear?	M	saidBy(i04,i01)		
	i05		E	sp(i05)		i01, i02, i03, i04



      

The TEI docTitle, docDate and docAuthor elements
 The TEI <docTitle> (document title) element may occur directly within
        <titlePage> or <front> (front matter); <titlePage>
        may occur directly within <front> or <back> (back matter), and
        <front> and <back> may occur directly within
        <text>. <docTitle> behaves very much like the HTML
        <title> element:
        (x)(y)((docTitle(x) ∧ (x < y) ∧ text(y)) → hasTitle(y,x))

        <docTitle> assigns the property of being a document title
        to its own content, and the property of having that title to the
        individual which carries the property of being a text, and of which it is itself a part.
        Thus, while no other parts of the elemental text individual have any of these properties,
        all its parts have the property of being the part of an individual
        which carries the title in question. 
The <docDate> (document date) element, in turn, behaves very much like the
        <docTitle> element. Although it may occur in a larger variety of positions, it
        assigns the property of being (or identifying) the date of the document
        to its own content, and the property of having that date to the
        individual which carries the property of being a text, and of which it is itself a part. 
We may assume, however, that the document date carries over to most or all the parts of
        the text, i.e., that all the parts of the element have the property of having that date,
        too.
        
        If we are dealing with a transcription of an authorial document which according to the
        <docDate> element dates from a particular year, it may be the case that we
        also know that all parts of the document marked by <add> contain corrections
        in that document made by another person several years later, and that all
        <note>s are editorial notes supplied even later than that, by the creator of
        the electronic version. A propagation rule to this effect may be expressed for example as
        follows:
        (x)(y)(z)(w)((docDate(x) ∧ (x < y) ∧ text(y)) →
   (((z < y) ∧ ¬((z < w) ∧ (add(w) ∨ note(w)))) →
   (hasDate(y,x) ∧ hasDate(z,x))))

        Note, however, that in some situations the TEI <docDate> element gives the date of the 
        first edition of the text, while the text actually transcribed by the document comes from a later edition. In such situations 
        the semantics of the element is rather different, and the property of having the date given may possibly not propagate to elements below <text> level at all.
      
The <docAuthor> (document author) element, again, behaves much like the
        <docDate> element. It assigns the property of being the
        name of the author of the document to its own content, and the property of
        having the author of that name to the text of which it is a part. 
In the example just discussed, we may again assume that the property, in this case the
        property of having the author in question, is not carried over to later additions and notes.
        Other element types, such as <q> (quote) <cit> (citation), would
        for more or less obvious reasons also have to be considered for exclusion. However, there is
        a further complication: If a person is considered the author of a document, he is normally
        also considered the author of parts of that document, such as its chapters, sections and
        paragraphs. Perhaps authorship may also be attributed to sentences or phrases, but certainly
        not to individual words or letters. Again we are faced with a property which propagates down
        to a certain level, but where it is unclear exactly where that level ends. And as is so
        often the case with markup, it does not help us much to become clear about the level at
        which the propagation ends, be it subparagraphs, sentences or phrases, if it turns out that
        the elements at that level have not been marked up. 


Problems
 We have mentioned that there are at least two serious problems with our application of
      the Calculus. One problem, which has already been identified, relates to the representation of
      coextensive elements. The other problem, which relates to the representation of empty
      elements, has only been mentioned in passing. We believe this is the least serious of the two,
      and we will therefore discuss that first.
Empty elements
For the purposes of this discussion, we may conveniently distinguish between milestone
        elements and other empty elements
Milestone elements
Milestones are empty elements which ascribe properties to parts of a document, but
          which for various reasons are represented by empty elements. The reason why some textual
          phenomena are represented by milestones rather than ordinary elements is often a need to
          overcome the XML constraint that element structure must be hierarchical.
Typically, a milestone may be seen as assigning a property to the following parts of
          the document, up to the next milestone element of the same type, up to the occurrence of
          an element of some specific other type, or to the end of the document. We think we have
          already demonstrated that our application of the Calculus to XML documents can handle such
          property assignment.
 We believe that many of the other mechanisms proposed to handle so-called overlapping
          hierarchies in XML (for example, Trojan Horse milestones, [DeRose 2004] and fragmented or virtual elements [TEI P4]) can be
          handled in similar ways, and therefore do not constitute a serious problem for our
          application of the Calculus. 
          

Other empty elements
Empty elements which are not milestones typically stand for and/or ascribe properties
          to some part of the document which cannot straightforwardly be represented as a character
          or string of characters. These empty elements are more difficult to deal with, because
          according to our application of the Calculus something which cannot be said to consist of
          character atoms simply cannot be an individual. And if it is no individual there seems to
          be nothing to which properties can be ascribed; only individuals can have properties. 
The TEI elements <ptr> (pointer), <anchor> (anchor point),
          <index> (index entry) and <divGen> (automatically generated
          text division) are some examples. Either they indicate a point in the document, i.e., they
          have no extension in the terms of our application of the Calculus and would
          seem to have to be located in a position between two atoms. Or they do not indicate any
          point or extension in the document, but rather an instruction to generate strings with
          certain properties at the position they are located. In some cases, the problems outlined
          here can be solved by replacing the empty element in question with a character string,
          taken for example from an attribute value of the element in question. In cases where the
          element occupies or points to a location between characters, we might find a practical
          workaround by letting it apply or point instead to the atom immediately before or after
          the relevant location in our model of the document. 
A slightly different kind of problem is presented by the TEI <graphic>
          (inline graphic, illustration, or figure) and HTML <graphic> elements. The
          basic meaning of these elements is easy enough to catch: The occurrence of the element
          indicates that an illustration or a figure occurs at a specific location in the document.
          Therefore, a more appropriate solution to this as well as to the previously mentioned
          examples is probably to lift the requirement that all atoms should have a character type
          as a property. A graphics element, for example, might simply be represented in our model
          by a graphics atom. 
More generally, this would be a model in which a document consists not of a sequence
          of character atoms, but of a sequence of some more generic kind of atoms. We might, for
          example, agree to call them atomic content objects, and concede that such
          atoms may or may not have a character property, an image property etc.
          Although we have not investigated the matter, we believe that such a modification would
          not drastically change the application of the Calculus described above.


Coextensive elements
We have already exemplified and briefly discussed the problem with coextensive elements:
        If two or more nested elements have exactly the same content, i.e., share exactly the same
        leaf nodes in the XML tree, they will be represented in our application of the Calculus as
        one individual sharing all the properties ascribed by the nested XML elements. What kind of
        problem this is, and whether and how it can be solved, depends on the wider requirements and
        aims for our application of the Calculus to markup. Under certain requirements or
        perspectives, it may cease to be a problem.
If our aim is to establish a representation from which the serialized form of an XML
        document can be regenerated, we obviously have a problem: It is by no means obvious if or
        how this could be done. Likewise, if our aim is to establish a representation from which the
        XML DOM, the XDM or the XML Infoset representation can be generated, or which is isomorphic
        to and/or contains (all) the information given in any of those, then it is perhaps even more
        obvious that we have a problem.
We have two responses to this: On the one hand, the value of the approach presented here
        does not depend on such capabilities. The value of the approach to property propagation, for
        example, may be simply as an ancillary representation of some of the features of marked-up
        documents, a representation which is not intended to capture all the
        information present in XML documents but rather to assist in the processing of such
        documents. Therefore, the problem discussed here is a problem only to the extent that it
        impedes our work to realize this more modest aim. So far, we have not found any indication
        that it does.
On the other hand, we might want to use this representation in order to modify the XML
        documents so represented, and in that case we would clearly need to reserialize them to XML
        or generate an XML-conformant document model of them. For such purposes, we believe that
        information about the XML nesting order of coextensive elements could easily be stored in
        some ancillary data structure which would make reserialization etc possible. It should also
        be mentioned that, although again we have not investigated the matter, it is not
        unreasonable to assume that a representation of documents in the way proposed for our
        application of the Calculus might be a convenient step in the process of converting XML
        documents to certain other markup systems, such as TexMecs or LMNL.
Finally, if our aim is to offer an alternative representation based on a different
        understanding of the structure and semantics of marked-up documents, then we have a problem
        only if it can convincingly be argued that our representation is in some respect inferior to
        these standard ways of modelling documents. We think such a discussion is premature unless
        and until the application sketched here is developed further, but at least two lines of
        argument seem to present themselves as possible responses to the challenge. 
First, one might argue that the problem is with XML, and not with the approach discussed
        here. For example, if a TEI <p> (paragraph) and <s> (s-unit,
        sentence) element are coextensive, XML forces us to decide whether we are dealing with a
        paragraph containing a sentence, or a sentence containing a paragraph, and leaves us no
        other option. But we might just as well (or rather) want to say that we are dealing with one
        object which has two properties: that of being a paragraph and that of being a sentence. The
        part-whole relationship which seems forced upon us by XML is an artifact of the
        serialization, a result of one of the limitations of embedded markup.[Raymond et al. 1996] 
Second, we might concede that the representation of coextensive elements as conceived in
        the present approach is a problem, and try to solve it by amending our mereological system.
        Part of the solution may be found in allowing more generous set of atoms, as discussed above
        in connection with the problem of empty elements. Another part of the solution might be to
        replace the Calculus of Individuals with some other formal mereological system. For example,
        there seems to be mereological systems which allow for the idea that one individual may be
        part of another even in cases where we cannot identify any part which they do not share. For
        options along these lines, see the discussion of supplementation and closure principles in
          Casati and Varzi 1999 p. 38 f.f. 


Conclusion and Future Work
 We have considered some possible applications of the Calculus of Individuals to XML,
      whereof the so-called character-atom approach has seemed the most promising so far. Strings
      composed of characters defined as atomic individuals can be identified and referenced by
      denoting expressions. The part-whole relationships and ordering relations between parts of the
      document as well as the properties ascribed by generic identifiers can be described.
      Statements about the individuals of documents and their properties can be made, and inferences
      can be drawn from these statements. 
 We have shown, by means of examples from the TEI and HTML encoding schemes, how this
      application of the Calculus can be used for the formulation of rules describing the
      propagation of properties among the parts of a document. 
 We have identified problems or shortcomings concerning the representation of empty
      elements and coextensive elements, and suggested that these problems may be overcome partly by
      allowing a more generous set of atoms, and partly by replacing the Calculus of Individuals
      with some other formal mereological system. 
 In order to assess whether the application of formal mereology to markup semantics is
      worth while, we believe that continued work is required along several lines: The application
      to XML should be extended beyond the limitations of the approach presented here to include XML
      the full range of XML mechanisms, such as attributes, entities, declarations, comments,
      processing instructions, and marked sections. While the approach presented here is limited to
      the consideration of XML documents in serialized form, i.e. as character streams, attempts
      should be made at applying formal mereology to XML documents considered as graphs of xPath
      nodes, Infoset items, and the like. 
 Furthermore, and as already mentioned, mereological systems beyond the Calculus of
      Individuals should be considered in order to overcome some of the problems encountered in the
      approach presented her. Last, but not least: The application of formal mereological systems
      should be extended to other markup systems such as SGML, TexMecs, LMNL, Goddag and others.
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[1] Goodman, whose work we will take as our basis here, was a well known nominalist,
          however of a peculiar kind. For Goodman, nominalism did not consist in the rejection of
          abstract entities, or even of universals, but in the refusal to admit anything but
          individuals as values of variables.He strongly repudiated all talk of classes as incomprehensible [Goodman 1977, pp. 25-26, Goodman 1972,
          p. 156] and therefore philosophically suspect. He also worked hard to establish a
          foundation for mathematics replacing set theory with the calculus of individuals. But at
          the same time he had no qualms taking abstract objects such as qualia as
          basic constituents of his own ontology [Goodman 1977, chapters IV
        ff].

[2] ...there is no necessary internal link between mereology and the philosophical
            position of nominalism. We may simply think of the former as a theory concerned with the
            analysis of parthood relations among whatever entities are allowed into the domain of
            discourse (including sets and other abstract entities, if one will). [Casati and Varzi 1999]
[3] For an entertaining collection of other candidate sum individuals, see [Fitzgerald 2003].
[4] Equivalent systems (or rather, systems with only minimal and trivial differences) may
          be built whichever we choose as the primitive relation.
[5]  In [Leonard and Goodman 1940], Leonard and Goodman chose
            discrete from as the primitive relation. A more common practice seems to
          be the choice of part or proper part.
[6] Numbers in the left margin give references to theorem and definition numbers in [Goodman 1977]. Note that Goodman used a notation slightly different from
          ours, but that we have retained Goodman's use of implicit universal quantification.
[7] Leonard and Goodman use for the discrete from relation a symbol we have
          not been able to locate in Unicode; we use here a fairly close approximation, the symbol
            “ ʅ ”, which usually means
          caution.
[8] This may be seen simply as a reflection of the fact that most mereologists have been
          nominalists (in Goodman's sense). But the topic also has other far-reaching repercussions
          — see [Varzi 2003].
[9] In practice, we may read nearly all for some here.
            Examples of exceptions would be documents consisting of only one element, or in which
            each element has at most one child element. Examples:
            <s>...</s>
<s><t>...</t></s>
<s><t><u>...</u></t></s>

            and so on. Only in such cases may there in fact be a one-to-one correlation between
            elements and individuals.
[10] Goodman 1972, p. 164. But see also Pitkänen  p. 268
[11] This is the case if we think of XML documents and elements as consisting of
            stretches of consecutive character occurrences (remember we exclude entity declarations
            and references from our discussion), and also with the xPath data model. It is not necessarily the case with the Infoset data model.
[12] This
                might be considered, by some, an interesting observation, since some markup
                theorists have argued against the use of mixed content, either generally or for
                specific applications or uses of markup.
[13] We might allow a character occurrence to have more than one such property. For
              example, it could have the property of being an a, as well as that of
              being of some other type. Exploiting this option might be interesting in trying to
              account for multiple readings or interpretations in transcription, such as in [Sperberg-McQueen et al. 2009a]. For the time being, however, we will assume that the ascription
              of one such character-type-property to a particular character excludes the ascription
              of any other character-type-property to that character. 
[14] In a realsystem, character type indications enclosed within quotes
              and occurring within two-place predicates, like T(A,i01) here, should
              be replaced with one-place predicates using for example Unicode names for character
              values, like T.x0041(i01). Character types are properties, not individuals, and so
              should not really appear as variables in the calculus. One unattractive consequence of
              the shorthand notation used here is that assignment of whitespace characters comes out
              as T( ,i2), which is both imprecise and perhaps somewhat
              confusing.As mentioned, saying that an individual is labelled with a string is merely a
              shorthand for saying that it consists of a sequence of atoms each with certain
              character types as their values. So expressions like
              L( is ,i20) in the example below are really
              shorthands for more complex expressions referring to the atomic parts of the
              individual i20 and their next and type properties. Assuming that i20=i07+i08+i09+i10,
              what L( is ,i20) says should be construed as
              something like NA(i07,i08) ∧ NA(i08,i09) ∧ NA(i09,i10) ∧
              T.x0020(i07) ∧ T.x0069(i08)∧ T.x0073(i09)∧
            T.x0020(i10).

[15] In a working system one would probably use more  meaningful
              identifiers. The only requirement on identifiers is that they should identify
              individuals uniquely.
[16] At least as long as we are limiting ourselves to XML the notion immediate
                proper part can be given a straightforward and natural definition: x
                is an immediate proper part of y =df (x ≪ y) ∧
              ¬(∃z)((x ≪ z) ∧ (z ≪ y))
[17] We have made life even more comfortable for ourselves by leaving out the
              blankspace molecular atoms which occur between each of the molecules listed in the
              table.
[18] It should be noted that the mereological graph here has been construed so as to
              highlight the differences from XML discussed in this particular example, and that
              other important differences do not come out with this kind of visualization. For example, the nodes of the XML graph are commonly understood to represent XML
              elements, which in this case have been decorated with their generic identifiers. The
              nodes of the mereological graph, however, represent individuals and are decorated with
              what we have here called there assigned properties. Moreover, the nodes visible in the
              mereological graph represent only a tiny fraction of the individuals of the document. 
The arcs of the XML graph are commonly understood to represent containment and/or
              dominance relations between elements. In the mereological graph, they represent
              exclusively part-whole relationships. Again, the number of part-whole relationships
              depicted in the graph represent only a fraction of the part-whole relationships
              between the individuals of the document.

[19] It might of course seem that the nesting order is preserved by the order in which
              the assigned properties are mentioned in the table. However the table represents an
              unordered set of statements, so the order is insignificant. More on nesting order of
              coextensive elements further below.
[20] In the following we will often use the expression element or
              element type as short for property ascribed
              to an element by its generic identifier.
[21] The term anti-dissective (and its definition) is ours, not Goodman's.
            The same goes for the terms anti-expansive and
            anti-collective in the following paragraphs.
[22] A reflection upon this fact may also make us change our judgement of the HTML
            <p> element: Perhaps it is just a result of the content model of
            <p> in HTML that it seems anti-dissective. Anyhow, since nested
            <p>s simply do not occur in HTML, it does not matter much whether we
            classify the property as non-dissective or anti-dissective.
            
          
[23] We have simply tried to find examples of the patterns Goodman terms
              dissective, expansive and collective, and
            added the corresponding patterns anti-dissective etc. Goodman also
            identifies patterns he terms nucleative, pervasive,
              cumulative and agglomerative [Goodman 1972, p. 39–40]. We do not discuss these here,
            as we have not found any interesting application of them for the present purposes. In
            particular, a nucleative property is a property such that
            F is nucleative iff (F(x) ∧ F(y)) → F(x · y)

            Since XML has no elements which overlap without the one being a part of the other, the
            product of two element strings is always a part of one of them. Therefore, although the
            pattern does not have any interesting applications to XML — it may have for
            markup systems such as xConcur, TexMecs, Goddag, LMNL and others which allow overlapping
            elements.
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