[image: Balisage logo]Balisage: The Markup Conference

Documenting and Implementing Guidelines with
 Schematron
Joshua Lubell
<lubell@nist.gov>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

How to cite this paper
Lubell, Joshua. "Documenting and Implementing Guidelines with
 Schematron." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Lubell01.

Abstract

Data exchange specifications must be broad and general in order to
achieve acceptance, yet they must also be customizable in a controlled
and interoperable manner in order to be useful. This paper describes
an approach employing the Schematron language and literate programming
ideas for developing the guidelines needed to effectively use data
exchange specifications.

Balisage: The Markup Conference

 Documenting and Implementing Guidelines with
 Schematron

 Table of Contents

 	Title Page

 	Why Guidelines?

 	Implementing Guidelines with Schematron

 	A Literate Programming Approach

 	The NDRProfile Experience

 	Discussion

 	About the Author

 Documenting and Implementing Guidelines with
 Schematron

Why Guidelines?

Data exchange specifications for electronic business (e-business)
applications describe in a computer-interpretable fashion the
information to be transferred between systems. Thanks to the ubiquity
and success of the Extensible Markup Language [XML]
as an implementation technology, these specifications are often
encoded using XML schemas [XSchema]. XML's approval as a
World Wide Web Consortium (W3C) Recommendation in 1998 precipitated a
deluge of proposed XML schemas for data exchange [Cover], many of them rigidly designed for a specific
vertical area of application. Most of these schemas were subsequently
abandoned as developers learned that having too many non-interoperable
languages hinders rather than enables systems integration.

Recognition of the need for interoperability led to a drive to
standardize XML schemas meeting two
requirements: 	

Customizability – to enable
interoperable extensions to be added,

	

Inclusiveness – to facilitate use in
multiple contexts.

 These customizable and inclusive
schemas are more horizontal in nature and fewer in number than the
first generation of proposed schemas. Examples from the e-business and
e-government domains include the Universal Business Language [UBL], the Open Applications Group Integration
Specification [OAGIS], and the National Information
Exchange Model [NIEM] standards.

Unlike e-business and e-government, where the use of markup language
for data exchange is a relatively recent phenomenon, customizable and
inclusive standards for textual documentation have been around for
decades and predate the advent of XML. Examples of widely used
horizontal and extensible XML schema standards for text documentation
include DocBook [DocBook], Darwin Information Typing
Architecture [DITA], the Text Encoding Initiative
[TEI], and S1000D [S1000D]. These
documentation standards (with the exception of DITA) have been in
existence longer than UBL, OAGIS, and NIEM.

Whether they apply to e-business or text processing applications,
interoperable data exchange specifications must be both inclusive
enough to appeal to a broad community of developers and customizable
enough to allow developers to add new elements when needed. This is
where guidelines — or rules — come
into play. A schema that is inclusive is typically loosely specified
in order to make it acceptable to the community at large. This means
heavy use of optional elements, optional attributes, unrestricted data
types and, possibly, unconstrained content models. The result is a
schema that often needs to be more tightly constrained for specific
use cases, by mutual agreement of the actors involved. Such guidelines
are commonly called business rules.

As a simple example of a business rule adding an additional constraint
to a schema, consider a data exchange schema with an element
policy, where policy has an attribute
status whose type is a string. Now suppose that a group
implementing the schema adds a business rule to further constrain
status to be one of an enumerated set of
values. Validating an XML instance is now a two-step process. First,
the instance is validated against the original schema. If the instance
is schema-valid, it is then validated against the business rule. Figure 1 shows the validation steps.

Figure 1
[image:]Validation of an instance against a schema with an
	 added business rule.

XML schema Naming and Design Rules [NDR] are a
noteworthy special case of business rules. An NDR is a set of
guidelines for developing a new XML schema or extending an existing
schema. NDRs are useful both for promoting good design practice and
for ensuring that schema developers follow consistent naming
conventions. NDR validation is similar to the general case shown
in Figure 1, except that the XML schema is a
schema defining the syntax of the XML schema definition language, the
XML instance is a schema specified in that definition language, and
the business rules are an NDR. Figure 2 shows an
example where an XML schema containing a complex type definition
containing an all group is validated against an NDR with
a rule forbidding the use of all.

Figure 2
[image:]Validation of an XML schema against an NDR.

The NDR approach is applicable to any schema language with an XML
syntax and a “schema for schemas” defining the grammar
of the schema language. However, NDRs are most often used to promote
quality and interoperability of schemas written in the W3C XML schema
definition language. This is because many large-scale data exchange
specifications are defined using W3C XML schemas, and standards
developers have found that the W3C XML schema definition language's
many features must be used judiciously to ensure that extensions are
compatible with one another and with the base schema.

Implementing Guidelines with Schematron

To summarize the previous section, XML data exchange schemas need to
be both inclusive and customizable, guidelines known as
business rules are used to make an inclusive
schema more restrictive to a subset of the exchange schema's users,
and guidelines known as NDRs are used to control
the use of the exchange schema's definition language for the purpose
of ensuring that schema extensions are interoperable. Many data
exchange standards allow both for the addition of constraints via
business rules and for the addition of extensions as permitted by an
NDR.

But guidelines in and of themselves are of only limited value unless
they are implemented in software. Without automated enforcement,
guidelines may be subject to multiple human interpretations. Also, a
set of guidelines may be inconsistent, making it impossible for an XML
document to satisfy one guideline without violating another. While
implementing guidelines does not prevent these problems, the
implementation process often makes ambiguities and inconsistencies
more obvious and thus more likely to be discovered and remedied. Most
important, automating guideline enforcement makes it more likely that
the guidelines will actually be followed as opposed to relying on
human diligence alone.

Because NDRs are a special case of business rules, any implementation
method for business rules is also applicable for NDRs. Although just
about any computer-interpretable language is a potential guideline
implementation method, a popular choice is Schematron [Schematron], a schema language for XML. Schematron differs
from other schema languages in that it is rule-based and uses XPath
[XPath] expressions instead of grammars. Instead of
imposing a grammar on an XML document, a Schematron processor applies
assertions to specific context paths within the document. If the XML
document fails to meet an assertion, a diagnostic message supplied by
the author of the Schematron schema is displayed. Because Schematron
supports assertions about arbitrary patterns in XML documents,
Schematron can enforce constraints that would be hard to enforce using
grammar-based schema languages. Also, Schematron's modular, rule-based
syntax and author-supplied diagnostic messages make it an attractive
method for implementing guidelines[1].

Figure 3 shows how NDRs, business rules, and
Schematron fit together in the context of data exchange schema
interoperability. The NDR controls how the schema is extended should
new definitions need to be added. The business rules facilitate
inclusiveness by allowing a broad-based consensus standard to coexist
alongside additional constraints required by exchange partners. Both
the business rules and the NDR (which is effectively a set of business
rules restricting the language — typically the W3C XML schema
definition language — used to specify the exchange schema) may
be implemented in Schematron. This implementation scenario sets the
stage for the next section's discussion of implementing guidelines using
a literate programming approach.

Figure 3
[image:]Using NDR, business rules and Schematron to ensure
	 exchange schema interoperability.

A Literate Programming Approach

Literate programming [Knuth, LitProg], a software development method invented by Donald
Knuth, seeks to free implementers from the confines of computer
language syntax — allowing them to code in a manner more
consistent with human thought processes than traditional programming
paradigms. Literate programming elevates human narrative to the same
status as computer-interpretable code by allowing them to be
co-mingled together in a “web.” A literate programming
system includes tools for “weaving” formatted
human-readable documentation from the source and
“tangling” (i.e., rearranging) the source to produce
compilable code.

In traditional approaches, documentation for human consumption such as
source code comments, algorithm descriptions, requirements, and design
rationale has second class status relative to computer-interpretable
code. Even when source code in traditionally-developed software is
well-documented with comments, the comments serve as an aid to
understanding the code rather than something from which the code
evolves. Because XML is well suited both for data exchange between
software applications and for producing human-readable documentation
in numerous formats, XML and literate programming are a good
fit. Therefore, it is no surprise that a number of literate
programming-inspired XML applications have been developed [Reiss]. One of the more well-known of these is “One
Document Does it all” (ODD) [Burnard], a literate
programming XML vocabulary from which TEI schemas and documentation
can be generated [Roma].

Schematron is a particularly useful literate programming tool for
documenting and implementing guidelines. Schematron's syntax mimics an
itemized list of guidelines. Schematron gives authors full flexibility
in specifying diagnostic messages triggered upon an assertion passing
or failing. And Schematron allows for “always-true”
assertions, enabling guidelines that are untestable or unimplemented
to nevertheless be included in the Schematron schema. Consider the
following rule, adapted from [Jelliffe]:

<sch:rule context="/">
 <sch:assert test="true()" role="Untestable" >The document shall
be maintainable</sch:assert>
 <sch:assert test="true()" role="UnImplemented" >All terms must be
standard English words.</sch:assert>
</sch:rule>

A Schematron processor will not check for these two
constraints. However, the Schematron language not only allows for
expressing text describing the constraints, but also provides
constructs such as the role attribute for metadata.
Additionally, Schematron processors ignore foreign markup and child
elements inside foreign markup, making it easy to intersperse the
Schematron syntax with content marked up in a text documentation
language such as DocBook or the Extensible HyperText Markup Language
[XHTML].

Consider the following Schematron schema containing two business
rules. The first rule, from Figure 1, restricts a
policy's status to an enumerated set of values. The second rule, a
co-occurrence constraint, requires an “approved” policy
to have an effective date.

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"
	 xmlns="http://www.w3.org/1999/xhtml">
 <sch:title>Business Rules</sch:title>
 <sch:pattern>
 <sch:rule context="policy">
 <h3>Rule 1</h3>
 <p>A policy's status must be either draft,
approved, or deprecated.</p>
 <sch:assert test=
"@status = 'draft' or @status = 'approved' or @status = 'deprecated'">
Value for attribute 'status' of element 'policy' is not one of
'draft', 'approved', 'deprecated'.</sch:assert>
 </sch:rule>
 <sch:rule context="policy/@status[. = 'approved']">
 <h3>Rule 2</h3>
 <p>An approved policy must specify an effective date.</p>
 <sch:assert test="../@effectiveDate">
Value for attribute 'status' of element 'policy' is 'approved', but
attribute 'effectiveDate' is not present.</sch:assert>
 </sch:rule>
 </sch:pattern>
</sch:schema>

This is a perfectly valid Schematron schema, even though it contains
XHTML markup. The XHTML-enhanced Schematron exemplifies the literate
programming ideal of a single source co-mingling processable code with
documentation, where the code and documentation have equal status. The
Schematron-valid source can be used as-is by a Schematron processor to
validate an XML instance against the business rules — no
literate programming “tangling” operation is needed. The
formatted web page shown in Figure 4 is
generated using a very simple transformation accomplishing the
literate programming “weaving” operation.

Figure 4
[image:]Documentation generated using a simple transformation
	 of the Schematron schema.

Although the example uses XHTML rather than DocBook for enhancing the
Schematron, DocBook may actually be more suitable since the DocBook
data model is designed specifically for representing technical
documentation. I choose XHTML over DocBook for the examples in this
paper purely as a convenience to myself and to readers. Generating
formatted output from XHTML is easy. And anyone familiar with XML
technologies has seen XHTML syntax.

The NDRProfile Experience

The previous section presented the case for implementing guidelines
using a Schematron-based literate programming approach. This section
discusses a recent effort employing a non-literate programming
approach to guidelines (specifically NDR) development.

The National Institute of Standards and Technology (NIST) Quality of
Design (QOD) application [Morris] provides a
mechanism for checking XML schema design quality against NDRs in a
collaborative environment. Recognizing the need for an XML vocabulary
to represent NDRs, NIST created NDRProfile [Harvey]
— an XML schema providing a common format in which NDRs can be
exchanged, managed and reused. Although the NDRProfile schema's
development was inspired by QOD, the schema can be used independently
of QOD, either as a means of authoring an NDR document or as a vehicle
for sharing rules between NDRProfile schema-compliant software
applications.

Unlike the previous section's example co-mingling Schematron and
XHTML, NDRProfile represents a set of guidelines using its own
specialized vocabulary. Implementations of each guideline are
specified using a script element whose content is
computer-interpretable code, most commonly Schematron code. The
following is an example of an NDRProfile instance containing a single
NDR rule for UBL prohibiting the use of the XML Schema
all element.

<NDRProfile NDRProfileID="prd-UBL-NDR-2.0">
 <NDRTitle>Universal Business Language Naming and Design Rules</NDRTitle>
 <OrganizationInformation>
 <OrganizationName>OASIS</OrganizationName>
 <ContactURI>http://www.oasis-open.org</ContactURI>
 </OrganizationInformation>
 <Guidance guidanceID="UBL-2.0-GXS-8">
 <Classification>General</Classification>
 <EnforcementLevel>Mandatory</EnforcementLevel>
 <Status>Draft</Status>
 <Testability>Fully-Testable</Testability>
 <GuidanceText>xsd:all MUST NOT be used.</GuidanceText>
 <TestCases>
 <TestCase testCaseID="UBL-2.0-GXS-8-1" ruleType="ISO-Schematron">
	<TestName>GXS8</TestName>
	<Script><![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://purl.oclc.org/dsdl/schematron">
 <ns uri="http://www.w3.org/3301/XMLSchema" prefix="xsd"/>
 <pattern id="UBL-2.0-GSX-8">
 <rule context="xsd:all">
 <report test="true()">Error: The xsd:all element MUST
NOT be used.</report></rule></pattern></schema>
]]></Script></TestCase></TestCases></Guidance></NDRProfile>

This example illustrates a number of disadvantages of the NDRProfile
schema design relative to the approach discussed in the previous
section. Because NDRProfile does not permit foreign markup, the
Schematron code in the script element must be either
enclosed in a CDATA section, or the left angle brackets must be
escaped. This not only makes the instance uglier, but also requires
extraction of the Schematron code before it can be executed by a
Schematron processor. In the previous section's example, no extraction
is necessary because the document is already a valid Schematron
schema.

Another disadvantage is that NDRProfile lacks the elegance of the
literate programming approach. The code is a second class citizen
relative to the documentation, so the documentation and code do not
share equal status. In fact, an NDRProfile developer is likely to
write the Schematron code as a separate endeavor from authoring the
NDRProfile instance and paste it into the instance after the
fact. This is contrary to literate programming, where the code and
documentation are created in concert with one another.

Finally, because the NDRProfile schema defines its own vocabulary
rather than maximizing reuse of existing XML languages, custom tools
must be developed for authoring, validating, and processing it. Thus
NDRProfile shares the barriers to success of other newly-invented
languages. And it is usually a bad idea to invent a new XML language
[Bray].

So why was NDRProfile designed the way it was? The main reason was
that the normative form of most NDRs is an unstructured document in a
proprietary word processor format. This caused us to think of an
NDRProfile as a text document foremost, rather than as an application
of literate programming. A second reason was that we wanted to allow
for other implementation languages besides Schematron. However, by
using “always-true” assertions, role
metadata, and foreign markup, one can use a Schematron-based
vocabulary while at the same time allowing for other implementation
methods.

The following example shows how an NDRProfile can be represented using
a variant of the previous section's literate programming approach,
with XHTML class attributes added to provide NDR-specific
annotations.

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"
	 xmlns="http://www.w3.org/1999/xhtml" id="prd-UBL-NDR-2.0">
 <sch:title>Universal Business Language Naming and Design Rules</sch:title>
 <sch:ns uri="http://www.w3.org/2001/XMLSchema" prefix="xsd"/>
 <sch:p class="schemaType">NDRProfile</sch:p>
 <p class="OrganizationInformation">
 OASIS

http://www.oasis-open.org</p>
 <sch:pattern id="UBL-2.0-GXS-8">
 <sch:rule context="xsd:all" id="UBL-2.0-GXS-8-1">
 <p class="Classification">General</p>
 <p class="EnforcementLevel">Mandatory</p>
 <p class="Status">Draft</p>
 <p class="Testability">Fully-Testable</p>
 <p class="GuidanceText">GXS8: xsd:all MUST NOT
be used.</p>
 <sch:report test="true()">Error: The xsd:all element MUST
NOT be used.</sch:report></sch:rule></sch:pattern></sch:schema>

This approach has neither of the NDRProfile schema's first two
disadvantages. The third disadvantage is minimized by reusing
existing, well-established XML vocabularies as much as possible.

Discussion

In this paper, I first introduced two kinds of guidelines needed for
effective use of data exchange schemas: business rules for further
constraining a schema, and NDR for controlling the design of schema
extensions. Next I illustrated how Schematron can be used in
conjunction with literate programming principles to simultaneously
document and implement guidelines. I then discussed past experience
with NDRProfile, an approach to encoding guidelines that at the time
seemed intuitive and sensible, but in retrospect is more convoluted
and less efficient than the literate programming approach.

My approach emphasizes Schematron because Schematron is an appropriate
language for implementing NDRs and business rules as well as (with
annotations added) a suitable guideline documentation language. This
is not to imply that all XML-based literate programming systems should
use Schematron. For applications such as ODD, where the underlying TEI
data model is more complex, hierarchical, and harder to represent as a
set of independent rules, Schematron's benefits as a literate
programming tool may not be as great.

A key enabler of the Schematron-based literate programming approach
advocated in this paper is the ability of a single XML document to
incorporate multiple vocabularies. This is distinct from the more
conventional notion of a single-vocabulary XML document that can be
processed multiple ways. An XML document having multiple vocabularies
is not a new idea. Back in the mid-1990s, ISO standardized the
Architectural Form Definition Requirements [AFDR,
Lubell]. Unlike a Document Type Definition (DTD), an
“architecture” as defined by the AFDR need not specify a
complete document type. Instead, an architecture defines rules known
as “architectural forms” that developers can apply in
defining their vocabularies. A document can use multiple
architectures, and architectures themselves can inherit grammar rules
from other architectures.

Although the AFDR never gained widespread traction among XML
developers, the AFDR authors were incredibly forward-thinking in
foreseeing the need to decouple vocabularies from document
types. Software applications today are moving off of desktops and are
increasingly being provided as services over the Internet. XML
developers are coming to realize that XML documents and vocabularies
should mimic the characteristics of the World Wide Web. Since the Web
is a decentralized network of chunks of interconnected information,
XML document designs should maximize the use of small,
independently-developed vocabularies [Costello].

The newly-standardized Namespace-based Validation Dispatching Language
[NVDL] provides a method for validating XML
documents containing multiple vocabularies defined using different
schema languages. NVDL supports a variety of schema languages
including the XML Schema Definition Language, DTDs, Schematron and
RELAX NG [RelaxNG]. NVDL thus enables the validation of
a document such as the previous section's example of a literate
programming approach to NDRProfile. Consider the following NVDL
document describing the validation of a Schematron schema with
embedded XHTML paragraph elements:

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 startMode="sch">
 <mode name="sch"><namespace ns="http://purl.oclc.org/dsdl/schematron">
 <validate schema="iso-schematron.rng" useMode="xhtmlpara"/>
 </namespace></mode>
 <mode name="xhtmlpara"><namespace ns="http://www.w3.org/1999/xhtml">
 <validate schema="p.rng"/></namespace></mode></rules>

This NVDL document specifies that the Schematron schema with embedded
XHTML is validated by initially checking all Schematron elements
against the normative RELAX NG schema (assumed to be in the file
iso-schematron.rng) for the Schematron language. Whenever
an XHTML element is encountered, the XHTML is validated against
p.rng, assumed to be a customization of the normative
RELAX NG schema for XHTML allowing p as a starting
element. The NVDL document does not validate syntactic correctness of
NDRProfile annotations. NDRProfile annotation checking could be done
by further customization of iso-schematron.rng and
p.rng, or alternatively by writing a separate Schematron
schema specifically for NDRProfile annotation checking and adding an
“NDRProfile” mode to the NVDL document.

References
[AFDR]
ISO/IEC 10744:1997. Information processing — Time-based
Structuring Language (HyTime)- 2d edition. Annex A.3 Architectural
Form Definition Requirements (AFDR). [cited 08 Jun
2009]. http://www.y12.doe.gov/capabilities/sgml/wg8/document/n1920

[Bray] Tim
 Bray. Don't Invent XML
 Languages. 2006-01-09. [cited 24 Apr
 2009]. http://www.tbray.org/ongoing/When/200x/2006/01/08/No-New-XML-Languages
[Costello]
Roger Costello. XML Designers: Take Cue from the
Web. xFront. [citied 09 Jun
2009]. http://xfront.com/xml-designers-take-cue-from-the-web/index.html

[Cover]
Cover Pages. XML Applications and
Initiatives. [cited 21 May 2009].
http://xml.coverpages.org/xmlApplications.html

[DITA]
OASIS. DITA Version 1.1 Specification
Overview. 1 August 2007. [cited 08 May
2009]. http://docs.oasis-open.org/dita/v1.1/overview/overview.html

[DocBook]
Norman Walsh. DocBook 5.0: The Definitive
Guide. ISBN: 156592-580-7. O'Reilly & Associates, Inc. Version
0.0.25. [cited 08 May 2009]. http://docbook.org

[Harvey] Betty Harvey,
Joshua Lubell, Puja Goyal, KC Morris. NDRProfile Schema
Version 1.0 User Guide. National Institute of Standards and
Technology. NISTIR 7547. December 2008. [cited 24 Apr 2009]. http://qod.sourceforge.net/ndrprofile/
[Jelliffe] Rick
Jelliffe. Expressing untested and untestable constraints in
Schematron. [cited 23 Apr
2009]. http://www.oreillynet.com/xml/blog/2007/03/expressing_untested_and_untest.html

[Knuth]
D.E. Knuth. Literate Programming. The Computer
 Journal 1984 27(2):97-111; doi:https://doi.org/10.1093/comjnl/27.2.97.
 British Computer Society. [cited 11 May 2009]. http://www.literateprogramming.com/knuthweb.pdf

[LitProg] Wikipedia.
Literate programming. [cited 23 Apr 2009].
http://en.wikipedia.org/wiki/Literate_programming

[Lubell]
Joshua Lubell. Architectures in an XML World.
Markup Languages: Theory and
Practice. Vol. 3. No. 4. Fall
 2001. doi:https://doi.org/10.1162/109966202760152167. [cited 08 Jun 2009].
http://www.mel.nist.gov/div826/staff/lubell/xsltoolbox/apex/

[Morris] K.C. Morris et al.
User's Guide for the Quality of Design Testing Tool and the
Content Checker. National Institute of Standards and
Technology. NISTIR 7538. October 2008. [cited 11 May 2009].
 http://www.mel.nist.gov/publications/view_pub.cgi?pub_id=824715

[NIEM]
National Information Exchange Model. [cited 08 May
2009]. http://www.niem.gov

[NDR] Cover
Pages. Naming and Design Rules. [cited 24 Apr
2009].
http://xml.coverpages.org/ndr.html

[NVDL]
ISO/IEC 19757-4. Information technology — Document
Schema Definition Languages (DSDL) — Part 4: Namespace-based
Validation Dispatching Language (NVDL). First edition
2006-06-01. [cited 04 Jun
2009]. http://www.iso.org/PubliclyAvailableStandards

[RelaxNG]
ISO/IEC 19757-2. Information technology — Document
Schema Definition Languages (DSDL) — Part 2:
Regular-grammar-based validation — RELAX NG. First edition
2003-12-01. [cited 09 Jun
2009]. http://www.iso.org/PubliclyAvailableStandards

[OAGIS]
Open Applications Group Integration Specification (OAGIS) Release
9.3. [cited 07 May 2009]. http://www.oagi.org

[Burnard]
Lou Burnard and Sebastian Rahtz. RelaxNG with Son of
ODD. Proceedings of Extreme Markup
Languages 2004 conference (Montreal, Quebec). August
2004. [cited 05 Jun
2009]. http://conferences.idealliance.org/extreme

[Reiss] Kevin
Reiss. Literate Documentation for XML
Schema. Digital Humanities 2007 poster materials. [cited 24
Apr 2009].
http://kreisscas.blogspot.com/2007/06/digital-humanities-materials.html

[Roma]
Roma: generating validators for the TEI. [cited 05 Jun
2009]. http://www.tei-c.org/Roma

[S1000D]
AeroSpace and Defence Industries Association of
Europe. S1000D International specification for technical
publications. Issue 4.0. 2008-08-01. [cited 08 May
2009]. http://www.s1000d.org

[Schematron]
ISO/IEC 19757-3. Information technology — Document
Schema Definition Languages (DSDL) — Part 3: Rule-based
validation — Schematron. First edition
2006-06-01. [cited 23 Apr
2009]. http://www.iso.org/PubliclyAvailableStandards

[TEI]
Text Encoding Initiative Consortium. TEI P5: Guidelines for
Electronic Text Encoding and Interchange. edited by Lou
Burnard and Syd Bauman. Version 1.3.0. Last updated on February 1,
2009. http://www.tei-c.org

[UBL]
OASIS. Universal Business Language 1.0. 15
September 2004. [cited 07 May
2009]. http://docs.oasis-open.org/ubl/cd-UBL-1.0/

[XHTML]
World Wide Web Consortium. XHTML™ 1.0 The Extensible
HyperText Markup Language (Second Edition). W3C
Recommendation 26 January 2000, revised 1 August 2002. [cited 21 May
2009]. http://www.w3.org/TR/xhtml1/

[XML]
World Wide Web Consortium. Extensible Markup Language (XML)
1.0 (Fifth Edition). W3C Recommendation 26 November
2008. [cited 15 Apr
2009]. http://www.w3.org/TR/xml/
[XPath]
World Wide Web Consortium. XML Path Language (XPath) Version
1.0. W3C Recommendation 16 November 1999. [cited 23 Apr
2009]. http://www.w3.org/TR/xpath
[XSchema]
World Wide Web Consortium. XML Schema Part 0: Primer Second
Edition. W3C Recommendation 28 October 2004. [cited 15 Apr
2009]. http://www.w3.org/TR/xmlschema-0/
[XSchema1.1]
World Wide Web Consortium. W3C XML Schema Definition
Language (XSD) 1.1 Part 1: Structures. W3C Candidate
Recommendation 30 April 2009. [cited 11 Jun
2009]. http://www.w3.org/TR/xmlschema11-1/

[1] Version 1.1 of the
W3C XML Schema standard [XSchema1.1], a Candidate
Recommendation at the time of this writing, adds Schematron-like
capabilities to the XML Schema Definition Language. Once
implementations become available, XML Schema 1.1 might be worth
considering as an alternative to Schematron.

Balisage: The Markup Conference

Documenting and Implementing Guidelines with
 Schematron
Joshua Lubell
<lubell@nist.gov>

Josh Lubell uses information technology to solve manufacturing
engineering and e-business software interoperability problems. He is
particularly interested in long-term retention of digital data and was
awarded the Department of Commerce Silver Medal for his leadership in
developing ISO 10303-203:2008, a standard for representation and
exchange of computer-aided designs.

	

Balisage: The Markup Conference

content/images/Lubell01-002.png
XML schema

NDR

<xsd: comp'l.exType
name="0rderType">
<xsd:all> .. </xsd:all

If schema
definition
lang.-valid

The xsc:all element
MUST NOT be used.

content/images/Lubell01-003.png
extensibilit

exchange
schema

content/images/Lubell01-004.png
s Rules

RULE L: A policy
deprecated.

status must be either drafe, approved, or

Schematron code:

<schirule context="policy™
<schiassert test=

“Bstatus = ‘'daraft’ or @status = ‘approved’ or @status = 'deprecated'">

Value for attribute 'status' of element 'policy' is not one of

‘araft!, ‘approved’, 'deprecated’.</sch:assert>

</sch:rule>

RULE 2: An approved policy must specify an cffective date.

Schematron code:

<schirule context
<schiassert teste’

policy/Bstatus(. = 'approved’]"
.. /BeffectiveDate™>

Value for attribute 'status' of element 'policy' is 'approved, but
attribute 'effectiveDate’ is not present.</sch:assert
</schirule>

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Lubell01-001.png
XML schema XML |nstance
<policy status="draft">

<xsd: attrlbute
name="status"
xsd:string"/>|

</po'l.icy>

1

business rules

Status must be either

draft, approved, or
deprecated

