[image: Balisage logo]Balisage: The Markup Conference

TEI Feature Structures as a Representation Format for Multiple Annotation and Generic XML
 Documents
Jens Stegmann
Bielefeld University

<jens.stegmann@googlemail.com>

Andreas Witt
Institute for the German Language (IDS), Mannheim

<witt@ids-mannheim.de>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 by the authors. Used with
 permission.

How to cite this paper
Stegmann, Jens, and Andreas Witt. "TEI Feature Structures as a Representation Format for Multiple Annotation and Generic XML
 Documents." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Stegmann01.

Abstract
 Feature structures are mathematical entities (rooted labeled directed acyclic graphs) that
 can be represented as graph displays, attribute value matrices or as XML adhering to the
 constraints of a specialized TEI tag set. We demonstrate that this latter ISO-standardized
 format can be used as an integrative storage and exchange format for sets of multiple annotation
 XML documents. This specific domain of application is rooted in the approach of multiple
 annotations, which marks a possible solution for XML-compliant markup in scenarios with
 conflicting annotation hierarchies. A more extreme proposal consists in the possible use as a
 meta-representation format for generic XML documents. For both scenarios our strategy concerning
 pertinent feature structure representations is grounded on the XDM (XQuery 1.0 and XPath 2.0
 Data Model). The ubiquitous hierarchical and sequential relationships within XML documents are
 represented by specific features that take ordered list values. The mapping to the TEI feature
 structure format has been implemented in the form of an XSLT 2.0 stylesheet. It can be
 characterized as exploiting aspects of both the push and pull processing paradigm as
 appropriate. An indexing mechanism is provided with regard to the multiple annotation documents
 scenario. Hence, implicit links concerning identical primary data are made explicit in the
 result format. In comparison to alternative representations, the TEI-based format does well in
 many respects, since it is both integrative and well-formed XML. However, the result documents
 tend to grow very large depending on the size of the input documents and their respective markup
 structure. This may also be considered as a downside regarding the proposed use for generic XML
 documents. On the positive side, it may be possible to achieve a hookup to methods and
 applications that have been developed for feature structure representations in the fields of
 (computational) linguistics and knowledge representation.

Balisage: The Markup Conference

 TEI Feature Structures as a Representation Format for Multiple Annotation and Generic
 XML
 Documents

 Table of Contents

 	Title Page

 	Introduction

 	Feature Structures
 	Feature Structures in a Nutshell

 	The TEI Tag Set for Feature Structures

 	Representation and Transformation
 	Representation of XML Documents via TEI Feature Structures

 	Aspects of the XSLT Implementation of the Transformation

 	Summary and Outlook

 	Appendix A. Appendix: Result Document for the Annotation Data Examples

 	About the Authors

 TEI Feature Structures as a Representation Format for Multiple Annotation and Generic XML
 Documents

Introduction
 As the title suggests, this contribution describes aspects of the use of a certain
 representation format ("TEI Feature Structures") with regard to a specific domain of application
 ("Multiple Annotation") and also concerning a second, much more general kind of scenario
 ("Generic XML Documents").
 TEI P5 (Burnard and Bauman, 2007) compliant encodings of feature structures, which we refer to as
 TEI feature structures in this article, will receive much of our attention.
 Figure 1 shows a simple example: the encoding of a certain feature structure
 F1. F1
 serves to characterize a specific class of linguistic entities here, namely nominal phrases of
 the third person singular kind.
Figure 1: TEI Encoding of a Feature Structure F1

<fs>
 <f name="CAT">
 <symbol value="np" />
 </f>
 <f name="AGR">
 <fs>
 <f name="NUM">
 <symbol value="sing" />
 </f>
 <f name="PER" />
 <symbol value="third" />
 </f>
 </fs>
 </f>
</fs>

 There are two features on the top-level of F1:
 CAT with its value np and AGR with an associated complex
 value, which is a feature structure itself. This latter embedded structure consists of the
 feature-value pairs NUM with value sing and PER with value
 third. We will return to the theme of encoding
 F1 below (“Feature Structures in a Nutshell”). Since we will use
 the same example there, it will be possible to compare different syntaxes for the display of
 feature structures in a straightforward way. We do not delve into details connected with the XML
 syntax exemplified in Figure 1 here, since this will be the topic of another part of
 this article (“The TEI Tag Set for Feature Structures”). In the rest of this introductory section, we shall try to
 shed some light upon the two application domains that have been mentioned above.
 The more specific scenario consists in the integrative representation of annotation
 documents along the approach of multiple annotations
 (Witt, 2004). The multiple annotations approach marks a possible solution with
 regard to the markup of overlapping structures. Linguists, e.g., do often encounter XML-related
 problems, when they try to annotate a common core of linguistic data according to different
 levels of linguistic analysis (phonology, morphology, syntax, semantics, and pragmatics). The
 most straightforward way of marking things up might involve the incorporation of crossing edges.
 Such, however, is prohibited on grounds of XML's foundational tree structure. It can be argued
 that such configurations of data with conflicting hierarchies require a different kind of data
 structure, i.e., a multi-rooted tree ((Carletta et al., 2003),(Wörner et al., 2006) and (Witt et al., 2007)). A multi-rooted tree consists of several
 trees that span over the same data leaves. The multiple annotations approach now proposes to mark
 up each description level / tree as a document instance in its own right. This allows for each
 document to consist of well-formed XML, the modeling of alternative annotations is possible, the
 levels can be viewed separately, and new levels can be added at any time (Witt, 2004). However, such documents may seem to be somewhat unrelated and independent of each other. Witt
 therefore proposes to regard the primary textual data, which have to be identical across all such
 annotation documents, as the defining implicit link between them. Of course, it would be
 desirable to bring such implicit linkages forward as explicit ones. This can be done, e.g.,
 during the course of a transformation to an adequate representation format. We intend to show
 that the ISO-standardized TEI tag set for the representation of feature structures can be such a
 representation format. Pros, cons and alternative strategies with respect to
 overlapping structures are discussed in the pertinent literature, compare
 (DeRose, 2004), (Sperberg-McQueen, 2007) and (Carletta et al.,2007) for an overview.
 Besides the different stages of the TEI recommendations ((Sperberg-McQueen and Burnard, 1994), (Sperberg-McQueen and Burnard, 2001) and (Burnard and Bauman, 2007)), at least one alternative proposal concerning the
 encoding of feature structures as SGML/XML markup has been brought forward
 in the literature (Sailer and Richter, 2001). However, to the best of our knowledge, no one has
 yet discussed the question how a representation in the opposite direction could look like, i.e.,
 encoding SGML/XML markup documents as feature structures. We will come up
 with an original answer to this question, as we succeed concerning the more specific goal of
 finding a way to represent sets of multiple annotation documents as TEI feature structures.
 Feature Structures can be regarded as a general type of data structure and there may be specific
 advantages associated with their use as a meta-representation format. We will speculate about
 related aspects in the last section of this paper.
 The structure for the rest of this article looks as follows. In the next section (“Feature Structures”), we characterize feature structures as mathematical entities and introduce three
 syntaxes for means of visualization and encoding: graph displays, attribute value matrices and
 the pertinent TEI tag set. Ways to represent XML documents as TEI feature structures and aspects
 of the XSLT-implemented transformation from multiple annotation and generic XML documents to the
 integrative TEI feature structure format are discussed in the next section (“Representation and Transformation”). Finally, we summarize our findings, take up some loose ends from the previous sections and
 discuss the relative advantages and disadvantages of representations in terms of TEI feature
 structures in the last section (“Summary and Outlook”) of this contribution.

Feature Structures
Feature Structures in a Nutshell
Feature structures are a common means of representation in formal
 linguistic theory.[1] Their use is most prominent in certain variants of generative grammar (Shieber, 1986)
 [2], but not constrained to the syntactic level of analysis, e.g., there are linguistic
 applications in phonology, morphology, semantics and pragmatics, too. Furthermore, feature
 structures can be characterized as a general purpose data structure (ISO24610, 2006)
 with possible applications in the vast field of knowledge representation. Hence, their
 usefulness is by no means constrained to linguistic investigations alone.
 From a mathematical stance, there are at least two perspectives on feature structures
 (Shieber, 1986). On the one hand, a feature structure can be construed as a
 partial function from a set of features to a set of
 values. The value associated with a certain feature can be either
 atomic, e.g., a specific symbolic value as element or a
 binary value like true, or it may be complex. The latter means
 that it can be a full-blown feature structure itself or it may be of a collection
 value type like a set or a list of, again, possibly complex values. We will come
 upon numerous examples below. Due to the availability of complex values, feature structures can
 embed other feature structures in value position and, hence, provide a considerable degree of
 representational articulateness. Note that there will be no significance to the order of
 features that are located on the same hierarchical level within a feature structure.
Another mathematical perspective derives from graph theory and leads to the
 characterization of feature structures as rooted labeled directed (acyclic)[3] graphs. Graphs (Diestel, 2005) are mathematical entities that consist
 of sets of nodes and edges. We can think of the edges of a graph as connecting its nodes. Graphs
 can be depicted in an intuitively appealing way as diagram displays. The labeled edges represent
 the features, the leaf nodes represent the atomic values, and the inner nodes, if any, represent
 the complex values of a feature structure. Figure 2 is an example graph
 display of the feature structure F1,
 compare Figure 1 in the preceding section for the TEI counterpart.
Figure 2: Graph Display of the Feature Structure
 F1
[image:]

 There is an alternative to the visualization of feature structures as graph displays. It
 consists in the use of attribute value matrices.[4] In attribute value matrix notation, the features are written to the left of their associated values and there are brackets that indicate the
 scope of the (sub-)feature structure(s) involved.[5] Figure 3 shows
 F1 in attribute value matrix notation, compare
 Figure 1 and Figure 2 above for the TEI- and graph display
 counterparts. Concerning the forthcoming examples in this article, we will only use the TEI
 format and the attribute value matrix notation.
Figure 3: Attribute Value Matrix Notation of the Feature Structure
 F1
[image:]

 Feature structures list correct information and only correct information, but they do not
 necessarily contain all the correct information with regard to a specific object, i.e., they may
 be of a partial nature.[6] Partiality can be a good thing, since it allows for feature structures to capture
 generalizations via the underspecification of certain properties.
When features have identical values, there are two scenarios to consider: the values can be
 either type- or token-identical. If the values are merely type-identical, we can characterize
 them as being independent of one another. A hypothetical change to one of the values would have
 no effect on the other values involved. However, in case of token-identity the features are
 associated with one and the same value token and, hence, are dependent on it. A change to the
 token would affect all the features that reference it. This latter scenario of token-identity is
 also called coreference, structure sharing or reentrancy. In attribute
 value matrix notation, it can be indicated by means of co-indexed boxes that either act as a
 referring place-holder in value position or they may be written before a certain value token and
 such all occurrences of the index within the feature structure are bound to that value. We will
 come upon an example in the next subsection of this article, cf. Figure 5 below. At
 the graph display level, we would use edges that lead into one and the same node in order to
 indicate structure sharing.
 An important operation upon feature structures is unification (Shieber, 1986). The foundational idea is fairly simple and can be sketched as follows: the result of the
 unification of compatible feature structures is the most general feature structure that contains
 all the information of the unified feature structures. Technically, unification is defined via
 the auxiliary concept of subsumption. Subsumption implements an intuitive
 concept of specificity and wealth of information among feature structures. We define that a
 feature structure F' subsumes a feature structure F'' if F' contains a subset of the information
 in F'' (Shieber, 1986). Alternatively, we may say that F' carries less information
 than F'' or that F' is more general than F''. Subsumption is a partial order on the set of
 feature structures, since feature structures may be incompatible with each other. Now, we can
 define the unification of two feature structures F and G, if any, to be the
 most general feature structure H, such that F subsumes H and G subsumes H. If the feature
 structures to be unified are incompatible, we say that the unification fails. A related
 operation that works in the opposite direction is generalization. This operation is the dual of
 unification. We can define the generalization of two feature structures F
 and G to be the most specific feature structure E, such that E subsumes F and E subsumes G.
 Unlike unification, generalization cannot fail. In the worst case, the result will be the empty
 feature structure [] that subsumes every feature structure.
 It should be noted that feature structures can be typed
 (Carpenter, 1992). However, neither the present state of the representations nor
 the implemented transformation that we describe in this paper does make use of typed feature
 structures, so we won't go into details regarding that topic here.

The TEI Tag Set for Feature Structures
The TEI tag set for the representation of feature structures has been a part of the TEI
 Guidelines since version P3
 (Sperberg-McQueen and Burnard, 1994). Building on the P4 version (Sperberg-McQueen and Burnard, 2001), an
 ISO standard (ISO24610, 2006) was adopted by ISO TC37 SC4 and
 also implemented in the current P5 version (Burnard and Bauman, 2007) that we
 use here.
 The foundational XML elements that are needed in order to encode feature structures are
 fs for feature structures and f for features. The content of an
 fs element consists of a sequence of feature-value specifications. A feature-value
 specification is encoded using an element of type f for the feature and the element
 content of f for the associated value. The details look as follows. Every
 f element has an attribute name for its feature name. The
 representation of the associated value of a feature depends on the exact type of the value
 involved. Atomic values of type binary, symbol or numeric
 are realized via a value attribute on a respective child element of f
 that corresponds to the actual value type. For example, f may have a child element
 binary which has a value attribute that provides the desired
 parameter. If the value is of the string type, however, the value is encoded in a
 slightly different form, i.e., as the literal element content of a respective
 string child element of f.
 Complex values of the feature structure kind are encoded by means of fs
 elements, of course. However, there is also another class of complex values: these are the
 collection values of the list, set and bag type. Such
 collections of values are indicated via vColl elements that have an
 org attribute whose value specifies the respective collection type, i.e., whether
 it is a bag, a set or a list. The content of a
 vColl element consists of a succession of values of any kind.
Figure 4: TEI Feature Structure F2: Structure Sharing
 and Collection Values

<fs>
 <f name="F">
 <vColl org="list">
 <vLabel name="a">
 <fs>
 <f name="I">
 <symbol value="a"/>
 </f>
 <f name="J">
 <symbol value="b"/>
 </f>
 </fs>
 </vLabel>
 <vLabel name="b">
 <fs>
 <f name="K">
 <symbol value="c"/>
 </f>
 <f name="L">
 <symbol value="d"/>
 </f>
 </fs>
 </vLabel>
 </vColl>
 </f>
 <f name="G">
 <vLabel name="a"/>
 </f>
 <f name="H">
 <vColl org="set">
 <vLabel name="b"/>
 <fs>
 <f name="M">
 <symbol value="e"/>
 </f>
 <f name="N">
 <symbol value="f"/>
 </f>
 </fs>
 </vColl>
 </f>
</fs>

 There is a special element in order to indicate cases of structure sharing: the
 vLabel element. It either contains a value token as its element content or it
 occurs as a placeholder which indicates reference to an elsewhere specified value token. Each
 vLabel element has an associated name attribute. The value of the
 name attribute corresponds to the index of a tagged box in attribute value matrix
 notation, see below. This mechanism allows for various structure sharing configurations within a
 single feature structure. Figure 4 (TEI-based representation) and Figure 5 (attribute value matrix notation) display the same abstract example feature structure
 F2 in different notation formats and exemplify the
 themes of structure sharing and collection values.
Figure 5: Attribute Value Matrix for F2: Structure
 Sharing and Collection Values
[image:]

 There are three top-level features in F2:
 F, G, and H. All of them are associated with complex
 values. F has a list collection value, which is encoded using angle brackets at the
 attribute value matrix level, G has a feature structure as its value, and
 H has a set collection value that is indicated using curly brackets in Figure 4.
 The first list value of F and the complex value of G are co-indicated.
 The same holds for the second list value of F and the firstly notated set member of
 H.

Representation and Transformation
Representation of XML Documents via TEI Feature Structures
Both feature structures and XML documents can be regarded from the perspective of graph
 theory (Diestel, 2005). XML documents are specimen of ordered trees, while feature
 structures are merely unordered directed acyclic graphs. This holds because of the possibility
 of structure sharing within feature structures and because there is no order imposed among
 features of the same level within feature structures. So, the task of representing XML documents
 as feature structures seems to involve a transformation from a more rigidly structured
 representation format to a less rigidly structured one. Specifically, we have to find a way to
 represent the ordered sequential relations that hold among parts of XML
 documents both at the text and at the markup level in terms of feature-value pairs. Furthermore,
 also the hierarchical relationships have to be expressed in terms of
 feature-value specifications. A possible solution consists in the use of specific features for
 hierarchical aspects whose values will be structured themselves and which have to be interpreted
 as reflecting sequential relationships.
In the following, we shall regard a simple annotation data example that will help to
 illustrate our points. It is shown as Figure 6 and Figure 7 below, which
 contain morphological and phonological annotation layers of the German verb
 "geben" (engl.: to give).
Figure 6: Simple Annotation Data: Example 1

<w>
 <m type="lexical">geb</m>
 <m type="flexive">en</m>
</w>

Figure 7: Simple Annotation Data: Example 2

<w>
 <syll n="s1">ge</syll>
 <syll n="s2">ben</syll>
</w>

 In the rest of this section we will follow a historical route and discuss two
 representation alternatives that we came up with. Both of the sketched
 solutions will be sufficiently general and can hence be applied to generic XML documents and
 sets of multiple annotation documents alike. Our discussion will be framed more towards multiple
 annotation here.
 Our first and historically older representation alternative I makes
 use of a list notation variant that is defined in a recursive way using FIRST and
 REST features (Witt et al., 2009). The basic idea is to have the very first
 element of a given sequence, e.g., the first character of a text sequence, as the value of the
 FIRST feature and the result for the rest of the sequence as the value of the
 REST feature. So, the latter value will usually be a complex value, again, that is
 structured according to the very same scheme, i.e., with the first item of the (rest-)sequence
 detached and so on.[7] We go over the sequence in this way until we reach its end where the recursion
 bottoms out by *null* as the value of the at most embedded REST
 feature within the list structure. It functions as a placeholder for the empty list.
Figure 8: Representation Alternative I: TEI-based

<fs>
 <f name="DATA">
 <fs>
 <f name="FIRST">
 <vLabel name="1">
 <symbol value="g"/>
 </vLabel>
 </f>
 <f name="REST">
 <fs>
 <f name="FIRST">
 <vLabel name="2">
 <symbol value="e"/>
 </vLabel>
 </f>
 <f name="REST">
 <fs>
 <f name="FIRST">
 <vLabel name="3">
 <symbol value="b"/>
 </vLabel>
 </f>
 <f name="REST">
 <fs>
 <f name="FIRST">
 <vLabel name="4">
 <symbol value="e"/>
 </vLabel>
 </f>
 <f name="REST">
 <fs>
 <f name="FIRST">
 <vLabel name="5">
 <symbol value="n"/>
 </vLabel>
 </f>
 <f name="REST">
 <symbol value="*null*"/>
 </f>
 </fs>
 </f>
 </fs>
 </f>
 </fs>
 </f>
 </fs>
 </f>
 </fs>
 </f>
 <f name="TIER1">
 ...
 </f>
 <f name="TIER2">
 ...
 </f>
</fs>

This way of representation is displayed in Figure 8 in an abridged TEI feature
 structure format that shows the top-level feature geometry of the structure :[8]
 DATA contains a representation of only the textual characters of the document
 adhering to the FIRST/REST scheme discussed above. Furthermore, each character is
 associated with its own index in order to allow for structure sharing references to it from
 other parts of the feature structure. We provide an index for every character in order to allow
 for arbitrarily specific levels of annotation with respect to the common textual data. The
 numbered TIER features contain the specific information of the annotation levels.
 Each one represents the information of one of the multiple annotation documents involved. The
 implicit link between the different levels is made explicit by means of structure sharing.
 Therefore, there will be plenty of references to the common data characters from within the
 different TIER features of the document. However, this is not an explicit part of
 the example display in Figure 8 due to space considerations.[9]The binding of indexes to certain values is shown within the DATA
 feature, but the reference to such values is hidden within the abridged TIER levels
 of the document. However, those parts and the connections provided by the structure sharing
 mechanism can be inspected in Figure 9 that shows the attribute value matrix
 notation. Unlike its TEI counterpart, this display is complete and probably a bit easier to
 follow. It also displays the mechanics of the representation of the hierarchical relationships.
 They find expression via CONTENT features, whose values contain the representation
 of the subordinated document parts, e.g., the content of an element. The mechanisms for the
 representation of the hierarchical and the sequential relationships have to be combined as
 appropriate. This means that CONTENT will have a list value and the respective
 position within that list will reflect the sequential order among the dominated document
 parts.
Figure 9: Representation Alternative I: Attribute Value Matrix
[image:]

We move on to the discussion of our historically newer representation alternative
 II, which forms the basis of our current work on the topic. The most important
 changes have been made regarding the representation of sequential relationships and concerning
 the general feature geometry makeup. Consider Figure 10 which shows the changed
 top-level geometry . As its predecessor counterpart in Figure 8, this display is
 incomplete and printed in an abridged format here. However, interested readers can find the
 complete version of this representation of the example data in Appendix A.
Figure 10: Representation Alternative II: TEI-based

<?xml version="1.0" encoding="UTF-8"?>
<fs>
 <f name="DATA">
 <vColl org="list">
 <vLabel name="1">
 <string>g</string>
 </vLabel>
 <vLabel name="2">
 <string>e</string>
 </vLabel>
 <vLabel name="3">
 <string>b</string>
 </vLabel>
 <vLabel name="4">
 <string>e</string>
 </vLabel>
 <vLabel name="5">
 <string>n</string>
 </vLabel>
 </vColl>
 </f>
 <f name="DOCUMENTS">
 <vColl org="list">
 <fs>
 ...
 </fs>
 <fs>
 ...
 </fs>
 </vColl>
 </f>
</fs>

 On the top level, this representation consists of a DATA feature and a
 DOCUMENTS feature. Both features take complex values of a collection type, i.e.,
 lists of values. Concerning DATA, we now have a flat list representation with
 little internal structure. This format can be built in an easier way as compared to the more
 structured variant. The move to this format is possible, since the TEI Guidelines provide this
 kind of notational sugar for values of the collection kind.[10] The DOCUMENTS feature also makes use of this kind of list notation and
 embeds the representation of the different annotation documents as a flat list of respective
 feature structures. Note also that there is just one such top-level feature now, compare the
 different numbered TIER features in representation alternative I. If there is only
 one annotation document to process, the list will contain only one corresponding feature
 structure, of course. Figure 11 is a complete display of the attribute value matrix
 for our example data.
Figure 11: Representation Alternative II: Attribute Value Matrix
[image:]

 This way of representation takes a stance that is based on the XQuery 1.0 and
 XPath 2.0 Data Model (XDM) and, hence, the representations will be predestined for
 processing in an XSLT 2.0 context. We use the attributes which are provided by the XDM in order
 to represent the different node kinds within an XML document, starting from the very root. The
 node kinds that are distinguished are: document, element, attribute, namespace, commentary,
 processing instruction and text nodes. Every occurrence of a node is represented as a feature
 structure with features as appropriate for the node kind involved. The type of a node is
 indicated via the TYPE feature for nodes of all kinds. Hierarchical relations are
 represented via the CHILDREN feature for document- and element nodes. Order among
 the children nodes is encoded by the position within a sequence, since CHILDREN
 takes a collection value of the list kind. Element nodes and attribute nodes have
 NAME features, attribute and text nodes have VALUE features.
 Furthermore, each element node has an ATTRIBUTES feature that takes a set value,
 since attributes are unordered. The semantics associated with the different feature-value pairs
 should be straightforward. All in all, this approach allows for a very systematic representation
 regime across the different parts of an arbitrary XML document instance. Unlike the older
 approach, every feature structure which is embedded below the DOCUMENTS top-level
 feature now represents a certain node at the XML tree model level. However, it also has to be
 noted that our feature structure representations of XML documents tend to grow very fast with
 the size of the input document, which, however, seems to be true for all approaches based on TEI
 feature structures due to the modeling as feature structure and also the retranslation to XML involved.[11]

If the input to the transformation program does not consist of multiple annotation
 documents, but rather of one or several arbitrary XML documents, which do not share identical
 primary data, an integrative representation of such documents will still be build in a similar
 way. However, there will be no indexing mechanism incorporated and so no implicit links will be
 made explicit.

Aspects of the XSLT Implementation of the Transformation
 The program xmls2avm.xsl that implements the transformation to the TEI
 feature structure format was written with multiple annotation documents in mind. Nevertheless,
 it is robust enough to provide a result document if the input documents to the transformation
 fail the test of primary data identity or if there is only one document to be transformed. Such
 kind of robustness marks a necessary condition for the program to be useful within the generic
 XML realm.
 The program was written in XSLT 2.0 and uses certain features of the
 new XSLT version. For example, data typing is used for at least some of the parameters and
 variables involved and, most importantly, we exploit the extended functionalities and constructs
 that are grounded on the XDM tree model. XSLT 2.0 comes with support for multiple output
 documents, but the multiple input documents that are needed here still have to be provided via a
 sort of workaround: a call of the document()-function to a post-processed
 representation of a stylesheet parameter. The latter contains a list of secondary input
 documents that has to be assigned by the user when invoking the transformation program from the
 command line. Several further stylesheet parameters are provided in order to parameterize
 certain aspects of the transformation process and to determine peculiarities of the desired
 representation format. Most of this is optional, however, since there are defaults for the
 relevant parameters. An example stylesheet parameter is $firstrestRepr: it
 influences the way how lists are represented. If it is set to true, then lists will
 be represented in the recursively structured way that has been introduced as our historically
 older representation alternative I in the previous section. If it is set to false,
 however, then lists will be represented according to the newer flat representation alternative
 II that exploits the notational sugar provided by the TEI guidelines. The parameter is set to
 false as a default.
Although we decided that we would not include detailed comments on the whole stylesheet[12], we do provide three illustrative template examples below. These will be the
 templates for document nodes (in default mode), attributes and text. Besides these, the full
 stylesheet also contains templates for document nodes (in secondary mode), elements, processing
 instructions, comments. Furthermore, there are named templates for the processing of nested
 sequences and for the processing of nested sequences with regard to namespaces, as well as many
 additional parameters and variables defined.
We begin our discussion with the template for document nodes in default
 mode, i.e., the mode that is used at the start of the transformation without further
 ado. The template shown in Figure 12 will be applied to the document node of the
 primary input document at the start of the transformation.
Figure 12: Template for Document Nodes in Default Mode

<xsl:template match="document-node()" mode="#default">
 <xsl:variable name="children" select="node()"/>
 <xsl:variable name="textnodes" select="//text()"/>
 <fs>
 <xsl:if test="$dataIdentity and $dataRepr">
 <f name="DATA">
 <vColl org="list">
 <xsl:for-each select="str:characters($primaryString)">
 <vLabel name="{position()}">
 <string>
 <xsl:value-of select="."/>
 </string>
 </vLabel>
 </xsl:for-each>
 </vColl>
 </f>
 </xsl:if>
 <f name="DOCUMENTS">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="document"/>
 </f>
 <f name="CHILDREN">
 <xsl:choose>
 <xsl:when test="$firstrestRepr">
 <xsl:choose>
 <xsl:when test="$children">
 <xsl:call-template name="SequenceProcessing">
 <xsl:with-param name="seq" select="$children"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <symbol value="*null*"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:otherwise>
 <vColl org="list">
 <xsl:apply-templates select="$children"/>
 </vColl>
 </xsl:otherwise>
 </xsl:choose>
 </f>
 </fs>
 <xsl:apply-templates select="$docRoots" mode="secondary"/>
 </vColl>
 </f>
 </fs>
</xsl:template>

The template starts with the definition of variables that can be referenced within the
 scope of the template. Most of the other templates in the stylesheet use such template
 variables, too. Then the first fs element of the target representation is inserted.
 This will be the outer frame for all the result markup that is created during the
 transformation. The two usual top-level features for a feature structure representation of XML
 documents are DATA and DOCUMENTS, compare our discussion of
 representation alternative II in the previous section. It is possible to drop even the
 DATA feature and go with the DOCUMENTS feature on the top-level of
 the feature structure alone. This possibility has been parameterized using
 $dataRepr, i.e., the user may decide whether he wants a DATA feature
 at the top-level or not. Furthermore, a variable named $dataidentity has been
 defined on the global stylesheet level. This variable implements a test for the identity of the
 primary textual data of all the input documents involved. Now, if DATA shall be
 present and the test result concerning textual data identity is positive, then the feature will
 be inserted into the result and be given a list value. The content of that list will be
 construed as follows: we iterate over all textual characters of our primary input document. For
 each character, we insert index markup (vLabel) with a numerical index attribute
 according to the position value of the respective character. Furthermore, the index will be
 bound to the character value whereas the latter is framed by a string element to
 indicate its value type. Next is the obligatory DOCUMENTS feature. It will take a
 list of feature structures, i.e., a list of fs elements. Those will represent the
 input documents, respectively.
In what follows in this template, we build the representation for the primary input
 document. The corresponding job for the other input documents, if any, will have to be done by
 the template for document node kinds in secondary mode. The two features appropriate for
 document nodes are TYPE and CHILDREN. Concerning TYPE,
 its value will be <symbol value="document"/> obviously. The value of
 CHILDREN, however, is more complicated and has to be determined via a series of
 conditional constructs. Firstly, it depends on whether the list representation has been set to
 the older recursively structured kind ($firstrestRepr) or not. If list
 representations follow that approach, then it depends again on whether the document node has
 descendants or not. If he has none, we insert a value for the empty list (*null*).
 However, if there are descendant nodes to the document node, the further calculation of the list
 representation is taken over by a called template of the recursive kind named
 SequenceProcessing. This template is called with the sequence of the current
 document node's descendant nodes as a parameter. That template will build a recursively
 structured kind of list representation as appropriate. However, if the value of the parameter
 $firstrestRepr is set such that we will have the flat kind of list representation,
 which is the default, then markup for a collection of the list kind will be inserted. However,
 the content of that list will be determined by the result of applying templates to all the
 descendant nodes of the current document node. Thus, the content of the fs element
 for the current primary input document is complete and can be closed with the respective end
 tags. What remains to be computed is the markup for the other secondary input documents.
 Therefore, templates are applied to the members of $docRoots, which holds the
 document nodes of the secondary input documents in a sequence format. Note, that a mode
 (secondary) is used in the respective apply-templates instruction, so
 the present template will not fit and we avoid a repeated insertion of the initial framing
 markup for the outermost level of the feature structure representation, which is only included
 in the processing of the primary input document here.
 The complete stylesheet can be characterized as exploiting aspects of both the
 push and the pull processing paradigm
 (Tennison, 2005), like most stylesheets of a considerable size and complexity do,
 whereas the focus is shifting in different parts of the stylesheet. In a similar vein, it can be
 classified as implementing different stylesheet design patterns
 (Kay, 2008). For example, the buildup of the initial target feature structure
 tends to be of the pull type or rather navigational, to use Kay's concept. This, however, shifts
 towards a more push- or rule-oriented approach, which helps to fill up the missing parts of the
 initial structure by applying templates to the descendants of the current node. Appropriate
 templates are provided for each specific node kind against the background of the XDM. Certain
 aspects, e.g., the buildup of the older FIRST/REST list structures
 have been realized in a computational way recursively via calls to named templates with
 parameters as their arguments. We shall look at a recipient template of the push- or
 rule-oriented style of processing next in Figure 13. It is the template for the
 processing of attribute nodes, whose application will be initiated from
 within the template for the processing of element nodes.
Figure 13: Template for Attribute Nodes

<xsl:template match="attribute()" mode="#all">
 <fs>
 <f name="TYPE">
 <symbol value="attribute"/>
 </f>
 <f name="NAME">
 <string>
 <xsl:value-of select="node-name(.)"/>
 </string>
 </f>
 <f name="VALUE">
 <string>
 <xsl:value-of select="."/>
 </string>
 </f>
 </fs>
</xsl:template>

 In comparison to the previous template for document nodes, this one is very
 straightforward. There are three features appropriate for feature structures that represent
 attribute nodes: these are TYPE, NAME and VALUE. The
 respective values are very easily determined. Readers who managed to follow through on our
 description of the previous template should have no problems with this one.
 At the heart of the transformation of multiply annotated documents is the indexing of the
 single characters and the reference mechanism that exploits these indexes. It is dependent on
 the relative position of characters with respect to the other characters of the document. Those
 values can be used as numerical indexes since they are bound to be constant across all the
 documents that pass a test of primary data identity. However, it has to be stressed that the
 computational cost of implementing this functionality can be considerable for large input
 documents. Figure 14 shows the code which does the job: it is the template for
 text nodes.
Figure 14: Template for Text Nodes

<xsl:template match="text()" mode="#all">
 <xsl:variable name="currentRoot" select="/"/>
 <fs>
 <f name="TYPE">
 <symbol value="text"/>
 </f>
 <f name="VALUE">
 <xsl:choose>
 <xsl:when test="$dataIdentity">
 <xsl:variable name="numberOfCharactersSoFar" as="xs:integer"
 select="sum(for $textnode in preceding::text() return string-length($textnode))"/>
 <vColl org="list">
 <xsl:for-each select="str:characters(string(.))">
 <vLabel name="{position() + $numberOfCharactersSoFar}">
 <xsl:if test="not($dataRepr) and $primary is $currentRoot">
 <string>
 <xsl:value-of select="."/>
 </string>
 </xsl:if>
 </vLabel>
 </xsl:for-each>
 </vColl>
 </xsl:when>
 <xsl:otherwise>
 <string>
 <xsl:value-of select="."/>
 </string>
 </xsl:otherwise>
 </xsl:choose>
 </f>
 </fs>
</xsl:template>

 There are two appropriate features for text nodes: TYPE and
 VALUE. The TYPE feature is set to the symbolic value
 text, of course. The procedure for determining the value of the feature
 VALUE, however, is much more complicated. This holds at least for multiple
 annotation documents, where the identity of the primary data is given
 ($dataIdentity). If this is not the case, we can just insert the value of the
 textual node as a whole. With regard to the data-identity scenario, however, we will proceed on
 a character by character basis with the help of an appropriately defined external function
 (str:characters) and calculate the appropriate index for each character. The
 interesting part of the calculation is done in the binding of the variable
 $numberOfCharactersSoFar. That result will be modulated by the relative position
 of each character with respect to the string value of the text node processed. If the user chose
 to go without the DATA feature on the top feature geometry level
 (not($dataRepr)) and if we are processing the primary input document
 ($primary is $currentRoot), not only the calculated indexes will be included in
 the list-valued result, but also the character values. Now that there is no specialized
 DATA feature, the indexes will be bound to their respective value tokens
 here.

Summary and Outlook
In the context of this article, we started by providing an informal introduction to feature
 structures and their encoding as proposed in the TEI P5 Guidelines. We continued to discuss
 aspects of the representation of multiple annotation documents as XML-encoded feature structures.
 Most of our pertinent remarks are also correct concerning the representation of generic XML
 documents. It is rather just the indexing mechanism that is lost for that more general domain.
 Furthermore, we characterized the implemented XSLT stylesheet that was written in order to bring
 about the transformation from multiply annotated or generic XML documents to TEI-based feature
 structure representations. In the remainder of this article, we will take up some loose ends and
 speculate about possible advantages and disadvantages that may be connected with the format.
In comparison to alternative proposals like XCONCUR ((Hilbert et al.,2005),(Schonefeld and Witt, 2006)) and the NITE XML
 format (Carletta et al., 2003), the following advantages and disadvantages can be stated.
 Like NITE XML, but unlike XCONCUR documents, the TEI-based feature structure format is an XML
 format, which should count as a definitive plus in most contexts. Furthermore, like XCONCUR, but
 unlike the NITE XML representations, the proposed TEI feature structures are integrative in a
 strict sense of the word. What we mean is that all the distributed annotation information is made
 available within the context of a single document instance in which the implicit links have been
 made explicit. So, with regard to these two aspects, TEI feature structures seem to do quite well
 in comparison with the mentioned alternative formats, which lack in the one or the other way.
 However, there is also a big downside connected to them. The TEI feature structure
 representations grow very fast with the size of the input documents and their relative markup
 complexity, much faster than both rival formats.[13] So serious doubts remain, whether this format can prevail in practical
 day-to-day-work if it is used for collections of large resource documents.
But are there any striking advantages that may be connected with the representation of XML
 documents in a feature structure format? Feature structures are a common data structure in
 linguistic theory and they play an important role in many implementations in computational
 linguistics. If the preferred representation format of computational linguists can be used, it
 may be possible to find a way to apply the processing tools that have been developed in that
 field and bridge the gap between the information given by annotations and the information
 contained in textual content. One may also speculate whether general operations on feature
 structures like unification and generalization, compare
 the section “Feature Structures in a Nutshell” above, may be applicable to appropriately represented XML
 documents or linguistic corpora.
Figure 15: Attribute Value Matrix Notation of the Annotation Example 1
[image:]

Compare Figure 15 and Figure 16. These are possible TEI feature
 structures for the simple linguistic annotation examples that we have used before. Unlike Figure 11, which is an integrative representation of both example documents, each figure
 here displays the representation of just one annotation document. These examples will help us to
 explore some of the issues involved.
Figure 16: Attribute Value Matrix Notation of the Annotation Example 2
[image:]

 As before, we have to consider two broad scenarios: operations among multiply annotated
 documents and operations among generic XML documents. The main difference between both has to do
 with the values of the DATA feature.[14] For multiple annotation, the values of DATA will be identical and the
 respective features can, hence, be unified. However, for generic XML documents the
 DATA values will almost always be different. Hence, they usually won't unify . And
 even multiply annotated documents will run into problems when it comes to the value of the
 DOCUMENTS feature slot, compare Figure 15 and Figure 16. So
 the bare unification of complete representations does not seem to work out for either class of
 documents.
Figure 17: Rule that uses Unification for Multiple Annotation Data
[image:]

However, there is a way how unification may be put to use with regard to respective
 representations, but in a somewhat different way. It works analogously to the way in which
 unification is put to use in linguistic rules in unification-based grammars.
 We do not unify the whole representations, but only parts of it in accordance to a rule, which
 directs how to build a bigger structure from smaller structures (or vice versa, this is a
 question of procedural interpretation). Structures that are coindexed within a rule have to be
 unified when the rule is applied. In line with this, e.g., our annotation examples (on the right
 hand side of the rule) can be projected to a bigger structure (on the left hand side of the
 rule) as displayed in Figure 17. For generic XML documents, a rule like Figure 18 might work.
Figure 18: Rule that uses Unification for Generic XML Documents
[image:]

For another perspective on the unification of XML documents compare (Witt et al., 2005).
There is also a second general operation on feature structures: generalization. Unlike
 unification, generalization cannot fail. And indeed, generalization can be put to use concerning
 our examples here. The result indicates what is common to both representations and is shown in
 Figure 19.
Figure 19: Generalization of the Annotation Data Examples 1 and 2
[image:]

 One of the anonymous reviewers of this paper stated that (s)he thinks that its strength is
 "as a sort of thought experiment that has not provided quite the breakthrough that was hoped for
 it; yet interesting things have been learned and observed." This is not too far off from our own
 perspective. Although we were able to show that this and that can be done, at least in
 principle---as things stand, we do not think that it is likely that TEI feature structures will
 turn out to be the silver bullet for the representation of linguistic annotations or generic XML
 documents. Our respective representations grow too fast and isn't yet clear, whether good and
 sensible use can be made of the general operations on feature structures open to us now, i.e.,
 whether the potential advantages can override the disadvantages connected to it. But it seems
 that there are at least some open questions that remain to be investigated. For example, perhaps
 we could come up with a different way of representing XML documents in terms of TEI feature
 structures as compared to our current representation practice and see if that helps in any way.
 Going with typed feature structures might be a worthwhile thing to try. However, we think that
 the prospects are not too good, since the foundational issue of complex modeling and
 retranslating to XML would basically stay the same and it seems that this is quite an overhead to
 cope with. Therefore, finally, we will at least mention a different direction that has been
 encouraged by the very same reviewer mentioned above. (S)he advised to step away from the
 TEI-ness of the present approach in order to investigate the prospects of bare feature
 structures, e.g., in the sense of an implemented library, with respect to the issues at
 hand.

Appendix A. Appendix: Result Document for the Annotation Data Examples

 <?xml version="1.0" encoding="UTF-8"?>
 <fs>
 <f name="DATA">
 <vColl org="list">
 <vLabel name="1">
 <string>g</string>
 </vLabel>
 <vLabel name="2">
 <string>e</string>
 </vLabel>
 <vLabel name="3">
 <string>b</string>
 </vLabel>
 <vLabel name="4">
 <string>e</string>
 </vLabel>
 <vLabel name="5">
 <string>n</string>
 </vLabel>
 </vColl>
 </f>
 <f name="DOCUMENTS">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="document"/>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="element"/>
 </f>
 <f name="NAME">
 <string>w</string>
 </f>
 <f name="ATTRIBUTES">
 <vColl org="set"/>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="element"/>
 </f>
 <f name="NAME">
 <string>m</string>
 </f>
 <f name="ATTRIBUTES">
 <vColl org="set">
 <fs>
 <f name="TYPE">
 <symbol value="attribute"/>
 </f>
 <f name="NAME">
 <string>type</string>
 </f>
 <f name="VALUE">
 <string>lexical</string>
 </f>
 </fs>
 </vColl>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="text"/>
 </f>
 <f name="VALUE">
 <vColl org="list">
 <vLabel name="1"/>
 <vLabel name="2"/>
 <vLabel name="3"/>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 <fs>
 <f name="TYPE">
 <symbol value="element"/>
 </f>
 <f name="NAME">
 <string>m</string>
 </f>
 <f name="ATTRIBUTES">
 <vColl org="set">
 <fs>
 <f name="TYPE">
 <symbol value="attribute"/>
 </f>
 <f name="NAME">
 <string>type</string>
 </f>
 <f name="VALUE">
 <string>flexive</string>
 </f>
 </fs>
 </vColl>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="text"/>
 </f>
 <f name="VALUE">
 <vColl org="list">
 <vLabel name="4"/>
 <vLabel name="5"/>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 <fs>
 <f name="TYPE">
 <symbol value="document"/>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="element"/>
 </f>
 <f name="NAME">
 <string>w</string>
 </f>
 <f name="ATTRIBUTES">
 <vColl org="set"/>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="element"/>
 </f>
 <f name="NAME">
 <string>syll</string>
 </f>
 <f name="ATTRIBUTES">
 <vColl org="set">
 <fs>
 <f name="TYPE">
 <symbol value="attribute"/>
 </f>
 <f name="NAME">
 <string>n</string>
 </f>
 <f name="VALUE">
 <string>s1</string>
 </f>
 </fs>
 </vColl>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="text"/>
 </f>
 <f name="VALUE">
 <vColl org="list">
 <vLabel name="1"/>
 <vLabel name="2"/>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 <fs>
 <f name="TYPE">
 <symbol value="element"/>
 </f>
 <f name="NAME">
 <string>syll</string>
 </f>
 <f name="ATTRIBUTES">
 <vColl org="set">
 <fs>
 <f name="TYPE">
 <symbol value="attribute"/>
 </f>
 <f name="NAME">
 <string>n</string>
 </f>
 <f name="VALUE">
 <string>s2</string>
 </f>
 </fs>
 </vColl>
 </f>
 <f name="CHILDREN">
 <vColl org="list">
 <fs>
 <f name="TYPE">
 <symbol value="text"/>
 </f>
 <f name="VALUE">
 <vColl org="list">
 <vLabel name="3"/>
 <vLabel name="4"/>
 <vLabel name="5"/>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>
 </vColl>
 </f>
 </fs>

Bibliography
[(Burnard and Bauman, 2007)] Burnard, L. and Bauman, S.
 TEI P5: Guidelines for Electronic Text Encoding and Interchange. Text
 Encoding Initiative, 2007
[(Carletta et al., 2003)] Carletta, J.; Kilgour, J.;
 O'Donnell, T.; Evert, S. and Voormann, H. The NITE Object Model Library for Handling
 Structured Linguistic Annotation on Multimodal Data Sets. In: Proceedings of the EACL
 Workshop on Language Technology and the Semantic Web (3rd Workshop on NLP and XML, NLPXML-2003),
 2003
[(Carletta et al.,2007)] Carletta, J.; DeRose, S.;
 Durusau, P.; Piez, W.; Sperberg-McQueen, C. M.; Tennison, J. and Witt, A. International
 Workshop on Markup of Overlapping Structures. In: Usdin, B. T. (ed.) Proceedings of
 Extreme Markup Languages 2007, 2007
[(Carpenter, 1992)] Carpenter, B. The
 Logic of Typed Feature Structures: With Applications to Unification Grammars, Logic Programs and
 Constraint Resolution. Cambridge University Press, 1992
[(DeRose, 2004)] DeRose, S. Markup Overlap: A
 Review and a Horse. In: Usdin, B. T. (ed.) Proceedings of Extreme Markup Languages
 2004, 2004
[(Diestel, 2005)] Diestel, R. Graph
 Theory. Springer, 2005
[(Hilbert et al.,2005)] Hilbert, M.; Schonefeld, O.
 and Witt, A. Making CONCUR work. In: Usdin, B. T. (ed.) Proceedings of
 Extreme Markup Languages 2005, 2005
[(ISO24610, 2006)] 24610-1:2006, I. Language
 Resource Management -- Feature Structures -- Part 1: Feature Structure
 Representation.International Organization for Standardization, 2006
[(Kay, 2008)] Kay, M. XSLT 2.0 and XPath 2.0
 Programmer's Reference. Wrox Press Ltd., 2008
[(NLM,2008)] Custom Metadata Group. In:
 Journal Archiving and Interchange Tag Set Tag Library version 3.0, Version of November
 2008.
[(Pollard and Sag, 1994)] Pollard, C. and Sag, I.
 Head-Driven Phrase Structure Grammar. The University of Chicago Press,
 1994
[(Sailer and Richter, 2001)] Sailer, M. and Richter, F.
 Eine XML-Kodierung für AVM-Beschreibungen. In: Lobin, H. (ed.). Sprach- und
 Texttechnologie in digitalen Medien: Proceedings der GLDV-Frühjahrstagung 2001. BOD - Books on
 Demand, 2001, 161-168
[(Schonefeld and Witt, 2006)] Schonefeld, O. and
 Witt, A. Towards validation of concurrent markup. In: Usdin, B. T. (ed.).
 Proceedings of Extreme Markup Languages 2006, 2006
[(Shieber, 1986)] Shieber, S. M. An
 Introduction to Unification-based Approaches to Grammar. CSLI Publications,
 1986
[(Sperberg-McQueen and Burnard, 1994)] Sperberg-McQueen, C. M.
 and Burnard, L. TEI Guidelines for Electronic Text Encoding and Interchange (TEI
 P3). Text Encoding Initiative, 1994
[(Sperberg-McQueen and Burnard, 2001)] Sperberg-McQueen, C. M.
 and Burnard, L. Guidelines for Electronic Text Encoding and Interchange (TEI
 P4). Text Encoding Initiative, 2001
[(Sperberg-McQueen, 2007)] Sperberg-McQueen,
 C. M. Representation of overlapping structures. In: Usdin, B. T. (ed.)
 Extreme Markup Languages 2007, 2007
[(Tennison, 2005)] Tennison, J. Beginning
 XSLT 2.0: From Novice to Professional. Apress, 2005
[(Witt, 2004)] Witt, A. Multiple Hierarchies:
 New Aspects of an Old Solution. In: Usdin, B. T. (ed.) Proceedings of Extreme Markup
 Languages 2004, 2004
[(Witt et al., 2005)] Witt, A.; Goecke, D.; Sasaki, F.
 and Lüngen, H. Unification of XML Documents with Concurrent Markup. Literary
 and Linguistic Computing, 2005, 20, 103-116, doi:https://doi.org/10.1093/llc/fqh046
[(Witt et al., 2007)] Witt, A.; Schonefeld, O.; Rehm, G.;
 Khoo, J. and Evang, K. On the Lossless Transformation of Single-File Multi-Layer
 Annotations into Multi-Rooted Trees. In: Usdin, B. T. (ed.). Proceedings of Extreme
 Markup Languages 2007, 2007
[(Witt et al., 2009)] Witt, A.; Rehm, G.; Hinrichs, E.;
 Lehmberg, T. and Stegmann, J. SusTEInability of Linguistic Resources through Feature
 Structures. Literary and Linguistic Computing, 2009, 24, 363-372, doi:https://doi.org/10.1093/llc/fqp024
[(Wörner et al., 2006)] Wörner, K.; Witt, A.; Rehm, G.
 and Dipper, S. Modelling Linguistic Data Structures. In: Usdin, B. T. (ed.).
 Proceedings of Extreme Markup Languages 2006, 2006

[1] There are equivalent structures in other environments, too, as one of our anonymous
 reviewers remarked. Compare the National Library of Medicine's custom-meta
 structures
 (NLM,2008), for example.
[2] Namely unification-based grammars, whose name derives from the most important operation
 on feature structures, i.e., unification.
[3] Some formalizations of feature structures allow cycles and it can also be argued that
 cyclic structures may be needed for the representation of certain phenomena as the liar's
 paradox ("This statement is false.").
[4] Some linguistic theories use different notations for (total) models vs. (partial)
 descriptions. For example, HPSG (Pollard and Sag, 1994) uses graph displays for models
 and AVMs for descriptions.
[5] Feature names are usually capitalized on grounds of a notational convention.
[6] HPSG theoreticians (Pollard and Sag, 1994) draw a distinction between
 feature structures, which can be characterized as total objects in the
 sense of containing all the relevant specifications with respect to the objects they are a
 model of, and feature structure descriptions, which are partial
 descriptions of feature structures. From this perspective, feature structures and feature
 structure descriptions belong to different theoretical realms (model vs. formalism). We will
 not delve deeper into this discussion here and continue with our usage of the term feature
 structure for partial objects also.
[7] Unless there is no rest sequence and we have reached the end of the sequence
 already.
[8] It would be nice to have something like a specialized document grammar regarding the
 finer details of the representations that we propose in this article. One of our anonymous
 reviewers encouraged us to give Feature System Declarations
 (Burnard and Bauman, 2007) for the TEI feature structures. However, it seems that TEI FSDs are
 reserved for typed feature structures and the present state of our work here makes use of
 untyped feature structures. Since we may well choose to make the switch to typed
 representations in the future (in a way, the new representation scheme below has been designed
 to make the switch easier), it will be a good idea to take up on that proposal in a respective
 update. For the moment, we can at least validate our documents against TEI feature structure
 schemas generated via the TEI ROMA tool (http://www.tei-c.org/Roma/).
[9] Note that a complete representation of the above annotation data examples in TEI format,
 but according to the newer representation standard that will be discussed below in this
 subsection, can be found in Appendix A.
[10] In terms of features and values alone, respective structures still have to be realized by
 FIRST/REST-like structured representations as introduced above. The format provided by the TEI
 is a shorthand for that.
[11] As one of our anonymous reviewers remarked, it would be interesting to investigate the
 prospects and the performance of bare feature structures for our purposes and see whether and
 how much better they can perform as compared to the TEI-serialized feature structures that are
 the focus of the present paper.
[12] This decision was made on grounds of space considerations, since this is a rather long
 paper already. Some anonymous reviewers would have liked to see the whole stylesheet included.
 Others shared our perspective that examples suffice here.
[13] XCONCUR seems to be leanest in this respect.
[14] For the sake of the argument, we will presume that there will be a DATA
 feature on the top-level of all TEI feature structures. The stylesheet does not force this,
 though.

Balisage: The Markup Conference

TEI Feature Structures as a Representation Format for Multiple Annotation and Generic XML
 Documents
Jens Stegmann
Bielefeld University

<jens.stegmann@googlemail.com>
Jens Stegmann studied linguistics, psychology and computer science at Bielefeld
 University. Parts of this paper deal with aspects of his Master thesis.

Andreas Witt
Institute for the German Language (IDS), Mannheim

<witt@ids-mannheim.de>
Witt received his Ph.D. in Computational Linguistics and Text Technology from the
 Bielefeld University in 2002 (dissertation title: Multiple Informationsstrukturierung mit
 Auszeichnungssprachen. XML-basierte Methoden und deren Nutzen für die Sprachtechnologie).
After graduating in 1996, he started as a researcher and instructor in Computational
 Linguistics and Text Technology. He was heavily involved in the establishment of the minor
 subject Text Technology in Bielefeld University´s Magister and B.A. program in 1999 and 2002
 respectively. After his Ph.D. in 2002 he became an assistant lecturer, still at the Text
 Technology group in Bielefeld. In 2006 he moved to Tübingen University, where he was involved
 in a project on "Sustainability of Linguistic Resources" and in projects on the
 interoperability of language data. Since 2009 he is senior researcher at "Institut für Deutsche
 Sprache" (Institute for the German Language) in Mannheim.
Witt is and was a member of several research organizations, amongst them the TEI Special
 Interest Group on overlapping markup, for which he was involved in the writing of the latest
 version of the chapter "Multiple Hierarchies", which is included in TEI-Guidelines P5.
Witt's main research interests deal with questions on the use and limitations of markup
 languages for the linguistic description of language data.

Balisage: The Markup Conference

content/images/Stegmann01-009.jpg
DATA (m, @)|— [DATA ()| |DATA (m)
DOCUMENTS (@, @) DOCUMENTS (@) | [DOCUMENTS (@)

content/images/Stegmann01-007.jpg
AT (s, @, @, @, 8)

TYPE document

YPE cment

NAME w

ATTRIBUTES ()

PE ©lement

v NAME e
DOCUMENTS (| e ¢

(TVPE s
Cnorex (|ATTRIBUTES J | Nax

VaLve 4

cunores <[""F

Ve (@)

CHILDREN

e
NAME

1vp -mnmw
srmmnores {[xAue
VAL

e o

TvPE
(e (Zam))

content/images/Stegmann01-008.jpg
DATA (@) |— |DATA (@) | |DATA (m)
DOCUMENTS (B@)| |DOCUMENTS (&)||[DOCUMENTS (g)

content/images/Stegmann01-005.jpg

content/images/Stegmann01-006.jpg
[DATA

(s, @, @, 8,8)

TYPE documen.
B deman
rmnres
Ve ©lement
DOCUNENTS (| e ¢ NAME p

TveE dement
NAME
TVPE i
cnorex (| ATTRIBUTES | Nax
v

e ATTRIBUTES \Am
ALUE esical

TYPE et

{vawe (mam)

man
ciniLonex

ciLonex

o 1

content/images/Stegmann01-003.jpg

content/images/Stegmann01-004.jpg
FIRST Mg
FST @e
FIRST @b
N -
Rest
ELEMENT v
ELEMENT
ATTRIBUTES [SORT leical
FRsT
st | T
CoNTENT: st | ey [FST 0
- REST ol
context
ELENENT
ATTRIBUTES|SORT flesve
sinst st @
hedd conTeNT wse [FRST @
REST o
REST S
ELEMENT v
ELEMENT i
ATTRIBUTES|NUMBER 1
Fuwst FRST @
context o [FUST @
o [1)
riene |, ELEVENT i
Rkl ATTIIBUTES [NMBER 2
Finst
sinst
Res . FIRsT @
CONTET REST | pp [FUST]
REST “mi

content/images/Stegmann01-001.jpg
CAT

\ sing

AGR
PER

third

content/images/Stegmann01-002.jpg
CAT up

NUM sing
AGR A
PER third |

content/images/Stegmann01-010.jpg

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

