Piez, Wendell. “How to Play XML: Markup Technologies as Nomic Game.” Presented at Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009. Balisage Series on Markup Technologies, vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Piez01.
Balisage: The Markup Conference 2009 August 11 - 14, 2009
Balisage Paper: How to Play XML: Markup Technologies as Nomic Game
Wendell Piez
Wendell Piez develops XML and XSLT applications for Mulberry
Technologies, Inc., and its clients. He serves as general editor of
Digital
Humanities Quarterly.
Copyright 2009 by the author.
Abstract
What is a game? A definition is famously difficult.
Wittgenstein, for example, after having described language as a game in
his Philosophical Investigations, goes on to ask
what a game is and how we know what's a game, using the word
(Spiel in German) as a vivid example of the provisional
and contingent nature of the supposedly clear concepts communicated by
language. Game theory, a branch of mathematics, solves this question by
avoiding it, providing its own definition of game, which
only partially fits many or most games as we know them. And talking
about games becomes really interesting when we reflect, as is
inescapable since Peter Suber coined the term nomic game
in 1982, that part of the action of many games, and indeed the essence
of some, is in the process, play or competition of providing the game
itself with its rules and hence its definition. Originally developed in
reference to legislative systems as an illustration of a game of
self-amendment, Suber's rule set for the game
Nomic quickly took on a life of its own and spawned a
small thought industry among gamers and philosophers, implicating
economics, sociology and anthropology, life sciences, psychology and
politics.
Markup technologies such as HTML, XML and everything that goes with
them, from schemas to processing languages to public specifications and
standards, have many gamelike aspects. We have players, equipment, and
opportunities to compete and cooperate. When applications work as well
as or better than planned, there are victories. When projects fail or
initiatives collapse, there are defeats. As in many games, much of the
activity of markup technologies is devoted to rules enforcement; it
also, in nomic fashion, extends to breaking received rules and making
new ones. (Illustrations and examples are offered at micro and macro
levels.) An engagement with markup technologies, or with any media
production or software application design that relies on them, demands
tactics and strategy, presenting us with problems and tradeoffs enmeshed
in complexities both on and off the board, and challenging us to decide
not only how we play, but what game we wish to be playing. And the
deeper we go, the more nomic it gets. As we ponder what we are doing
with markup technologies and how they are changing what else we do – as
technologists, publishers, scholars, teachers, and creative producers –
it is well if we reflect on who is making the rules and how; for whose
benefit; whether, when, to what extent and how we should follow their
rules or make our own; and finally how the rules we make about the games
we play can have far-reaching effects even beyond the game we thought we
were playing.
Ludwig Wittgenstein, in his Philosophical
Investigations, famously describes language as a game with
words, and then contextualizes and complicates the suggestion by
demonstrating how the term game itself
(Spiel in the original German text) does not admit of a
simple, clearcut definition. As he demonstrates, there is no single
definition that can be used, in any abstract analytical way, to
distinguish those things we call games from other things we do not. While
games frequently or generally have players, rules, equipment, scores,
plays or moves or tricks or turns or timing, none of these is present in
all things we call games, or serves to distinguish a game as such from
other things that are not games. Solitaire is a game, if only in a loose
sense; so are catch, tag, or (when playing with a cat),
string. The first definition given under
game in a dictionary will tend to be something like
A diversion or amusement (American Heritage, although
there are many diversions or amusements we do not ordinarily call games),
or Sport or amusement of any kind; fun (Webster's). Yet we
can all think of diversions or amusements that we would not call
games.
The mathematical field of game theory is, similarly, both a help and a
hindrance. While game theory sets out to describe game-like situations,
these correspond only somewhat to those things we call games outside
mathematics. Intriguingly, this limitation of game theory is necessary to
its greater project as a universal language for the unification of
the behavioral sciences (H. Ginnis as quoted by Don Ross), which
it achieves by means of a generalized application of its terms well beyond
those of the social and cultural phenomena we call games. Accordingly,
while game theory is by no means irrelevant to the analogy proposed by
this paper (and the application of game theory as such to markup languages
would by no means be without interest), it is also somewhat tangential to
the argument here.
The reason for this is fairly simple, but subtle. What this paper
shares with game theory is a recognition that games can, in general, be
characterized as rules-based systems; that is, as systems in which the
relation and interaction of parts or participants are regular in ways that
are susceptible to formal definition and even prescription. But while game
theory considers what happens – what patterns emerge, how outcomes are or
are not determined, how strategies interact – within such systems, it
necessarily treats each such system as closed. The allowance that a system
may not be fully defined or definable in formal terms – something that is,
for better or worse, characteristic of many games and gamelike activities
– will tend to frustrate any straightforwardly mathematical approach.
Accordingly, any consideration by game theory of systems whose rules are
not fully determined or known by the theorist – which are thus, in a
crucial sense, undefined – will be, at best, by analogy.[1]
This analogy (certain formal systems of interest to us shall be
called games, and games as we
call them are like systems we can observe) is less the focus of
this paper than another one, closer to home at least for some of us:
markup technologies, and the forms of media based on them, which have
formal aspects, are like games, like chess, Scrabble or (with apologies)
tag, which also have formal aspects, though they may not
always be fully definable in merely formal terms (that is, without any
reference to social context or occasion). In view of this, it turns out
that game theory is interesting for this treatment at least as much for
its showing what games (or markup technologies) are
not as for its theorizing what they are, casting
into relief the vital distinction between formal systems as such, and
systems as we encounter them as part of social, cultural and economic
life. For example, one consequence of its deliberate definition of scope –
a game is a system subject to formal definition of options and outcomes in
interaction – is that game theory can make no provision for cheating (as
distinguished from defecting: the distinction is important[2]). This is because when a game is identified with a given set
of constraints on play and dispositions of rewards, to break these rules
is simply to end or invalidate the game as defined (even if play
continues), and to play a game outside its rules is a logical
impossibility (while one might well continue on to play something else).
Similarly and by extension, if allowances are made in the definition of a
game for breaking a set of nominal rules (since game theory does not
require that all participants in a game know all the rules or agree on
them), then to break them is merely to demonstrate that the game nominally
being played is not the game actually being played. Accordingly,
cheating from the point of game theory does not mean what
it ordinarily means, that is to break the rules while continuing to play.
Instead, it amounts to a particular kind of subterfuge, i.e., to pretend
to be playing one game while actually playing another.[3]
But cheating at sports and games (and gaming them, an
interesting and illuminating variation) has a long and illustrious
history, as long as that of games themselves. And it happens all the time
– yet somehow games continue, maintaining some sort of identity and
integrity even if only as a premise. If a football coach cheats by reading
the other team's signals, or a baseball player cheats by corking a bat or
spitting on a ball, we do not usually say they have stopped playing
football or baseball, even when this might be a vivid and cogent
formulation of our complaint against them. More generally, a game as
defined mathematically makes no provision for creativity or improvisation
outside the choices between more or less obvious or innovative selections
of strategy, for moves that change the game. This is not to
say that creativity within constraints is not
creative (on the contrary), nor that the mathematics are therefore
uninteresting. Yet the constraints themselves, the rules of the game, are
sometimes themselves most at issue; and how and by whom they are decided
is precisely what game theory must leave aside.
This being the case, this treatment proceeds with a much rougher
definition of game, which will nonetheless prove to be
serviceable, inasmuch as it does not contradict a mathematical accounting,
if one should be wanted, but also looks beyond the formal mathematical
definition of any particular game, real or notional: a game is an
agreement to play. This is broad enough to capture most
or all real games; but it entails a couple of important ideas. First, in
order to have an agreement, we need to agree with someone – if only with
ourselves, as in solitaire. Second, an agreement to play consists often of
more particulars than the simple act of playing. We can agree to all kinds
of rules and requirements. And it is this set of rules and requirements
that constitutes the game.
In other words, we might be less concerned with what constitutes games
in general, as games, as what constitutes a particular game, as a game.
And indeed we are in rich territory as soon as we bring attention to the
social and material contexts of any agreement to play, and to the
constitution of such an agreement, both implicit and explicit. While this
all varies greatly from one situation to another, whenever we find such an
agreement, and to whatever extent we can find the agreement to be stable
and to consist of particular provisions governing play, we usually find we
can say there is a game there.[4]
Rules and rule systems
While it is very difficult to generalize meaningfully about the
context and nature of such agreements, if we are to try to extend an
argument like mine – markup technologies are games or are like games, or
at least provide occasion for games – it is necessary to do so at least
in a rough way. Along these lines, I would like to propose several
categories or terms of art, which we might use to distinguish the
outlines of any agreement to play.
Constraint space
If a game is defined by its boundaries, those boundaries can
be considered to define a constraint space. A
constraint space comprises all the lawful states of a game.
Something that happens inside the constraint space may be part of
the game; outside the space it necessarily is not. If the state of
the game exits the given constraint space, the game must either be
modified to extend into the new space, or come to an end.
Generally a game comes to an end either when it comes to a
steady state and its players decide to stop (thereby ending the
agreement to play), or when the constraint space itself is
dissolved. For example, a number of points is acquired or a clock
runs out, thereby bringing the game, as defined by its own rules,
to an end state, or bringing to an end a condition on which the
game depends (we'll play until it gets
dark).
For purposes of this discussion, constraint spaces may be
further distinguished into three kinds:
terrain, rule space
and regulation space. Terrain is the most
general; rule space appears or occurs within or on the terrain;
regulation space is a further refinement on rule space.
Terrain
A game always takes place within some medium, which I will
call its terrain. The terrain may be identified with the material
conditions of the game: its playing field, apparatus or equipment.
Every game has a terrain at least implicitly, although the terrain
may shift in the course of the game.
The rules of play may specify or designate a terrain, but they
do not constitute it. Nevertheless, the notion that a terrain is
relatively stable, distinct from the rules of play, and
nonetheless introduces its own constraints, is important. Not only
may the terrain shift while the rules stay constant; also the
rules may shift while play continues on the same terrain.
Rule space
While the terrain bounds the set of possible game states given
its material conditions, rule space comprises a set of lawful
states. It is possible, for certain kinds of loose or informal
games, that rule space covers the entire terrain. In other words,
the agreement to play consists only of we'll play
here or we'll play with this, and all
states given this agreement are legal. Generally speaking,
however, for play to remain play, at least some rules are followed
at least implicitly. Even animals at play together will handicap
themselves so the stronger does not entirely dominate the weaker.
The existence of such implicit rules seems to be part of what
makes tug or chase a game.
Importantly, rules do not only define legal states within the
terrain. Typically they also define legal transitions between
those states: tactical alternatives, moves or
plays, some of these being legal, while others
are not. This further restriction also opens a further possibility
of cheating, which can include not simply a move or play that
exits rule space (the set of lawful states), but also a move or
play that advances the game to another state – even one that might
otherwise be lawful – by means of an unlawful transition.
Regulation space
Given the possibility, or even the likelihood, that either
game states or the transitions between them may be unlawful –
balls do go out of bounds, and players do attempt to cheat – many
games also include rules to govern rule space. Mechanisms of
resolution or adjudication are introduced in order that the
agreement to play may continue by a restoration of rule space when
it has been violated. Regulation space may introduce agents of its
own (such as umpires or referees) and its own apparatus (a
referee's whistle). In any case, there are rules to be followed
for enforcing the rules (when the referee blows the
whistle, play must stop). Such mechanisms, which we can
generally call regulators, occupy a middle space
between the rule space and terrain, one where an unlawful state
(or the immanence of one) is recognized, but instead of forcing an
end to the game, a kind of meta-rule, a regulation,
is applied to restore lawfulness. This ensures that the game
remain within rule space. (Usually this is accomplished by
changing the game state. It can also be accomplished by altering
rule space itself to accommodate the state in question.) As long
as this happens in a way acceptable to the players, the agreement
to play can be sustained. More often than not, prior agreements on
how this agreement is to be secured help to validate such
rulings.
Because they add new constraints and restrictions to a wider
rules space, a game that is regulated is actually a formal subset
of the same game when unregulated (that is, when regulated only
informally, by its players in the course of play) – not because it
always makes some otherwise lawful game states unlawful, but
because it clarifies and manages the boundaries between lawful and
unlawful. It narrows the class of lawfulness from
anything the players accept as lawful to
anything determined to be lawful by
regulation.
For example, Scrabble™ is a game played on a terrain
consisting of a board and tiles; the rules entail players taking
turns, placing tiles on the board to spell words, and drawing new
tiles to replace the ones played. Commonly, a dictionary is used
as a neutral arbiter (a regulating device) to determine whether a
disputed word is allowable.
But the National Scrabble Association also publishes a set of
Official Tournament Rules, which specify a particular reference
book (not just any dictionary agreed to by the players), along
with many additional rules governing tournament play. Since the
rules of Scrabble as printed on the box and
played at home in your living room comprise only a subset of these
rules, Official Tournament Scrabble is a subset or
profile of Scrabble in general. (More rules
define a narrower rule space.)
How are markup technologies like games?
Markup technologies, considered generally (that is, including
HTML/CSS and wiki markup as well as XML/XSLT) have a number of game-like characteristics:
An apparatus (the computer, the software, the network)
constituting a terrain.
Rules (syntactic rules, tagging rules, usage and best
practice), procedures (editing, validating, executing
stylesheets), styles of play.
Regulators (rules enforcement mechanisms), working on several
levels. For example, we have XML with its rules (well-formedness
constraints over the syntax and the usage of particular mechanisms
such as namespaces) enforced by parsers; we have applications of
XML using particular tag sets, with schemas to validate instances
intended for these applications; and we have profiles of these
applications entailing even further constraints over both the
construction of markup instances and how they are deployed and
used.
Much of the regulation occurring in markup technologies is
achieved informally by players monitoring and providing feedback
to one another. Regulation mechanisms are also frequently
formalized, codified and automated. Sometimes regulations
conflict, requiring (usually informal) arbitration.
Social networks and roles.
Opportunities for interaction, feedback, and cooperation among
players.
Payoffs or victory.
Notably, competition is excluded from this list.
While competition is clearly part of activities related to markup
technologies, it is not obviously necessary to them: win/lose outcomes
are not inevitable at least within the straightforward practice of
markup. While one might allow that successfully validating or publishing
a markup instance is winning in some sense, such a
victory would not ordinarily require anyone else to lose.
Yet beyond those just listed, there is a more striking similarity.
Markup technologies show the same systematic elaborations as games do
between games-as-rules (rule spaces) and games-as-regulated-rules
(regulation spaces). Just as we have board games (games played, usually
in turns, on a board at a table), Scrabble (a particular such game,
whose terrain is a board with a grid and tiles carrying letters with
point values), and then NSA Official Tournament Scrabble™, we have
text-based markup, then XML, then an application of XML such as TEI or
Docbook, then an application profile of one of these (or of some other
common tag set, or a private tag set) in use by a particular publishing
system or organization, and so on.
Moreover, the regulatory systems that are deployed to manage and
support markup applications, including schemas, documentation,
stylesheets and so on, are themselves subject to a kind of game play.
Certainly, proponents of TEI, Docbook and other widely-used tag sets
have been known to feel themselves in competition, as if to be widely
used is to win. Browsers and commercial toolkits compete
with one another over who gets to define the rules of how markup is to
be handled, as a guarantor, in their case, of commercial viability; this
is a reflection and an outgrowth of the fact that even proprietary
applications may be used as regulators (sometimes the only regulator) to
manage the rule space of even a supposedly non-proprietary,
standards-based technology such as HTML or CSS. At a higher level still,
standards organizations and industry consortia are enlisted as
regulators of this competition; then standards bodies themselves compete
over markets. Evidently there is plenty of zero-sum (or at least the
players behave this way) and plenty of competition.
However, the fact that markup technologies are not inevitably or
inherently competitive is only one instance of a more general
distinction, namely that markup technologies as a whole, for all their
rules and rigidities in some respects, do not make for the same kind of
stable bounded system that a game is, even when this is true of
particular markup-based applications. Markup technologies are more
complex than games, even complex ones, and more specifically situated
within (less isolable from) particular economic and cultural projects or
endeavors.
Also, participants in markup technologies usually have less clearly
defined tasks or roles than players of games do; indeed our work
commonly mixes together the roles of player (someone who
acts within game play to achieve aims within the game) and regulator
(with responsibilities to monitor and maintain the game play as such).
Nor is this because the game is simple enough not to require external
regulation; on the contrary, markup technologies are also characterized
by the opportunity to make and change the rules of play. All this makes
them less like games, and more like nomic games.
Nomic games
In some ways, nomic games are the most gamelike of games, in that
they afford the greatest opportunity for self-structured play: they are
agreements to play in their most essential form. Yet
they are also un-games, in the sense that they cannot be
defined in terms of particular sets of rules. That is their point. To
the extent that a game most closely approaches the mathematical ideal of
a closed system in which moves, tactics, payoffs and their interactions
are fully defined (and hence, at least in principle, fully
intelligible), it is not a nomic game – even as the outcome of those
interactions becomes too complex to be predictable. A nomic game is a
system that is gamelike in one crucial respect – there are rules
governing play – but critically ungamelike in another: those rules are
not fixed, but instead are themselves in play.
The term nomic game was coined by Peter Suber in
1982, in reference to legal and constitutional systems, to designate
precisely the sort of game or gamelike system in which the players have
scope to change the rules.[5] Beyond this, it is necessarily somewhat difficult to
generalize how nomic games work (as indeed this is up to the players)
without resorting to group psychology or social dynamics. Although
accounts of nomic games are not hard to locate on the Internet, they are
nevertheless difficult to research, since as actually played they
typically become highly introspective, self-involved, encumbered or
elaborated with peculiar terminology (as nomic games are inevitably
language and logic games, as well as opportunities for the display of
linguistic prowess), and apparently all-consuming for their players
(since they lack firm boundaries between game play and activities not
within the game). Consequently, actual nomic games, even when their
proceedings are archived in public, have a way of becoming insular and opaque.[6]
But many activities or endeavors we do not ordinarily consider to be
games are nomic in the sense Suber describes (which of course is what
motivates his proposal). Indeed, the capability of defining their own
boundaries by their rule-making activities might be an essential
characteristic of cultural activities in general, considered as such,
whether they be political and economic, artistic or creative, or
technological. Herein lies much of the fascination of nomic games.
Public institutions such as the law or commerce, which proceed in and by
agreements among their participants, public and private institutions
such as governments, clubs, corporations, and universities, are all
characterized by the way their participants and stakeholders make and
remake the rules of play, and sometimes challenge or avoid them. Art and
poetry can be similarly identified with rules-making, to rhetorical and
aesthetic ends. And so can technology, where the ends are practical and
task- or (and) market-oriented. These various activities can be
distinguished from one another by their various terrains – their
material, social and economic contexts – as well as by the rules they
follow and regulatory frameworks they enact. When we distinguish them in
this way, we might almost be talking about games – a fact that has not
escaped the notice of structuralist anthropologists.
Yet even casual observation suggests some properties of such
activities that distinguish them from more conventional games. Beyond
the fact that we do not call them games or identify them
as such except metaphorically (which we may do often), nomic games
differ from conventional games in several respects, all of which have to
do with how their boundaries are defined and maintained. For example,
while ordinarily games are temporally ordered – either they proceed
until a given conclusive state of play has been reached, at which point
they end, or play continues for a definite and determined period until a
score determines the outcome – nomic games, precisely since any rules
governing time or sequence can be changed, tend to be temporally
open-ended (even while there may be rules stipulating terms or rounds),
and either unsustainable and short-lived, or interminable, sometimes
making no provision at all for their own cessation. Also, conventional
games are allogenic in the sense that they are motivated
and staged by something outside them, whereas nomic games will be
autogenic and even autopoietic (the term Maturana and
Varela use to distinguish living systems as such), which
accounts for their self-obsessed, self-consuming nature:
nomic games frequently descend into rules lawyering. Perhaps most
intriguingly, nomic games also tend to spin off or spawn other nomic
games: they are replicative of themselves as well as mutable.
Finally, just as it is difficult (for reasons discussed earlier) to
apply the idea of cheating in game theory, the notion of
cheating only applies with difficulty to a nomic game, but for the
opposite reason: the rules of a nomic game are mutable and always at
issue, so nothing is by definition out of bounds. A nomic game may, at
one moment, define a rule space (in the sense of a set of lawful
states), and at the next, redefine it. It may enter into a paradoxical
state in which the nominal rule space has been violated, but the
agreement to play has not been suspended, so the game continues. And it
may retroactively change the rules to make earlier moves (transitions)
or conditions (states) legal or illegal, in order to invoke or to avoid
invoking regulatory action as part of the game play.
To the extent that any game allows this (like professional bicycle
racing, with its doping scandals) it is revealed as more nomic and less
gamelike: players (a category which for these purposes will include the
game's regulators, for example race officials and organizers) can take
the rules into their own hands, and alter or break them, without ending
the game. As long as as the agreement to play is sustained, even while
the integrity of the game as a game (a transparent and
fair competition) is compromised, as a nomic game (a
self-sustaining but only relatively rules-bound
activity), it may be reinforced. Thus, nomic games alter and stretch the
notion of a game away from general principles of formal
definition and into more socially located, problematic and provisional
contexts. This helps account for why both games and nomic games, as
actually played, are interesting, as each is always in the midst of
becoming the other, in a Yin/Yang dynamic relation, in which
cheating delineates precisely the in-between space
where a game goes nomic (at the risk of collapse, if the agreement to
play should become unsustainable), and where, conversely, an accusation
of cheating may be a ploy that seeks to circumscribe a game-going-nomic
back within the parameters of the game it is assumed or claimed to be –
to regulate it.
Indeed, to recognize this is to come some distance to understanding
of why thinking about games is useful for understanding phenomena and
problems in the real world, a place where mathematical
regularity is as often the exception as it is the rule. We might say
that the reason we can so easily compare real-world activities (such as
real estate speculation or international relations) to games (such as
Monopoly or Diplomacy) is that the purpose of games is precisely to
offer and encourage such analogies. As rules-bound and regulated
systems, games are like the real world, only more so, with the special
advantage of being more clearly bounded, delineated and self-contained,
and hence more observable and intelligible – which makes them suitable
occasions for practicing skills and abilities that may be useful outside
them. Yet paradoxically, part of their resemblance to real-world
activities is in their capacity to fly off, to become something other
than themselves. And it is when games become more serious, when the
stakes go up, that they have this tendency most strongly.
Yet just as games become more like nomic games as they become more
serious and their players seek to take control of the rule space and
shift it to their advantage, real-world nomic activities such as legal
and political systems become more gamelike, more regular and
rules-bound, as their participants find common interests in preventing
ad hoc nomic redefinition on the part of other
players, and in thwarting and punishing those who engage in it. That is,
regulation spaces, both in games and in ostensibly more serious
activities, are attempts to manage and control their nomic tendencies,
to regularize and reduce complexity and seeming arbitrariness and
instead offer systematic control or some sense of it. Intriguingly, such
rules and regulations are what make game theory useful
and relevant – at any rate, the kind of game theory we compulsively
engage in as social animals, which is to say our more or less systematic
reasoning about motives, options, objectives, tradeoffs, strategies and
tactics. Within such systems (again, think of constitutional
governance), although they remain nomic at their core, not just anyone
is permitted to change the rules at any time, and there are complex
rules, built-in checks, and regulation of regulations for determining
who may engage in rules making, by what mechanisms, with whose
participation or acquiescence, and within how wide a scope.
Again, for our purposes (and at the risk of anticlimax), it hardly
needs to be stressed how markup technologies fit into this description
of things, as both a technological and a cultural and economic
phenomenon. A successful markup practitioner will soon have the
opportunity to participate in rules-making activities, whether that be
defining a schema, implementing a production or processing framework
(where we frequently discover a fine line between interpreting presumed
rules and making new ones), or merely developing ad-hoc conventions to
systematize identifiers and taxonomies. Even writing stylesheets for
presentation (to say nothing of code that converts from one markup
format to another) will entail making new rules and, sometimes, ignoring
or breaking old ones, if only to handle anomalies and edge cases.
Successful schema designers and software developers will be pulled into
standards work, to help define standards by which systems may be
specified and which conformant applications and implementations of a
technology must reference. And so on.
Making rules for markup
To turn from the very abstract to the very concrete, three
illustrations serve to demonstrate how applicable these concepts are when
considering actual problems in and with markup technologies. The examples
are all close to home. The reader can probably provide many more.
Valid, but not useful
Here is a valid fragment from a Balisage paper, valid
being defined as conformant to the rules expressed in the
Balisage
DTD:
<personblurb>
<para></para>
</personblurb>
A
DTD can validate that an element is present, but not that it contains
actual content. Even a schema language that can constrain the content to
prohibit empty string values, such as XSD, cannot solve the general
problem of ensuring that such content is correct or useful:
XXX will usually suffice. In other words, schema
validation is rather severely restricted in what kind of
validation it can support.
This much is evident to any XML veteran – so evident that we may
have stopped noticing. And the boundary between the rules enforced by a
schema, and the rules that remain the concern of authors and editors
(the human kind), is one of the first things newcomers to XML must get
used to. Even if it never becomes entirely clear exactly where this
boundary is placed – and it does vary from one application and one
validation technology to another (which makes things worse for the
learner) – the simple fact that the boundary is there (and indeed may
move) is an important one. The XMLer who never catches on that the
machine can check some things, but not others, will always remain at a
loss.
What is at issue here is the authority and reliability of a schema
as a regulator of rules. As such, practice shows that for a system to be
sustainable, schemas – in addition to being well-fitted to the
application(s) of the data, which should go without saying – must be
consistent and as transparent as possible; hence the importance of
documentation. Where they do not, in fact, enforce any meaningful
constraints (such as the constraint that an author's biography should
give some account of who the author is), users who are not experts in
schema validation need to be helped to understand this. The differences
between rules that are being validated, rules that might be validated
but are not, and rules that cannot be validated by automated means, are
often subtle.
One of the most difficult myths to dispel among newcomers to markup
has to do with this authority, and to what extent a schema can or should
be relied on as a warrant for correctness or fitness. The notion that a
schema, as a regulator, performs some sort of punitive function – a
validation error being construed to be some kind of warning that a
document is wrong, which it is only in a fairly narrow
and entirely convenient sense (inasmuch as the rules enforced by a
schema may be motivated only by the need for the system to ensure a
certain level of predictability in the data) – is probably less accurate
than an alternative idea that a schema is just a piece of equipment that
helps make game play feasible, by supporting (encoding)
the specifics of the agreement to play. In the game of tennis, the rules
require a racket to be used, and kicking or throwing the ball is not
allowed; this is not because there is anything wrong with kicking, but
because this game (on this court, with this ball) is more fun for
players and spectators when played with rackets. Maybe we should be
teaching that schemas in XML are like tennis rackets for users, helping
them get the ball over the net, rather than bludgeons used by developers
to keep users in line.
So, what is a document creator saying when he creates a
personblurb element containing a para
element with no content? Leaving aside the possibility that an empty
para, particularly inside a personblurb,
should be taken positively and frankly to assert there is nothing
to say about this person, it is hard not to see this as a play
of resistance (if that possibility does not in itself represent such a
play). The schema says there must be an element here, and
implies by the element's stated semantics (implicit in its name and
perhaps explicit in documentation, as at
http://www.balisage.net/DocumentModels/BalisageTL/index.html)
that its data content should constitute some meaningful account of the
document's author. But the document's actual tagging says, in effect,
I see your personblurb element and choose to
ignore it. The document is formally valid and enters the
system. A warrant is made implicitly that information is given, which is
missing. If, following the formulation of Sperberg-McQueen, Huitfeld and
Renear, an element's semantics constitute the set of inferences
licensed by the markup
Sperberg-McQueen, et al. 2001, in the case of an
element that is present with no meaningful content, an incorrect
inference (there is a bio here) is being licensed;
moreover, the more general capability to make such an inference when it
needs to be made is confounded. And indeed, this much might be said of
any case of tag abuse.
The system maintainers then have a choice: either they redefine
processing logic to allow for this information to be missing (by
changing the schema, and perhaps introducing defensive processing logic
that tests whether personblurb has any content before doing
anything with it), which is as much to concede tag abuse as normal. Or
they can validate the document further through some means other than the
schema, such as a Schematron or an old-fashioned editorial process, and
use this as the basis of a counter-move, returning the document to its
originator for correction. Or they can do neither, and allow the system
subtly to degrade.
Sometimes system maintainers or process designers have no control
over the data, and the third option is the only viable one. (One only
needs to think of the history of HTML.) In this case, there may be
system-wide changes in markup semantics as players (including document
creators, publishers, systems developers, and tools vendors) learn how
much (or rather, how little) they can trust, and make moves in response
to one another.
Look ma, no hands
This problem of the role of the schema is also apparent, in a
different way,
here:
<!-- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd"> -->
<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY></BODY>
</HTML>
Is this document valid? According to both SGML and XML, validity
requires an associated document type declaration, and
this document has none.
Yet frequently, especially when working with other schema
technologies, we work with documents that are not formally valid, but
that would be when associated with their schema and validated, like the
example above. Perhaps we might, in order to be clear, call such a
document validable, to stress that it follows all the
rules stipulated by its (presumed, but unassociated) schema, but
actually has no formal association given, and can therefore not be valid
in the strict sense.
At this point, readers who are experts in XML-based systems probably
want to introduce qualifications, arguments and counter-arguments. For
example, the schema language RelaxNG stipulates no formal mechanism by
which an association such as that not made by this fragment should be
made. Does this mean that documents cannot actually be valid to RelaxNG
schemas? Presumably, in the context of RelaxNG, the definition of
valid must be taken to be more like
validable in the sense just given. (W3C XML Schema
Definition Language takes something of a middle course: it offers a
mechanism for documents to invoke schemas but does not require that it
be respected, saying it might be just a hint.)
A similar problem arises when using XML catalogs, which can be used
to intercept references to normative copies of schemas or DTDs and
replace them at validation time with local copies. This is convenient
because it reduces network traffic, but it introduces a source of
potential error, in that if a local copy goes out of sync with a
normative schema, local instances valid to it are not only not valid to
the normative version (that is, to the schema actually named), they may
not even be validable.
This much would be merely an academic argument, were it not common
practice for XML developers to remove or comment out references to
schemas as in the case above (where in fact, the schema named in the
comment is an SGML DTD). This might indeed be considered a hazardous
practice, like riding a bicycle without a helmet, except that it appears
to be mandated by XML itself, which does not require a DTD or schema for
processing.
At issue, again, is the question of who gets to make the rules –
although this time, what we see is not the kind of power struggle within
the game that is represented by tag abuse, but rather, a more
fundamental difference in the way game regulators (in this case,
schemas) are deployed on the game's terrain (the processing platform,
which may be the entire network). The shift from SGML to XML, in which
validation need not be performed, represents a highly significant shift
in responsibility, from schema and system designers to local users and
developers, who now get to determine whether and when to be valid at
all, and (or) when to continue processing without schema validation (or
any validation at all over and above syntactic well-formedness). This
shift was possible for a number of reasons (including a number of
syntactic restrictions and adjustments in XML to ensure that a
non-validating parse would always be possible) and may have been
intended primarily not as a way to increase options for users so much as
for tool and application developers (since XML processing can, without a
schema, be so much more lightweight). Yet it is highly
consequential.
Generally, any time code in the document is commented out, the
intended audience for the document is bifurcated between those who can
see and make us of the commented information (whoever works directly
with the raw code, including the developer who makes the comment) and
those who cannot (any downstream users who cannot see the comments, but
more importantly, the processing system itself). Again, this is a play
of evasion, although different from the case of an empty
personblurb or title element, in that it is
not the spirit of the rules that is being evaded or faked
out, but the processing system itself.
In this particular case (as long as the example is taken at face
value), it is document validation that is being suspended. This may be a
good or a bad idea; to determine which, we would have to know more.
Either way, to allow (or require) documents themselves to carry the
information that permits or implicitly requires them to be validated is
itself a design decision on a meta-architectural level (a fact that
RelaxNG and W3C XML Schema both recognize). Given XML's design, there is
nothing here that actually prevents system designers from performing
validation in any case, to any schema they choose. This single
difference between SGML, where to comment out a DOCTYPE
declaration would have been a futile gesture (preventing a fully
conformant system from parsing the document), and XML, where it may (or
may not) be a useful gambit, is one of the most important single reasons
why XML can actually work on the web, a much wider, more open-ended,
less well controlled and more resource-rich terrain than the systems for
which SGML processing was developed.
And what do we have here
A final example is not an instance of game play in quite the same
way as the previous two, but rather points to an issue in game design.
Here's some code, valid to the NLM/NCBI schema (the text is from Bill
Watterson's Calvin and Hobbes of May 27,
1990):
<boxed-text>
<speech><speaker>Calvin</speaker><p>I don't have to sing the song!
I was in the "No Song" Zone!</p></speech>
<speech><speaker>Hobbes</speaker><p>No you weren't. I touched the
"Opposite Pole", so the "No Song Zone" is now a "Song Zone".</p></speech>
<speech><speaker>Calvin</speaker><p><bold>I</bold> didn't see you
touch the Opposite Pole! You have to declare it!</p></speech>
</boxed-text>
The interesting thing here (at least as far as the markup is
concerned) is the boxed-text element. The semantics of this
element are arguably underspecified. The text named by
the element is presumably its data content, as is generally the case
with descriptive markup. But this appears to be less descriptive, in the
sense that it identifies the kind or type of text it marks, than
presentational, asserting how it would appear in rendition. Yet it is
also not clear whether it should be taken to be retrospective (the text
appeared in a box in an earlier version) or prospective (the text should
be placed in a box in a rendition generated from this markup). For the
moment, we leave aside the possibility that boxed should
mean something other than appears displayed in a
box.
Yet perhaps not. The formal element description given in the
NLM/NCBI version 3.0 Tag Library is somewhat more specific but also
problematic. It offers examples of what kinds of thing might be tagged
as boxed-text, but directly answers none of the questions
just posed:
Textual material that is part of the body of text but outside
the flow of the narrative text, for example, a sidebar, marginalia
[sic], text insert (whether enclosed in a box or not), caution, tip,
note box, etc.
Interestingly, this definition rejects the single thing we
thought we knew about a boxed text, that it should appear in a box.
Apparently the box is not a renditional box but some kind
of abstract rhetorical artifact: we know only that this text is
outside the flow of the narrative.
What does this kind of markup say about itself; what licenses does
it inference? Perhaps not much. Yet this is nevertheless more, I submit,
than certain other escape hatch kinds of encoding, such
as a TEI ab (abstract block), or an HTML
blockquote. About these one cannot even say whether they
are inside or outside the narrative flow. (In other
respects these are of course not perfect analogues to
boxed-text, for which either TEI or HTML might give
better alternatives, but the point stands.)
I would describe semantics such as NLM/NCBI boxed-text as
soft, as distinct from (say) XSL-FO
block[@border='thin sold black'][@padding='2em'], which
is hard by virtue of being bound to certain application
semantics. And yet the element semantics of boxed-text are
not as soft as those of ab or blockquote
(which indeed might have harder semantics if it had not been subject to
widespread tag abuse: the more blockquote has been used for
things other than block quotes, the less useful the element has become
for marking block quotes as opposed to other things that look like
them). Maybe the meaning of boxed-text ought to be
considered pliable: hard enough to mean something in
application, but soft enough to be flexible in use and indeed capable,
in consonance with its application semantics, of expressing more than
one meaning.
How well this works is a matter of whether it sustains its semantics
(such as they are) within its application domain. And since the purpose
of the NLM/NCBI tag set, primarily, is to support the normalized
aggregation into a single repository of data already marked up
(typically by journal publishers), many or most of whose markup schemes
have harder semantics of their own (usually but not
necessarily display semantics), it has to establish a balance. When
aggregating disparate data, to try to capture every detail of source
encoding means risking both over-elaboration, and a failure in its goal
of providing unified access and processing (a goal that is frustrated
whenever there are many ways to do any given thing). But to erase the
details of source encoding means, potentially, to lose information. The
balance is in erasing incidental, insignificant differences and
capturing meaningful ones. But ordinarily, the design of a tag set to do
this has to be established up front, which is to say before the proper
unification of data from disparate sources can be established (when this
is even possible, which it may not be when source document types are
themselves mutable and open-ended). The solution to this problem, as to
many others related to it, appears to be in deploying a mix of element
types, some of which are hard in the sense just
described, and some of which are pliable or even soft, to serve as a
kind of spackle or carpenter's putty (or the blank tiles in Scrabble or
wild cards in poker). Indeed this is the case of all the tag sets
mentioned here. HTML in particular is noteworthy for having taken on, in
its history, both elements with harder semantics, such as b
or i or the elements out of which browser forms are built,
and softer ones such as div and span.
That is, rules are given, but latitude is also given to the players
of the game to interpret how to apply the rules within their own
situations. If this balance is found, then play can continue, since
players can adapt. If this balance is missed, then either an overly
rigid scheme is the result, in which individual publishers and projects
are unable to achieve local goals (and eventually have to shift or adapt
their schema, contrive workarounds, or stop playing entirely), or we
have chaos, a markup free-for-all in which people pretend to be working
together but meaningful aggregation or interchange is impossible.
What's the point?
There are actually three sets of conclusions one might draw from this
comparison, if not conclusively. That is, all these are directions for
further thought and examination.
The ethics of play
All of the examples explored above serve as examples of a more
general point, having to do with the way we make judgments, as we
approach both large-scale and minute problems working with markup
technologies – that is, as we face both strategic and tactical
decisions. What is useful and interesting about a game is that it is
both isolable and insulated from the world, and yet at the same time, a
mirror or model of it. This makes a game a kind of a microcosm within
which moves and manners have their own significance in relation to one
another, making for a kind of ethical laboratory. To consider right and
wrong in a game is not to consider right and wrong in the abstract: a
game defines its own ethical universe, wherein (as long as the game
itself is respected) virtue, if it is to be virtuous, is always aligned
with some sort of victory – if only of the moral sort.
(The very notion of a moral victory points to the paradox
that even in defeat can be a kind of success.) In other words, we are
interested in games because they are arenas for the display and
recognition not of abstract goodness, but of virtue in
something more like the Latin sense than the modern one – that is, of
particular virtues, of strengths such as
persistence, fidelity, ingenuity, generosity, prudence, integrity,
imagination, versatility, elegance or what have you. Some of these
virtues, of course, may contradict others, and on occasion they may even
stand in the way of victory – which is exactly why they become
interesting when demonstrated in game play. The way games serve not only
as training grounds but as arenas for the demonstration of such virtues
goes a long way to explaining why we find them so compelling. Nor is
this unimportant. Different games will foster different kinds of
behavior in their players, depending on what sorts of strategies and
tactics lead to better outcomes within the game.
Interestingly, to consider markup technologies in this light allows
us to set aside from our consideration of markup-based systems, which as
technologies, are social and economic and even political, rather than
simply (like spectator sports) entertaining, the reflexive ethical
judgements that so often seem to accompany them. For example, to prefer
openly specified, standards-based technologies to proprietary
alternatives, or to choose one tag set over another, is often if not
usually characterized as a kind of ethical imperative. To use standard X
or Y, in a standard way – or to be valid to a particular schema, or to
use a particular schema language, or to prefer a certain processing
platform, or a certain company's product – is considered
good, and not to do so is condemned, stigmatized or
derided as bad, without much reflection on why that
should be. To see such a choice as a strategic or tactical decision
within game play is both to relieve, and to resituate this ethical
component. At one level, to prefer one schema (or schema language or
naming convention or coding style or software product)`over another
often seems to reduce to a kind of tribalism, the way the fans of one
team or club must always show contempt for the fans of another; as such,
a preference of this sort requires no explanation or apology beyond the
play itself. Yet at another level, we can see that all such alignments
have consequences in terms of strategy and the goals of a strategy, and
as strategic choices, can make success in the game easier or harder to
achieve – and not only because to make such a choice is to adopt the
colors of one team and set oneself in opposition to others. One schema
(to pursue that example) may actually be better suited than another to
the task at hand. And yet, even when it is not, to forge a serviceable
alliance with others who might help fit a particular schema to your
purposes, may be to turn a tactical misstep into a strategic advantage.
To understand such maneuvers as game play, rather than simply as
conflicts of interest (although they are that), is to see how we can
(and must) make sense of such complex considerations. In short,
considering markup technologies as games can be a way of reframing our
assessments and choices – this editing tool, that schema, even one
pattern of tag usage versus another – within the assumptions,
predispositions and prior commitments that otherwise drive them, to see
how they might be more carefully considered and deliberate, less
reflexive and driven by the demands of constituencies, audiences or
authorities, even while those commitments remain real.
This is important because it allows us to discriminate real ethical
imperatives – here, real means outside the
game, and has to do with conduct in the world – from fictive
and factional ones that have only to do with the play. These are easily
fused, and their fusion is easily recognized by anyone who does not have
a stake in the game, but the very essence of play – to play with
commitment, with heart – is to fail to recognize this distinction.
Perhaps the best players make this commitment, identifying the good of
their cause with the Good in the abstract; this helps motivate them. But
the very best players might ultimately be those who are able to step
away from it again, having won or lost, motivated only by love of the
game itself, and having done what they could to make the game itself
worth the playing, whatever the outcome.
Lessons for practitioners
Another reason the analogy is important is that it enables us, as
practitioners of markup, to look to game design and game play for ideas
about how to go about our work. There are three general characteristics
of games, in particular, which might be considered by users and
especially designers of technology. All of them, I submit, have been at
the root of the success of the SGML family of markup technologies
(including HTML and all XML-related technologies) over the last twenty
years, and in particular of the most successful application built on
this platform, namely the web itself.
Transparency
An important element of a game is that it be transparent. We know
who has done what – which players have performed which feats of
strength, dexterity or cunning – and the game itself offers the frame
within which we can interpret their motives. Of course this
transparency need not be complete while the game is ongoing, inasmuch
as a game can involve misdirection and subterfuge; but ideally,
everything becomes clear by the game's conclusion. (Games like poker,
where this is not always the case, demonstrate this principle by
showing its limits.) To the extent a game is both complete (that is,
well-defined) and transparent, it becomes a kind of self-contained
demonstration of prowess that becomes worth playing, or worth
watching, despite and because of its isolation from the larger
world.
As such, transparency is one of the main differentiators between
games and real life. And it is by no means similarly necessary in the
design of technology. Indeed, a technology might be defined as a
process that is made deliberately opaque, at least some of the time,
to at least some of its users or beneficiaries. (As Arthur C. Clarke
famously suggested, Any sufficiently advanced technology is
indistinguishable from magic. Motorists do not need to know
how an internal combustion engine works in order to drive their cars.)
Because markup-based information processing systems are ultimately not
games, but technologies with application to real-world tasks, a
requirement for transparency is perhaps not fundamental to them in the
same way as it is in game design.
Nevertheless it is an important consideration, especially when
designing loosely coupled systems that are meant to be, by their
adaptability and extensibility, the basis of positive-sum outcomes
(that is, games where for one player to win does not mean others must
lose). When hands are not hidden, participants have a better idea of
whose interests are being served by decisions at all levels, and so
they can be made with more consideration of all the tradeoffs. A more
transparent game is one that is less about deception, guile, and
intrigue (and perhaps assertiveness, knowledge and discretion), and
more about consistent and plain dealing (at the risk of rigidity and
insensitivity). Again, it is a matter of what kinds of virtue one
wishes to cultivate.
Even more basically, a game that is not transparent is one that
will tend not to attract attention or interest from either audiences
or potential players. This is related to the next point.
Simplicity
Similarly, the world defined by a game must be complex enough to
be interesting but simple enough not to be simply bewildering. It may
have a terminology or a language of its own (part of what makes a game
both fun and learnable may be its distinctiveness), but it must be
intelligible. The rules for beginners must be simple enough to follow
even as beginners, even while our interactions with more elaborated
rules, as game play continues, might also be part of the fun.
We must not suppose that simple rules make for a simple game. Even
straightforward combinatorial possibilities make a game like Go or
chess imponderably complex and endlessly variable (that is, humanly
endless if not mathematically infinite), despite rules that can be
learned in minutes. And this is to say nothing of the possibilities
that are opened when direct human interaction and negotiation are made
part of game play.
XML has become more complex since it was first sprung on an
unsuspecting world, even in its core standards (schema languages,
namespaces, APIs and data models, query and transformation languages),
to say nothing of its applications. In itself, this is not necessary
indicative of a problem. Such complexity in the standards
(elaborations in the rules of the game), if it is a reflection of
complexity in the problems they address, can serve, by reducing the
need for purely local solutions to common problems, to reduce
complexity in the system at large, and thereby open the game. Assuming
a standard solution to a problem is a reasonably good one, everyone
benefits by being able to use the standard. At the same time, complex
problems are often best addressed by layering them, a fact that XML in
its proliferation of different initiatives has taken advantage of. For
example (as described above), by distinguishing markup syntax from
tagging semantics more discretely than SGML had done, XML was
simplified for the marketplace, where parser developers can now work
without being directly concerned with application semantics. By
separating these two games (following rules to interpret a character
stream, vs. following rules for applying markup structures to solve
problems in publishing or data processing), XML lowered the costs of
adopting markup technologies for everyone.
Yet even when it is moved to the system at large, such an
elaboration of complexity becomes a barrier to play. XML is easier to
use, but harder to understand, when every developer has to learn when
and how to distinguish processing from
parsing. (Indeed, there remain situations where the
cost imposed by this distinction is too high and benefits accrue by
ignoring it.) On the other hand, insofar as the game allows players to
work such rules and principles out themselves, it also becomes a nomic
one and this problem may paradoxically be exacerbated in the other
direction, as players elaborate their own local solutions and
speciation occurs. (Nomic games beget nomic games,
games within the game, spin-offs, knock-offs, games in exile.) Either
way, the capacity of the game to build upon and elaborate itself
creates negative feedback, dampening play by increasing its costs to
players, and sending prospective players away before they can even get
started. Eventually, the casual player stands no chance, and only
devotees may participate.
In short, balance is called for. It is a truism of both
mathematics and engineering that parsimony is a virtue, as in the
quote attributed to Albert Einstein (mainly, it seems, because it is
simplest to do so), that things should be as simple as
possible, but no simpler.[7]
Fun
Another factor related to both of these is how much pleasure a
game provides to its players and spectators. One characteristic of
play in general (or so reports Stuart Brown) is that it is
self-sustaining: play begets play, exercising us until we tire. And
then when we have recuperated ourselves, we want to play again. In the
cultural marketplace, what makes a successful game is that it is both
fun for its players, and attractive enough to win new players.
Of course, fun is impossible to define or even
really characterize without delving into psychology or cognitive
science. On the other hand, we can probably agree on two things: we
can all look at our own experience to recognize what is fun; and
whatever that is, we can also observe how it is not the same for
everyone. Just as people have different learning styles, they find
different things and different kinds of things to be fun. One
important aspect of games as social phenomena is that they enable
people who find similar things to be fun to have fun together, while
those who don't find a particular activity to be fun can opt out of
playing, or play a different sort of game.
Technology, similarly, might be fun, and sometimes it is; or at
any rate, there are people who have fun with it. (Those who find
technology to be interesting and entertaining are also, evidently, the
same people who enjoy certain sorts of games.) At the same time, there
are others who would rather not think about technology, or a
particular technology, at all. Of course, this brings us back to the
transparency issue: technologies are fun when they help us think about
what we enjoy thinking about, and don't demand we think about what we
would rather not think about.
Designers of markup technologies and their applications need to
consider, like all designers, what kinds of problems their audience,
stakeholders, and users want to have solved for them, and what kinds
of problems they would rather (and might better) solve for themselves.
A good technology will be one that is both fun (or satisfying) and
useful to its users. This is a different design goal from simply
solving a problem. Indeed, if technology designers find solving
problems to be interesting and fun, why should they deny this
satisfaction to others? We need to avoid situations where, in order to
help, we have designed all the fun out.
The big picture
At Balisage 2008, Eduardo Gutentag drew attention to a paradox at
the heart of XML. Its proponents have proposed as its raison
d'être the principle that the encoding of an electronic
document, inasmuch as it secures the document's intellectual content,
must be accessible to the document's creator and indeed owned by the
document's owner. Standards – which is to say, externally specified,
published sets of rules that provide the basis for commodity markets in
technologies and toolsets, so that the rules of the game are not
absolutely controlled by proprietary interests, and anyone, at least in
principle, can play – are critical to this accessibility. Yet the
networked media that have been built on the foundation of open text
encoding (that is, on XML and its sister, HTML, along with their
associated specifications), allow and in fact foster a radically
open-ended exchange of data that undermines the very premise that
information may be owned. To be accessible to anyone is, in a certain
respect, to be owned by no one, at least insofar as gaining access means
gaining control, just as a ball, once the game has begun,
belongs to anyone holding it. Given this tension, what
will be the rules of this new information economy? Gutentag was not able
to offer any definite prognostications.
If space, time and materials are no longer factors (once the
platform is in place, the cost of copying a document declines to nil),
and technical barriers (such as copy-protection schemes or opaque,
binary formats) are not interposed between users of information and the
technical and material infrastructure within which that information is
created, maintained, transmitted and manipulated, then seemingly only
social and legal barriers remain to prevent me from appropriating your
data however I see fit. And even if such social and legal means are
introduced, they may not suffice, at least for the purposes of those who
have depended in the past on maintaining some measure of exclusive
control over information they have managed. More deeply and more
problematically, however, if the rules of the game are part of the play,
the game is a nomic one, and runs the risk of all nomic games, that in
the process of self-reinvention it becomes unsustainable, collapsing in
on itself. Then there can be no winners, at least until a new game
emerges with new rules. These and related anxieties are at the heart of
why, for example, Open Access policies, such as those now being
developed at major universities, are so controversial.[8] On the one hand, producers of knowledge, such as researchers
and scholars offered the opportunity (and perhaps the requirement) to
make their work available through open access channels, have new and
more powerful means of fulfilling their purpose of making their work
available. On the other, to the extent that old institutional
arrangements are imperiled (including implicit or explicit exchanges of
value), so also are the securities offered by those arrangements.
As legitimate as these concerns are, however, there is a deeper
issue that may prove to be a critical determinant. The basis of the new
information economy, if it proves sustainable (and it seems fair to
expect that some sort of sustainable model will emerge), is and will be
largely in non-proprietary technologies; sooner or later, this would
seem to be necessary for a system that is truly global. Yet if the
technologies grow so complex that to play XML, or to work with markup,
means you have to devote a career to it despite its openness in
principle, then the removal of merely legal encumbrances counts for
less, and it is also up to us technocrats: our loyalties will determine
what masters XML will serve. In that case, even in an open-access world,
where theoretically anyone can play the game of publishing, not everyone
will be able to play the game of technology that underlies and supports
it (to say nothing of kindred activities such as data interchange,
curation and archiving, aggregation and analysis), and a corporate
oligarchy based on property rights will at best be replaced by a
technological meritocracy based on access, education and knowhow. More
likely, an uneasy hybrid between these two alternatives will emerge, at
least until a new set of standards emerges to attract new players with
new rules, more open to the self-taught. In any case, much depends on
how markup technologies are promulgated: who teaches them, and who
learns them, and for what purposes.
Since this is a game, in short, that is played for keeps, within a
larger world with larger stakes, XML, the design of markup technologies
and applications, and the promotion of digital literacy in general, will
all matter, at every level. Whether you are designing a document, a tag
set, a transformation, a publishing system, a schema language, a
processing language, a standard, a standards organization or a corporate
strategy, keep this in mind. It is up to you and how you play that will
determine the character, if not always the outcome, of the game.
Acknowledgements
This paper started as a page of notes scribbled in response to Eduardo
Gutentag's 2008 Balisage paper Gutentag 2008. In
nomic fashion, one Balisage paper begets another.
I am especially grateful to Matthew Kirschenbaum and his colleagues at
the Maryland Institute of Technology in the Humanities, who offered
essentially useful feedback to an early version.
Additionally, credit is due to the Balisage peer reviewers for several
invaluable suggestions, especially to one annoyed, anonymous reader, whose
objections to a number of points led to many important refinements.
Watterson, Bill. 2005. The Complete Calvin and Hobbes. 3 vols.
Andrews McMeel Publishing: October 4.
Wittgenstein, Ludwig. 1991. Philosophical Investigations: The
German Text, with a Revised English Translation 50th Anniversary
Commemorative Edition. G. E. M. Anscombe and Elizabeth Anscombe, trans.
3rd ed. Wiley-Blackwell, January 15.
[1] This necessary limitation tends to be obscured by definitions of
"game" offered by practitioners of game theory. For example:
All situations in which at least one agent can only act to
maximize his utility through anticipating (either consciously, or
just implicitly in his behavior) the responses to his actions by one
or more other agents is called a game
Ross, Stanford Encyclopedia. This would certainly
allow the treatment of open-ended systems within game theory; but when
it comes to describing them, open-ended systems are always considered
by game theory in terms of closed (definable) systems to which they
are likened. That is, the claims of game theory to relevance are
asserted by its comparison, implicit or explicit, of the well defined
(what it calls the game) to the less well defined (what
it calls the world). Accordingly and incidentally, game
theory fails to distinguish what in common parlance we call
games from just about any other activity in a social
context, including markup technologies, because it is simply not
interested in this distinction.
The game designer Raph Koster puts his finger on this somewhat
pointedly: game theory . . . has something to do with games, a
lot to do with psychology, even more to do with math, and not a lot
to do with game design. Game theory is about how competitors make
optimal choices, and it's mostly used in politics and economics,
where it is frequently proven wrong
Koster 2004, p. 12.
[2] To defect, in game theory terms, is to choose not
to cooperate, which may include adopting a strategy in opposition to
the presumed terms of the game as a whole as well as to other
participants.
[3] A recent Scientific American article on doping in bicycle racing
makes this point nicely when it treats cheating as a special kind of
defecting Shermer, 2008. Indeed, by failing to
account adequately for the possibility of doping in its actual
incentive structure, professional bicycle racing nicely makes the
point that game theory fits only awkwardly with games as they are
commonly understood, since in order to apply game theory to bicycle
racing (which it does fairly successfully), this article must
distinguish between the sport that players pretend they are playing,
and the sport as it is actually played. To describe the actual
phenomenon and even, by extension, to prompt strategies for addressing
it, game theory can be applied, as it can to many complex situations
in economics and social life. But you will not find the rules of this
game, as actually played, written up in any regulation manual. That
is, the game of bicycle racing, which players pretend
they are playing and which forbids the use of performance-enhancing
drugs, exists only as a fiction and an ideal, and the actual game of
interest to the analyst is a competition between racers, who wish to
win races, and organizers, who wish to restrict the means by which
racers may do so.
[4] I am aware that an important question is begged, namely how we
should define play. I leave this aside deliberately,
not because it is not important but because it is.
[5] The name is derived from the Greek nomos,
for law, custom or
convention, as in agronomy,
astronomy or economy,
and as distinguished from both Greek gnomê (a
saying or something known) and Latin
nomen (name).
[6] To make matters worse, many of the archives of nomic games
played on line in the past are no longer available, and links to
them are dead. It may be that nomic games of the purer sort, as
represented on line, were an outgrowth of a particular historical
moment. In the mid-to-late 1990s, several circumstances including
the emergence of a viable terrain (platform) for game play (namely
the Internet itself) seem to have combined to stimulate a growth in
interest in nomic games, which subsequently died back when the games
themselves proved to be too insular, obscure and self-involved to be
interesting to many for very long.
It is perhaps to play theorists (a loose group that includes
animal behaviorists, anthropologists, sociologists, psychologists,
and educators) that one must turn for a wider understanding, since
most play has nomic aspects. But here, researchers are generally
interested not in nomic games as such, but rather in the contexts
within which games occur and the purposes to which they are put.
Hence they are not likely to make firm distinctions between nomic
games and the fixed sort.
[7] As described at
http://www.entish.org/wordpress/?p=638, the
attribution is apocryphal and the principle itself is widely
expressed; but whoever did put it this way first is apparently not
memorable enough to give the line any authority.
Wittgenstein, Ludwig. 1991. Philosophical Investigations: The
German Text, with a Revised English Translation 50th Anniversary
Commemorative Edition. G. E. M. Anscombe and Elizabeth Anscombe, trans.
3rd ed. Wiley-Blackwell, January 15.