[image: Balisage logo]Balisage: The Markup Conference

Automatic upconversion using XSLT 2.0 and XProc: A real world example
Stefanie Haupt

Maik Stührenberg

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © 2010 by the authors. Used with
permission.

How to cite this paper
Haupt, Stefanie, and Maik Stührenberg. "Automatic upconversion using XSLT 2.0 and XProc: A real world example." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Haupt01.

Abstract
All too much of the data on the Web appears in unstructured presentation-centric formatting
 that isn't suited for structured searching and retrieval. Upconversion to a more data-centric
 information storage format offers a potential for many new uses of the data. The starting point
 of our work is a collection of HTML documents containing video game reviews. Our goal is to
 describe a target XML format that supports certain elements and attributes containing
 information that we consider valuable. Furthermore, the conversion process itself should be
 carried out automatically by means of an XProc pipeline. We conclude our paper with a
 demonstration of typical benefits of the highly structured data that results from our
 conversions.

Balisage: The Markup Conference

 Automatic upconversion using XSLT 2.0 and XProc: A real world example

 Table of Contents

 	Title Page

 	Introduction

 	The data
 	Information content

 	Technical analysis
 	Type A

 	Type B

 	Highly structured data

 	Upconversion
 	XSLT 2.0 benefits

 	Pipelining with XProc

 	The result of the upconversion process

 	Benefits of highly structured data — searching for the game according to your
 flavour
 	Alternative access to the reviews

 	Finding a game according to specific features

 	A more elaborated example: a wish list

 	Conclusion

 	About the Authors

 Automatic upconversion using XSLT 2.0 and XProc: A real world example

Introduction
 Vast collections of information are stored in HTML files distributed over millions of Web
 pages through the Internet. Among these quite valuable data can often be found; however, HTML
 does not offer a large pool of semantically motivated elements or attributes for annotating
 arbitrary data, since the language was originally created for hypertexts. Although CSS
 microformats Suda (2006) may be used to add semantic value to structuring
 elements (e.g. div and span), most information is buried underneath a
 "tag soup" of td, p or div elements that allow no
 inference about their content. In contrast, we can have information that is highly structured in
 terms of very specialized XML markup using a document grammar (DTD SGML, ISO 8879:1986,
 XML 1.0, XSD XML Schema Part 0: Primer or RELAX NG RelaxNG, ISO/IEC 19757-2:2003)) that allows for easy retrieving of very specific information. A real
 world example where the origin of our data is a collection of (sometimes even invalid) HTML 4.01
 HTML 4.01 Web pages storing documents of video game reviews is a good
 candidate for demonstrating how value can be added through better markup. Our goal is to
 transform these into fully structured and valid XML instance documents that allow different
 queries about the information. Since we are confronted with several hundred reviews, an automated
 conversion process is valuable. As an additional goal, we would like to stay in the realm of XML
 techniques; for example, we would like to avoid using non-XML-aware software such as
 general-purpose scripting languages (e.g. Perl, Python).

The data
Information content
Video games are a part of today's culture and are available in a huge variety in terms of
 supported game system, genre and — of course — quality. Finding a game that fits both one's
 hardware requirements and favored genre is a relatively easy task to accomplish, but basing the
 decision to buy a specific game only on the text written on the back of its case is daring at
 least. Impartial (more or less) reviews of video games may help to clarify if the money is well
 spent in the long run by providing rating systems for features such as graphics, sound,
 atmosphere or overall score (usually higher scores are better). The team of the German Mag'64 Web site [1] has tested video games for over eight years, gathering over 1500 reviews, each
 consisting of a single HTML Web page. Each document contains information about the game being
 tested, the review, including a general judgement, and images and screenshots. This information
 is quite valuable since among the provided items are general ones such as the title, system, or
 publisher, but in addition more specific items such as number of players, genre, age rating and
 difficulty. The review consists of running text' while the final verdict and pros and cons are
 summarized in a tabular view. The data we have to deal with consists generally of two types of
 reviews, which we call "Type A" and "Type B". Type A was used during the years 2001 through
 2004, while Type B was introduced in the Autumn of 2004.

Technical analysis
From a technical point of view the data is stored in HTML Web pages. Because HTML's
 original task is to structure hypertexts, it lacks specific elements and attributes for
 annotating the information we are interested in. Furthermore, the markup of our test data is
 very focussed on presentation, that is, general HTML elements such as div,
 p, td are used for physically structuring the information according
 to a given layout. While the two review types, A and B, do not differ regarding their
 information content, there are differences in the markup techniques used.
Type A
The Type A review was originally used as part of an HTML frameset. While one frame
 contained a menu for navigating through the whole service, the second frame stored a single
 review in the form of a HTML Page. This page lacks an HTML Doctype declaration, and typical
 copy and paste errors can be found, including end tags without preceding start tags, wrong
 attributes, etc. The img element for embedded graphics lacks the required
 alt attribute. [2] Furthermore, no information about the character encoding is given, which leads to
 encoding errors since German umlauts and other special characters were used.
Figure 1 shows an excerpt of an Type A review.
Figure 1: Type A beginning of document
<html>
<head>
<title>Mag64</title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
vlink="#990099" alink="#FF0000" leftmargin="2" topmargin="2"
marginwidth="2" marginheight="2">
<table width="98%" border="0" cellspacing="5" cellpadding="0"
height="170" align="center">
 <tr>
 <td width="35%" align="left" valign="top">

 </td>
 <td width="33%" align="left" valign="top" bgcolor="#CCCCCC">
 <p><u>
 SYSTEM:

 </u>

 <i>GCN - PAL</i><u>

 ENTWICKLER:</u> <i>Ubi Soft</i>

 <u>
 GENRE:</u><font face="Arial, Helvetica, sans-serif"
 size="3">

 <i>Jump'n Run</i>
 <i>

 </i><u><font face="Arial, Helvetica, sans-serif"
 size="3">SPIELER:</u><font face="Arial, Helvetica,
 sans-serif" size="3">

 <i>1-4 Spieler</i>

This markup we have to deal with is very presentation-focussed: semantic markup such as
 h1 or h2 that could be used for structuring the text is not used at
 all. The title of the game can only be found in the running text or in the graphic image
 referred by the img element — and sometimes in external cheats or tricks documents
 that are referred to from the review page (the term "CHEATS: JA" in Figure 2). All useful information is buried deep inside HTML's table elements, and the
 page lacks any meta elements for storing additional information. Spacing between
 different parts of the text was introduced by using HTML's entity, while the whole
 markup is layout oriented, using font, i and u elements.
 Sometimes font elements with identical formatting options are embedded into each other
 resulting in a tag soup. Emphases are arranged solely by selecting "size 3" fonts.
The running text of the review is distributed among different table elements,
 establishing a print-like layout. Each review begins with two blocks containing
 meta-information, such as system, genre, number of players, etc.
Figure 2: Typical view of the beginning of a Type A document
[image:]

The Type A review ends with a tabular overview, consisting of the "pros" and "cons" of the
 game.

Type B
The Type B reviews were established in the Autumn of 2004, coinciding with the release of
 the Nintendo DS® handheld console. Since this
 videogame console introduced some features that were unknown before (e.g. split-screen and the
 stylus input device), a new HTML template for reviewing video games was adapted. As a new
 meta-information item, an age rating was added, and the running text was subdivided by
 headings.
Most of the HTML pages contain a doctype declaration (incorrect for HTML 4.01), a
 reference to an externally declared CSS stylesheet and information about the character encoding
 (ISO-8859-1 — although the specified encoding is sometimes not correct, since some documents
 are encoded using the Windows-1252 charset or even UTF-8). In addition to the external CSS
 file, local formatting using attributes such as marginwidth, bg-color
 or border can still be found. In general, the HTML pages are not valid according
 to the W3C validation service. Figure 3 shows the mixture of different
 formatting options used.

 Figure 3: Type B beginning of document
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Strict//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html><head><title>NDS 7 Wonders of the Ancient World</title>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">
<link rel="stylesheet" href="http://www.mag64.de/test.css"
type="text/css"></head>
<body marginwidth="0" marginheight="0" leftmargin="0"
topmargin="0" bgcolor="#CCCCCC">
<table width="710" border="0" cellpadding="0" cellspacing="0"
bgcolor="#CCCCCC">

A positive difference from the Type A is the fact that the title of the game appears
 (together with the platform it was released for) in HTML's title element.
 Important information such as price or age rating are hidden inside a single div
 element (Figure 4), divided by line breaks.

 Figure 4: Hidden information
<td width="226" valign="top" style="background-image:url (http://www.mag64.de/tr1.jpg)">
<div style="padding-left: 20px;padding-top: 23px">
SPRACHHÜRDE: Keine

MIKRO SUPPORT: Nein

ALTERSFREIGABE: <a href="http://www.pegi.info"
target="_blank">3+

TERMIN: Erhältlich

VIRTUAL SURROUND: Nein

PREIS: ca.20 Euro

KOMPLETTLÖSUNG: Nein

CHEATS / TIPPS: Nein

LESERMEINUNGEN: Nein</td>

In contrast to the Type A reviews, subheadings are included; however, these are not marked
 up by HTML's inherent h1 through h6 elements but by using formatting
 elements such as b and font.
Both review types show HTML's inherent lack of support for highly structured data.
 Although our example application deals with document-centric texts, the data under observation
 contains important information that should be marked up explicitly.

Highly structured data
 Our goal is to create an XML markup language capable of structuring the video game reviews
 of both Type A and B that have been discussed. This format should be used as representation
 format for the output of the conversion process that will be presented in the section “Upconversion” and could be used as a storage format for future review applications.
 Since we have already stated the input documents are often invalid (sometimes even not
 well-formed) and important information is buried inside HTML table elements, having
 a document grammar for both validating the conversion process's output format and providing
 explicit markup of the important information is quite important for us. For these reasons, the
 use of a capable of full text search engine was not taken into account. We have chosen XML schema
 in favor of XML DTD because of its datatype library and especially for its support of
 user-defined simple and complexTypes Walmsley (2002). A RELAX NG schema (in
 combination with the XML schema datatype library) would have been another option, however, the
 broader support for XML schema supplied by the XSLT processor used during the conversion process
 tipped the scales for us (Figure 5).
Figure 5: Game centered structure
[image:]

Each game can be identified by a unique xml:id attribute, further optional
 attributes correspond to genre and subgenre, supporting an enumerated
 list of possible values which should help avoiding typical errors such as typos. Children of the
 game element are the title and platforms elements, the
 latter consisting of at least either one handheldGameConsole or
 videoGameConsole, allowing to combine reviews of the same video game released on
 multiple platforms [3]. Both elements are derived by extension of the globally declared complexType
 consoleType, sharing common information present in stationary and handheld game
 consoles (see Figure 6 for a graphical overview of the shared
 information).
Figure 6: A closer look at the complexType consoleType
[image:]

The release element stores information about the date of release (using an
 xs:date Type Attribute), the different languages and price. Children of the
 languages element are spoken, text and
 handbook elements, depicting information about the parts of the game that have been
 translated. The price element has a currency attribute that uses an
 enumerated list of possible values according to ISO Country Codes, ISO 4217:2008.
An optional image element can be used to represent box pictures or screenshots
 of the game reviewed.
As mentioned above, the handheldGameConsole and videoGameConsole
 elements are derived from the complexType consoleType by extension. Although the
 additional elements techSpecs and saving use the same names, their
 content models are different with respect to the video game console, since, for example, the
 requirements for storing save games are different between handheld and stationary consoles. Only
 the videoGameConsole element allows for the compatibleInputDevices
 child element. Most of these elements use enumerated lists to eliminate possible typos and to
 ease the acquisition of new reviews.
The main part of the review is stored underneath the review element that
 consists of the mainText and conclusion elements and further optional
 screenshots and that has a date attribute and an author attribute
 group. The running text is subdivided into optional headers and paragraphs, allowing a fine
 grained division of text parts and representing both review types.
The conclusion element is used to store both further text (e.g. in a form of a
 final verdict similar to the Type B reviews) and the tabular-like lists of pros and cons,
 followed by the final score element. Scoring can be expressed either via numeric
 values (using the percent child element with its attributes graphics,
 sound (optional), multiplayer (optional) and overall) or
 through text, since both variants can be found in our sample data.
This grammar can not only be used to store the information coded in both review types but
 also is highly flexible for future extensions. Possible future extensions of the schema may
 include XSD 1.1 assertions, for example, to ensure that multiplayer scoring information is only
 allowed when the maximum number of players is greater than "1".

Upconversion
Our upconversion process begins in the typical manner by using XSLT 2.0 / XPath 2.0 Kay (2008). Because it requires multiple steps and must be applied to many files, we
 have encapsulated it in XProc.
XSLT 2.0 benefits
In his paper "Up-conversion using XSLT 2.0" Michael Kay points out the great advances XSLT
 made when shifting to XSLT 2.0, and he provides a real-world example that makes heavy use of the
 new features. The key features which produce benefit for upconversion are in short
 schema-awareness, support for regular expression processing, better manipulation of strings, and
 advanced grouping possibilities. So tasks that formerly were often solved by using a general
 purpose scripting language like Perl or Python, by loading XML modules can be done equally well
 or better with XSLT 2.0 [See Kay (2004) for an elaborated example]. Our
 upconversion of the reviews mostly makes use of regular expression processing and string
 manipulation.
The documents are preprocessed into well formed XML using HTML Tidy. [4] For the upconversion, both functions as well as named templates are used widely. The
 following snippet demonstrates the massive clean-up the stylesheet performs. It is taken from
 the extensive main template, which uses a variable to hold the string with
 information about the genre of the reviewed game (Figure 7). This
 string is checked for both Type A and Type B data equally but it is applied differently with
 respect to the structure. Figure 7: Extracting information
<xsl:variable name="genreTemp">
 <xsl:choose>
 <!-- new type -->
 <xsl:when test="/descendant::table[3]/descendant::td[2]/descendant::div[contains(.,'GEN')]">
 <xsl:analyze-string select="/descendant::table[3]/descendant::td[2]/descendant::div[contains(.,'GEN')]"
 regex="GENRE:\s(.*)\sSPIEL">
 <xsl:matching-substring>
 <xsl:value-of select="regex-group(1)"/>
 </xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:when>
 <!-- old type -->
 <xsl:otherwise>
 <xsl:value-of select="/descendant::table[1]/descendant::font[contains(.,'GEN')]/following::i[1]"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:variable>

 This variable is then checked against regular expressions to assign the respective
 value from the defined enumerated list. Figure 8 demonstrates the
 assignment of some genres and a sub genre, implemented using case differentiation that takes
 advantage of the order of the test expressions. Figure 8: Structuring information
<xsl:when test="matches($genreTemp, 'A[\w\.\s]*Adv')">
 <xsl:attribute name="genre">Action-Adventure</xsl:attribute>
</xsl:when>
<!-- [...] -->
<xsl:when test="matches ($genreTemp, '[sS]port|[bB]all|board|Golf|Box|[hH]ock|[tT]enn|Wrest')">
 <xsl:attribute name="genre">Sport</xsl:attribute>
</xsl:when>
<xsl:when test="matches($genreTemp, '[Aa]ction|Hack|[sS]hoot|Ego|Prüg|FPS')">
 <xsl:attribute name="genre">Action</xsl:attribute>
 <xsl:choose>
 <xsl:when test="matches($genreTemp, 'Ego|FPS')">
 <xsl:attribute name="subgenre">First Person Action</xsl:attribute>
 </xsl:when>
 <!-- [...] -->

 Because the data varies a lot throughout the transformation, many case
 differentiations are used. To find the title of some documents information stored into external
 documents has to be taken into account. In Figure 9, a linked "cheats"
 or "tips" document is accessed to extract the game title that is hidden in the backlink to the
 review document. Figure 9: Extracting the game title from an external document
<xsl:when test="/descendant::table[2]/descendant::td[1]/div[1]/
 descendant::a[doc-available(concat($filepath,(replace
 (attribute::href, '-i.htm', '-t.xml'))))]">
 <xsl:variable name="doc" select="concat($filepath,replace
 (/descendant::table[2]/descendant::td[1]/div[1]/descendant::a/
 attribute::href, '-i.htm', '-t.xml'))"/>
 <xsl:value-of select="document($doc,.)/descendant::table[1]/descendant::a[1]"/>
</xsl:when>

 Throughout the transformation many more requirements are met in carrying out the
 upconversion. The examples above are simply illustrative of the process without going into
 complete detail.

Pipelining with XProc
XProc a new standard for automating processes like ours through an XML pipeline has been
 developed by the W3 working group XProc. It has reached the status
 of W3C Recommendation on 11 May 2010 after being advanced to Proposed Recommendation in March
 2010. The specification had been downgraded from Candidate Recommendation to Working Draft again
 in January to solve some issues. It has reached a fairly stable level now, and a book on XProc
 by Norman Walsh is in progress.[5] For our desired all-in-one XML solution, XProc is first choice to handle the
 pipeline.
The pipeline should process the documents that are stored locally in the filesystem
 recursively (Figure 10). There are documents other than game reviews
 (e.g. cheats and tricks), and we need some of them to extract the titles of games, but most of
 these documents are discarded. One problem here is that while we can say from the filename what
 is most likely not a test, but not what actually is. Figure 10: An overview of the filesystem
[image:]

 The pipeline will apply the following tasks to each HTML document: 	Use HTML Tidy to transform the HTML input into well-formed XML

	Apply the XSLT script to the output of the former task using an XSLT 2.0
 processor

	Validate the output files according to the XML schema

	Separate valid from invalid documents

	Provide a log of valid documents

 XProc suits these needs well, and, as an XML language, ensures perfect XML
 compatibility. For processing we use XML Calabash version 0.9.21.[6] As another option, Calumet 1.0.11,[7] was taken into account, but since Calumet currently does not support XPath 2.0, we
 stick to XML Calabash. We prepared the documents so the encoding of the files is either
 ISO-8859-1 or UTF-8 and the special characters are masked as numeric entities for the moment.
 Otherwise there would be encoding errors in the result XML documents. Since the pipeline shall
 take HTML documents as input and shall process all of them in sequential order some preparatory
 steps are used to make the documents accessible inside the XML pipeline. Figure 11 provides a simplified overview of the first steps of the
 pipeline.Figure 11: Preparatory steps
[image:]

 We chose p:declare-step as root element for good control of input and
 output ports. Both are set to allow any number of documents. Since parameters are to be used for
 XSLT transformation, we need the optional input port "parameters" - because it is the only
 parameter port in the pipeline it is primary by default. The source directory HTML is bound to a
 variable and made accessible for the step p:directory-list, which here returns the
 system-folders in c-namespace (Figure 12). Figure 12: Setting the basics
<?xml version="1.0"?>
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" xmlns:c="http://www.w3.org/ns/xproc-step"
 name="main" version="1.0">
 <p:input port="parameters" kind="parameter"/>
 <p:input port="source" sequence="true"/>
 <p:output port="result" sequence="true">
 <p:pipe port="result" step="loglast"/>
 </p:output>
 <p:variable name="input" select="'HTML'"/>
 <p:directory-list name="directories">
 <p:with-option name="path" select="$input"/>
 </p:directory-list>

 To advance deeper into the structure we use nested p:for-each loops; of
 course, the output port needs to be set to accept sequences. Next we list the subdirectories,
 consisting mainly of game-folders (Figure 13). Figure 13: The main loop
<p:for-each name="directoryloop">
 <p:output port="result" sequence="true"/>
 <p:iteration-source select="/c:directory/c:directory"/>
 <p:variable name="dirpath"
 select="concat($input,'/', c:directory/@name)"/>
 <p:directory-list name="subdirectories">
 <p:with-option name="path" select="$dirpath"/>
 </p:directory-list>

 Now we loop over the game-folders (not shown due to space restrictions) and prepare
 the files for accessibility. First we add the base-uri to get the complete filepath using
 p:make-absolute-uris. Then we add slashes using p:string-replace to
 ensure accordance to the file protocol. To make sure the file is accessible for the
 p:http-request step we rename the element c:file to
 c:request.[8] Furthermore, we need to add the proper attributes for the
 p:http-request step to work. Since there is no server involved and we do not want
 to work with binary data, we need to add the attribute override-content-type and
 attach the value text/html (Figure 14).
 Figure 14: Preparing to process HTML
<p:make-absolute-uris match="c:file/@name">
 <p:with-option name="base-uri" select="concat($subdirpath, '/', c:directory/@name)"/>
</p:make-absolute-uris>
<p:string-replace match="c:file/@name" replace="replace(., 'file:', 'file://')" name="replace"/>
<p:rename match="c:file" new-name="c:request"/>
<p:rename match="@name" new-name="href"/>
<p:add-attribute match="c:request" attribute-name="method" attribute-value="get"/>
<p:add-attribute match="c:request" attribute-name="override-content-type" attribute-value="text/html"/>

 Now we can process the HTML documents in sequence. We use a filter to exclude
 documents which are not reviews and will not help us to find game titles (Figure 15). These documents may be reader reviews that follow no
 certain structure, hardware reviews, or other texts. Files that may help us to find missing game
 titles contain these abbreviations: opt|chea|tipp|herz|guid|pass. Figure 15: Filtering documents not needed
<p:filter name="filter" select="//c:request[matches(@href, '-i.htm')]
 except //c:request[matches(@href, 'les[0-9]|hardware|wifi|wiiware|leser|preview|xpl|wer\.')]"/>
<p:for-each name="fileloop">
 <p:output port="result" sequence="true"/>

 For the filtered documents, the second and, therefore, the main part of the pipeline
 is initiated (Figure 16). If something goes wrong during the
 upconversion, we want to be able to check in which step and what the reason may be, so each of
 the main steps has its output stored apart from each other. We nest try-catch
 clauses to ensure the flow of the pipeline. Figure 16: An overview of the main steps
[image:]

 The variable file holds the URI of each file. It will be available
 throughout the loop and not only serve to get each file but to store each file in its given
 folder. So first we convert these files that pass the filter through HTML Tidy via
 p:exec, which can take non-XML input and provides safety (Figure 17). We could use p:unescape-markup in conjunction
 with Tagsoup 1.2[9] or HTML Tidy as an alternative solution here, but as XML Calabash so far only
 implemented Tagsoup for reading HTML and the results from HTML Tidy and Tagsoup differ slightly,
 we stick to p:exec. Calumet supports both HTML Tidy and Tagsoup for this step, but
 as we are using XPath 2.0 we cannot use this option. We set source-is-xml to false
 and result-is-xml to true. By default, result lines are wrapped, and the output of
 this step is also wrapped to ensure wellformed XML documents on the output port. We negate
 wrap-result-lines and unwrap the output of the step. (Note that the arguments for
 HTML Tidy need to be in a single line.) Figure 17: Using p:exec to do a first cleanup
<p:variable name="file" select="c:request/@href"/>
<p:http-request/>
<p:exec command="/usr/bin/tidy" source-is-xml="false" result-is-xml="true" wrap-result-lines="false">
 <p:with-option name="args" select=
 "'--quiet yes --show-warnings no --output-xml yes --bare yes --doctype omit
 --numeric-entities yes --char-encoding utf8'"/>
</p:exec>
<p:unwrap match="c:result"/>

 The output of this step is saved to folder "Tidied" as "filename.xml" and chained to the
 next step p:xslt. As a precaution, this step along with the connected saving
 procedure is encapsulated into a try group. If any of this fails, we record the tidied file to
 the folder "Transform-failed". The p:xslt step takes three input ports, one for the
 stylesheet, one for the XML document and one for parameters (Figure 18). The filepath needs to be provided to the stylesheet to ensure reaching the documents that
 will be consulted for missing titles. The filename and system folder are processed inside the
 transformation as well.
Figure 18: Transformation using parameters
<p:xslt name="transform">
 <p:input port="source">
 <p:pipe port="result" step="tidy"/>
 </p:input>
 <p:input port="stylesheet">
 <p:document href="test2xml.xsl"/>
 </p:input>
 <p:with-param name="xpr.platform" select="tokenize($file, '/')[last()-2]">
 <p:pipe port="parameters" step="main"/>
 </p:with-param>
 <p:with-param name="xpr.filename" select="substring-before(tokenize($file, '/')[last()], '-i.htm')">
 <p:pipe port="parameters" step="main"/>
 </p:with-param>
 <p:with-param name="xpr.filepath" select="$file">
 <p:pipe port="parameters" step="main"/>
 </p:with-param>
</p:xslt>

 If the transformation and the saving process can be executed successfully, the output of
 this step serves as input for p:validate-with-xml-schema (Figure 19). Depending on the output of this step, the documents are
 saved separately. Valid documents can be found in the 'Schema-Valid' folder and the invalid in
 the 'Schema-Invalid' folder. (During the programming of the XSLT-Transformation, invalid
 documents give hints for expressions in need of improvement.) Figure 19: Schema validation of transformation result
<p:try>
 <p:group>
 <p:validate-with-xml-schema mode="strict" name="validate">
 <p:input port="source">
 <p:pipe port="result" step="transform"/>
 </p:input>
 <p:input port="schema">
 <p:document href="Struktur.xsd"/>
 </p:input>
 </p:validate-with-xml-schema>
 <p:store name="storeValid"><!-- [...] --></p:store>
 <p:identity>
 <p:input port="source"><p:pipe step="storeValid" port="result"/></p:input>
 </p:identity>
 </p:group>
 <p:catch>
 <p:identity>
 <p:input port="source"><p:pipe step="transform" port="result"/></p:input>
 </p:identity>
 <p:store name="storeInvalid"><!-- [...] --></p:store>
 </p:catch>
</p:try>

 The last steps of the pipeline follow after the loops and take the result of the loop
 started in Figure 13. Here we create an XML document which takes the
 c:result elements returned by the step directoryloop and lists them
 for an overview (Figure 20). Figure 20: Logging the valid files
<p:documentation>Wrap result for info.</p:documentation>
<p:wrap-sequence wrapper="directoryloop"/>
<p:store name="loglast">
 <p:with-option name="href" select="'file:///home/user/loglaststep.xml'"/>
 <p:with-option name="encoding" select="'UTF-8'"/>
 <p:with-option name="omit-xml-declaration" select="'false'"/>
 <p:with-option name="indent" select="'true'"/>
</p:store>

This pipeline takes approximately half an hour to process the data, and is relatively
 independent of CPU speed on an average actual system. It results in 1573 schema-valid files.

The result of the upconversion process

 Figure 21 shows an excerpt of an instance coded in the target output format
 according to the XML schema. The critical information is marked up with the help of appropriate
 elements or attributes. Conversions of a game (i.e., the release on different platforms) are
 supported, as well, by separating the general information such as title and genre from the
 platform for which the review is written. The verdict contains the list of "pro" and "con" items
 and the score (depending on the input review type, subdivided into single figures for game
 graphics, sound, multiplayer and overall) in a highly-structured form that allows easy access to
 relevant criteria.
Figure 21: The result of the upconversion
<?xml version="1.0" encoding="UTF-8"?>
<game xml:id="d1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Struktur.xsd" genre="Jump 'n' Run">
 <title abbreviation="rayman3">Rayman3 Hoodlum Havoc</title>
 <platforms>
 <videoGameConsole type="GCN">
 <developer>Ubi Soft</developer>
 <difficulty min="1" max="6"/>
 <release>
 <languages>
 <spoken xml:lang="de"/>
 </languages>
 <price currency="EUR">60</price>
 </release>
 <player min="1" max="4"/>
 <techSpecs>
 <item>PAL</item>
 <item>GCN-GBA-Link</item>
 </techSpecs>
 <saving mode="Memorycard" blocks="8"/>
 <compatibleInputDevices>
 <item>Gamecube Controller</item>
 <item>GBA</item>
 </compatibleInputDevices>
 <review date="2003-02-24" authorFirstname="Matthias"
 authorLastname="Engert">
 <mainText>
 <paragraph>Bisher hat uns Ubi Soft ja (...)</paragraph>
 <paragraph>Durch den Score werden (...)</paragraph>
 <paragraph>(...)</paragraph>
 </mainText>
 <conclusion>
 <pro>
 <item>Unterhaltsames Gameplay</item>
 </pro>
 <contra>
 <item>Ende wird zu schnell erreicht</item>
 </contra>
 <score>
 <percent graphics="85" sound="85" multiplayer="82"
 overall="82"/>
 </score>
 </conclusion>
 </review>
 </videoGameConsole>
 </platforms>
</game>

Benefits of highly structured data — searching for the game according to your
 flavour
The result instances of the automatic upconversion process discussed in the section “Upconversion” contains highly structured information. All relevant and important data
 that was formerly hidden inside HTML's table element or as part of the running text
 can be accessed via XPath or XQuery expressions Chamberlin et al. (2004), allowing for
 easy retrieval of reviews of games of certain types or according to certain criteria such as
 genre, price, and score. While the original structure of the Mag'64 Web site offered access to the review based on either the video game system
 or the name of the game, a full-text search engine was not implemented. We have
 developed some sample XQuery queries that allow for a different kind of retrieval of game
 reviews.
Alternative access to the reviews
The query genres.xq uses two parameters, genre and platform, to search for
 games of a certain genre on a specific platform by using a collection of all valid XML instance
 documents. Figure 22 shows the output of the genres.xq
 with the value "Wii" for the platform parameter and the value "Puzzle"
 supplied for the genre paramater. Since this query was originally developed as a alternative
 access mechanism, the information returned is very sparse. However, in combination with
 (X)HTML output containing hyperlinks to the respective review page, it would be
 sufficient.
Figure 22: Result example for genres.xq
<?xml version="1.0" encoding="UTF-8"?>
<games on="Wii" type="Puzzle">
 <instance score="85" abbreviation="pqwii">Puzzle Quest: Challenge of the Warlords</instance>
 <instance score="80" abbreviation="jewel">Jewel Master: Cradle of Rom</instance>
 <instance score="79" abbreviation="phwwii">Professor Heinz Wolff's Gravity</instance>
 <instance score="76" abbreviation="bbawii">Big Brain Academy </instance>
 <instance score="50" abbreviation="jengawii">Jenga World Tour </instance>
</games>

Finding a game according to specific features
Sometimes a user searches for games that support certain technical features, such as online
 content, multiplayer, etc. The techspecs.xq query uses the parameter platform and
 techspec to retrieve only the reviews of games that include the provided feature. Figure 23 shows an example result.
Figure 23: Result example for techspecs.xq
<games on="NDS" featuring="Online">
 <instance score="92" abbreviation="suik">Suikoden Tierkreis </instance>
 <instance score="90" abbreviation="layton">Professor Layton und das geheimnisvolle Dorf</instance>
 <instance score="89" abbreviation="fesd">Fire Emblem : Shadow Dragon</instance>
 <instance score="88" abbreviation="cpor">Castlevania: Portrait of Ruin</instance>(...)
</games>

A more elaborated example: a wish list
Kids love video games these days, and often they leave their parents behind when it comes
 to choosing the right game for a present. We will demonstrate the benefits of highly structured
 data in this example. Consider a seven-year-old child with a Nintendo DS® who wants to get a racing game for his system. The parents might agree
 but formula additional constraints: the game to be bought should have a score of at least 70%
 and should be appropriate for kids of his age. Furthermore, the difficulty should not be too
 high.
For this query different parameters have to be taken into account: the platform, the genre,
 age rating, score, and difficulty. The shoppingList.xq query provides all these
 parameters (Figure 24). Using Saxon as XQuery processor with the
 following call results in the output shown in Figure 25.
Figure 24: Query for a shopping list
XQuery.sh shoppingList.xq age=7 platform=NDS score=70 genre=Rennspiel maxDifficulty=7

Figure 25: Result example for shoppinglist.xq
<games maxAgeRating="7" on="NDS" maxDifficulty="7" type="Rennspiel" scoreAtLeast="70">
 <instance ageRating="3" score="82" maxDifficulty="7" abbreviation="augt2" minDifficulty="1">
 <title>Asphalt Urban GT 2</title>
 <notes>
 <pro>62 Meisterschaften</pro>
 <pro>Für Fans von Arcade Steuerung</pro>
 <pro>Sehr gute Framerate/Technik</pro>
 <pro>Fahrzeugmodelle/Anzahl</pro>
 <pro>Grafische Präsentation</pro>
 <pro>Verschiedene Rennmodi</pro>
 <pro>Werkstatt Feature</pro>
 <pro>Gamespeed/Straßenverkehr</pro>
 <pro>Motorrad Inhalte</pro>
 <contra>Leichter als der Vorgänger</contra>
 <contra>Polizei in den Meisterschaften</contra>
 <contra>Kein 1C Multiplayer</contra>
 </notes>
 </instance>
 <instance ageRating="3" score="77" maxDifficulty="7" abbreviation="cnr" minDifficulty="1">
 <title>Cartoon Network Racing</title>
 <notes>
 <pro>Gute Grundsteuerung</pro>
 <pro>Umfangreich duch 4 Cups</pro>
 <pro>Steigende Gegner KI</pro>
 <pro>Lange Strecken</pro>
 <pro>11 gelungene Strecken</pro>
 <pro>Gelungene Items</pro>
 <pro>Viele Belohnungen</pro>
 <pro>Kart Curling Minispiel</pro>
 <contra>Kurventechnik per R-Taste</contra>
 <contra>5 der 16 Strecken</contra>
 <contra>Single Card MP</contra>
 <contra>Zu abruptes Bremsen bei Crashs</contra>
 </notes>
 </instance>
</games>

The results are sorted according to the score in descending order (with 100 representing
 the best value). Each instance element contains the age rating, score, and
 information about the difficulty, encoded in attribute values. Child elements are the title and
 the review notes, consisting of the "pros" and "cons" of the game. The notes
 element, in particular, may contain information that is subjective; it may occur that our
 example parents will judge a certain feature higher or lower than the reviewer did (or even
 think of a "con" as a "pro").

Conclusion
The results of our work are of many kinds: first, the newly introduced features such as
 regular expressions and string manipulations qualify XSLT 2.0 as a full-fledged conversion tool
 for transforming weak structured data into a highly structured format. Second, if a
 transformation process has to be carried out multiple times and if other processing is involved,
 automation by using the XProc pipelining language is highly recommended. Both the XProc
 specification and the supporting software tools are ready for a productive environment.
 Furthermore, the output of the upconversion clearly shows a high potential in terms of
 flexibility and of the ability to retrieve certain information, as shown by our example
 applications using XQuery.
We are certain that minor problems such as the one caused by the character encoding will be
 fixed during the ongoing development of XProc software. From our point of view, future
 modifications could result in a XSD 1.1 compatible XML schema supporting more video game systems
 or textual content that is not review related, such as cheats, hints, or walk-throughs. Both the
 XSLT script and the XQuery queries could be modified in how they interact with each other. For
 example, the distinction of different cases that is carried out by the XSLT script could be
 reformulated as pipeline step, allowing for a more maintainable XSLT script.
In general, the realization of the pipeline and query system as a Web service in conjunction
 with a native XML database would result in an alternative search and retrieval mechanism that
 would indeed search for the game according to your
 flavour.

Literature
[Chamberlin et al. (2004)] Chamberlin, D., D.
 Draper, M. F. Fernández, M. Kay, J. Robie, M. Rys, J. Siméon, J. Tivy, and P. Wadler, XQuery from the Experts: A Guide to the W3C XML Query Language. Pearson
 Education. Addison-Wesley, Boston, 2004.
[HTML 3.2 Reference Specification] Raggett, D.
 HTML 3.2 Reference Specification. W3C Recommendation. http://www.w3.org/TR/REC-html32, 1997.
[HTML 4.01] Raggett, D., A. L. Hors, and I. Jacobs,
 HTML 4.01 Specification. W3C Recommendation 24 December 1999,
 World Wide Web Consortium. http://www.w3.org/TR/1999/REC-html401-19991224, 1999.
[HTML (ISO), ISO/IEC 15445:2000] Information technology — Document description and processing languages — HyperText
 Markup Language (HTML). ISO/IEC 15445:2000, International standard, International
 Organization for Standardization, Geneva, 2000.
[ISO Country Codes, ISO 4217:2008]
 Codes for the representation of currencies and funds. ISO
 4217:2008, International standard, International Organization for Standardization, Geneva,
 2008.
[Kay (2004)] Kay, M. "Up-conversion using XSLT 2.0."
 http://www.saxonica.com/papers/ideadb-1.1/mhk-paper.xml, 2004.
[Kay (2008)] Kay, M. XSLT 2.0
 and XPath 2.0 Programmer’s Reference. Wiley Publishing, Indianapolis, 4th edition,
 2008.
[RelaxNG, ISO/IEC 19757-2:2003)] Information technology - Document Schema Definition Language (DSDL) — Part 2:
 Regular-grammar-based validation — RELAX NG. ISO/IEC 19757-2:2003, International
 standard, International Organization for Standardization, Geneva, 2003.
[SGML, ISO 8879:1986]
 Information Processing — Text and Office Information Systems — Standard
 Generalized Markup Language. International standard, International Organization for
 Standardization, Geneva 1986.
[Suda (2006)] Suda, B. Using
 microformats. O'Reilly, Sebastopol, CA, USA, (2006).
[Walmsley (2002)] Walmsley, P. Definitive XML Schema. Prentice Hall PTR, Upper Saddle River, NJ, USA,
 2002.
[XML 1.0] Bray, T., J. Paoli, and C. M.
 Sperberg-McQueen, Extensible Markup Language (XML) 1.0. W3C
 Recommendation 10 February 1998. World Wide Web Consortium. http://www.w3.org/TR/1998/REC-xml-19980210, 1998.
[XML Schema Part 0: Primer] Fallside, D.
 C., and P. Walmsley, XML Schema Part 0: Primer Second Edition.
 W3C Recommendation 28 October 2004, World Wide Web Consortium. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/, 2004.
[XProc] Walsh, N., A. Milowski, and H. S.
 Thompson, XProc: An XML Pipeline Language. W3C Recommendation 11
 May 2010, World Wide Web Consortium. http://www.w3.org/TR/2010/REC-xproc-20100511/, 2010.

[1] http://www.mag64.de/, for the
 current site.
[2] Although the alt attribute has been marked as optional in HTML 3.2 Reference Specification, HTML 4.01 introduced in 1999 and HTML (ISO), ISO/IEC 15445:2000, requires its use.
[3] The optional merging of different game instances can be carried out by an XQuery
 script.
[4] http://tidy.sourceforge.net for further details.
[5] http://norman.walsh.name/2010/04/12/xprocbook and http://xprocbook.com/.
[6] http://xmlcalabash.com/ for further details.
[7] https://community.emc.com/community/edn/xmltech for further details.
[8] We will need p:http-request, although we work on the filesystem. This is
 because p:data, which one could expect here, is not a step and therefore does not
 accept options.
[9] http://ccil.org/~cowan/XML/tagsoup/ for
 further details.

Balisage: The Markup Conference

Automatic upconversion using XSLT 2.0 and XProc: A real world example
Stefanie Haupt
Stefanie Haupt is currently finishing her education for an M.A. degree in Literary
 Criticism, Text Technology, and Sociology at Bielefeld University. Her main research interest
 focuses on markup and schema languages, with emphasis on XML databases and querying.

Maik Stührenberg
Maik Stührenberg studied Computational Linguistics at Bielefeld University. After working
 for four years as research assistant at Giessen University in different text-technological
 projects, he is now a Ph. D. student and research assistant at Bielefeld University. His main
 research interests include XML schema languages and specifications for structuring and querying
 multi-dimensional annotated data.

Balisage: The Markup Conference

content/images/Haupt01-001.png
GCN -PAL

SYSTEM:

ENTWICKLER: Ubi Soft

GENRE: Jump'n Run
NeDoLum Hrvec 1-4 Spieler

Mehrsprachig
8 Seiten

CHEATS: JA KOMPLETTLOSUNG: JA

Bisher hat uns Ubi Soft ja zumeist mit Spielen anderer Firmen mehr oder weniger beglick.
Eigenentwicklungen waren noch recht wenige darunter. Dabei hat Ubi Soft doch einiges zu bieten. Unter
‘anderem niemand geringeren als Rayman. Einen Charakter den wohl die meisten unter euch kennen und
spielerisch schonmal begutachtet haben. Zumindest waren die Rayman Spiele immer recht erfolgreich.

B

SCHWIERIGKEIT: 1-6

SECRETS: JA
SPRACHHURDE: Keine
PREIS: ca.60 Euro
TERMIN: Erhaltlich

Dieser Testbericht wurde geschrieben von Matthias
Engert am 24.02.2003

TIME TRIAL / SCORES: JA

content/images/Haupt01-004.png

content/images/Haupt01-005.png
For each //file

content/images/Haupt01-002.png
© © atributes,

Type._restricion o xsstring

Type._restricion of xsisiring

iy

content/images/Haupt01-003.png
Eemo—@

0.2 ageRaun

Type extension of ‘xsinteger ©

content/images/Haupt01-006.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

