[image: Balisage logo]Balisage: The Markup Conference

A Streaming XSLT Processor
Michael Kay
Director
Saxonica Limited

<mike@saxonica.com>

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © Michael Kay 2010

How to cite this paper
Kay, Michael. "A Streaming XSLT Processor." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Kay01.

Abstract
Existing XSLT implementations build a tree representation of the source document in memory, and
are therefore limited to processing of documents that fit in memory. With many transformations, however,
there is a direct correspondence between the order of information in the output, and the order of the
corresponding information in the input. In such cases it ought to be possible to perform the transformation
without allocating memory to the entire source tree.
The XSL Working Group within W3C has been working on a new version of the language designed
 to make streamed implementations feasible, and the author, who is editor of that specification, has
 at the same time been working on the implementation of streaming in the Saxon XSLT processor. This paper
 describes how far this work has progressed, and the way in which the implementation is structured.
 It adopts a chronological approach to the exposition, explaining how the streaming features have gradually
 developed from small beginnings.

Balisage: The Markup Conference

 A Streaming XSLT Processor

 Table of Contents

 	Title Page

 	Streaming: an Introduction

 	Streamed XPath in the Schema Validator

 	Streaming Copy
 	Initial implementation of Streaming Copy

 	Refinements of the Streaming Copy feature

 	Streaming with Retained State

 	Limitations of Streaming Copy

 	Streaming Templates
 	Streaming Templates in Saxon 9.2

 	Streamable Templates in Saxon 9.3

 	Conclusions

 	About the Author

 A Streaming XSLT Processor

Streaming: an Introduction
The architecture of most XSLT processors is as shown in Figure 1. The XML parser is used
 to build a tree representation of the source document in memory. XSLT instructions are then
 executed, which cause the evaluation of XPath expressions, which select nodes from the source
 tree by navigating around this tree. Because the XPath axes (child, descendant, parent,
 ancestor, preceding-sibling, and so on) allow navigation around this tree in arbitrary
 directions, it is necessary for the entire tree to be held in memory for the duration of the
 transformation. For some XML documents, this is simply not feasible: even sample datasets
 representing virtual 3D city models run to 44Gbytes in size (CityGML).
Figure 1: Fig 1: Architecture of an XSLT Processor
[image:]
In this schematic, arrows represent flow of control (not data flow). Thus the two
 controlling components (outlined bold) are the Parser and the XSLT engine; the parser
 writes the source tree and the XSLT engine reads it (via the XPath engine). The serializer
 is invoked by the XSLT engine to process one result tree event at a time, which means that
 the result tree does not actually need to be materialized in memory.

By contrast, there is no need to hold the result tree in memory. Although the semantics of
 the language speak of a result tree, a naive execution of XSLT instructions causes nodes to be
 written to the result tree in document order, which means that data can be serialized (to
 lexical XML or HTML) as soon as it is generated. So the result tree is a fiction of the
 specification, and does not occupy real memory in a typical implementation.
It has long been recognized that the need to hold the source tree in memory is a serious
 restriction for many applications. Researchers have made a number of attempts to tackle the problem:
	Some have concentrated on streaming XPath processors (Barton2003,
 BarYossef2004, Joshi). The focus here is on
 rewriting the reverse axes (such as preceding-sibling) in terms of forwards axes. There
 has been significant progress demonstrated in these projects, though they all leave out
 some of the most awkward features of the language, such as the last()
 function. However, streamed evaluation of a single XPath expression during a single pass
 of a source document does not help much with streamed evaluation of XSLT, since a
 stylesheet contains many XPath expressions, and the starting point for one is typically
 dependent on the nodes found by another.

	Other projects have concentrated on streamed evaluation of XQuery (Florescu2003, Li2005). Again these projects rely heavily
 on rewriting the execution plan. These results are difficult to translate to XSLT, because
 XQuery has the luxury of a flow-of-control that is fully statically analyzable (there is
 no polymorphism or dynamic despatch). In XQuery, the compiler can look at a function call
 and know which function it is calling; it can therefore determine what navigation is
 performed by the called function. Template rules in XSLT, by contrast, are fired
 dynamically based on input data.

	Guo et al (Guo2004) describe an approach to streamed XSLT processing that restricts the supported
 XSLT constructs to a small core. This core language is DTD-aware, and restricts match patterns to those
 that can be uniquely ascribed to an element declaration in the DTD grammar. XPath expressions appear only
 in the xsl:apply-templates instruction, and always select downwards by element name. As a result,
 the call hierarchy becomes statically tractable, as in the XQuery case.

	Zergaoui (Zergaoui2009) observes that many transformations
 are intrinsically non-streamable, because the events representing the result tree appear in a different
 order from the events from the source tree on which they depend. He therefore suggests that pure
 (zero-memory) streaming is an impractical goal, and that practical engineering solutions should
 strive rather to minimize the amount of buffering needed, without restricting the expressive
 capabilities of the transformation language.

	Echoing this, Dvorakova (Dvirakova2008, Dvorakova2009a,
 Dvorakova2009b) and her colleagues describe an approach that supports
 a rather larger subset of the XSLT language, though it still contains some serious limitations:
 match patterns in template rules are simple element names, path expressions can select
 downwards only, recursive structures in the schema are not allowed. Their approach,
 implemented in the Xord framework, is based on static analysis of the XSLT code in the
 context of a schema to determine the extent to which streaming can be employed, and the
 scope of input buffering needed to handle constructs (for example, non-order-preserving
 constructs) where pure streaming is not possible. (An implicit assumption of their
 approach, which sadly is not true in real life, is that an element name appearing in the
 match pattern of a template rule can be used to identify unambiguously a schema definition
 of the structure of the elements that match this rule.)

	Others have adopted the approach that if XSLT cannot be streamed, then a different language
 is needed. STX STX is one example of an alternative transformation language, designed explicitly for streaming.
 Another is the INRIA XStream project (Frisch2007) (not to be confused with other projects of the same name).
 STX abandons the attempt to be purely declarative, instead giving the programmer access to mutable
 variables which can be used to remember data from the input document that might be needed later in the transformation;
 this means that the responsibility for controlling memory usage rests entirely on the programmer.
 XStream, by contrast, is a purely functional language that relies heavily on partial evaluation of functions
 as soon as relevant inputs are available; the buffering of input is thus represented by the pool of partially-evaluated
 function calls, and the efficiency of the process depends strongly on the programmer having a good
 understanding of this execution model.

What all this activity makes clear is that streaming of the XSLT language as currently defined is seriously
 difficult; it is unreasonable to treat streaming as a mere optimization that implementors can provide if they
 choose to apply themselves to the task.
Since 2007 the W3C XSL Working Group has been working on enhancements to the XSLT language designed
 to make streaming a feasible proposition. A first working draft of XSLT 2.1 has been published (Kay2010b),
 and an overview
 of the design approach is available in Kay2010a.
This paper describes how streaming is implemented in the Saxon XSLT processor (Saxonica). This is influenced
 by the work of the W3C specification, but it is by no means an exact match to the specification in its current form:
 many features that should be streamable according to the specification are not yet streamable in Saxon, while Saxon
 succeeds in streaming some constructs that are non-streamable according to XSLT 2.1.
Streaming facilities in Saxon have been developed over a number of years, and have become
 gradually more sophisticated in successive releases. In order to aid understanding, the
 facilities are therefore presented as a narrative, describing enhancements as they were
 introduced in successive releases. This includes features that have been implemented but not
 yet released at the time of writing, in what is destined to be Saxon 9.3.

Streamed XPath in the Schema Validator
Since version 8.0, released in June 2004, Saxon has incorporated an XML Schema 1.0
 processor. This was introduced to underpin the schema-aware capabilities of the (then draft)
 XSLT 2.0 and XQuery 1.0 specifications, but can also be used as a freestanding validator in
 its own right.
XML Schema 1.0 (XSD 1.0) allows uniqueness and referential constraints to be expressed by
 means of XPath expressions. For example, in a schema describing XSLT stylesheet documents, the
 constraint that every with-param element within an call-template
 element must have a distinct value for its name attribute might be expressed as
 follows:

 <xs:element name="call-template" type="call-template-type">
 <xs:unique>
 <xs:selector xpath="xsl:with-param"/>
 <xs:field xpath="@name"/>
 </xs:unique>
 </xs:element>

In this example the two XPath expressions are very simple. XSD 1.0 allows them to be rather
 more complicated than these examples, but they are still restricted to a very small subset of
 XPath: downward selection only; no predicates; union operator allowed at the top level only.
 The specification explicitly states the reason why the subset is so small:
In order to reduce the burden on implementers, in particular implementers of streaming processors,
 only restricted subsets of XPath expressions are allowed in {selector} and {fields}.

It was important to the designers of XML Schema 1.0 that a validator should be able to process its input document
 in a pure streaming manner with no buffering, and a subset of XPath was chosen to make this viable.
Accordingly, Saxon 8.0 included in its schema processor a streamed implementation of this XPath subset.
For various reasons, the schema validator in Saxon was implemented as a push pipeline
 (Kay2009); the component for evaluating uniqueness and referential constraints
 forms one of the steps in this pipeline. A SAX XML parser generates a sequence of parsing
 events (startElement, endElement, etc) which are piped into the validator, which in turn
 passes them on to the next stage in the process, whatever that might be. Streamed XPath
 evaluation therefore operates in push mode, and this design choice continues to affect the way
 the design evolves today. One of the great advantages of a push pipeline is that it is easy to
 direct parsing events to many different consumers: this is particularly useful with uniqueness
 constraints because many such constraints can be under evaluation at any one time, scoped to
 the same or different parent elements.
The despatching of events to the listeners involved in evaluating a uniqueness constraint is handled by a component
 called the WatchManager; each of the listening components is called a Watch. For the example
 constraint given, the process is as follows:
	When the startElement event for the xsl:call-template element is notified by the
 parser, the validator for the xsl:call-template element is fired up. This
 creates a SelectorWatch for the uniqueness constraint. The
 SelectorWatch maintains a table of key values that have been encountered
 (initially empty) so that it can check these for uniqueness.

	All parsing events are now notified to this SelectorWatch. For each event, it
 checks whether the ancestor path in the document matches the path given in the
 xs:selector element. In this case this is simply a test whether the event
 is a startElement event for an xsl:with-param element. More generally, it is
 essentially a match of one list of element names against another list of element names,
 taking account of the fact that the // operator can appear at the start of
 the path to indicate that it is not anchored to the root xsl:call-template
 element. When the matching startElement event is encountered, the
 SelectorWatch instantiates a FieldWatch to process any nodes
 that match the expression in the xs:field element.

	The FieldWatch is now notified of all parsing events, and when the
 @name attribute is encountered, it informs the owning
 SelectorWatch, which checks that its value does not conflict with any value
 previously notified. This process is more complex than might appear, because there can be
 multiple xs:field elements to define a composite key, and furthermore, the
 field value can be an element rather than an attribute, in which case it may be necessary
 to assemble the value from multiple text nodes separated by comments or processing
 instructions. It is also necessary to check that the FieldWatch fires exactly
 once. (A simplifying factor, however, is that XSD requires the element to have simple
 content.)

	After detecting a startElement event that matches its path expression, the
 SelectorWatch must remain alert for further matching events. Before the
 corresponding endElement event is encountered, another matching
 startElement might be notified. This cannot happen in the above example.
 But consider the constraint that within each section of a chapter, the figure numbers must
 be unique:

 <xs:element name="chapter" type="call-template-type">
 <xs:unique>
 <xs:selector xpath=".//section"/>
 <xs:field xpath=".//figure"/>
 </xs:unique>
 </xs:element>

It is entirely possible here for chapters to be nested within chapters, and for
 sections to be nested within sections. (It is not possible for figures to be nested within
 figures, however: the node selected by the xs:field element must have simple
 content.) The WatchManager may therefore be distributing events
 simultaneously to a large number of Watch instances, even for a single
 uniqueness constraint; at the same time, of course, other uniqueness constraints may be
 active on the same elements or on different elements at a different level of the source
 tree.

Streaming Copy
The next step in Saxon's journey towards becoming a streaming XSLT processor was to
 exploit the mechanisms described in the previous section in contexts other than schema
 validation. This was introduced in Saxon 8.5, released in August 2005, and subsequently
 extended. The facility used standard XSLT 2.0 syntax, but required the user to write code in a
 highly stereotyped way for streaming to be possible.
Initial implementation of Streaming Copy
Typically, the user would write code like this:

<xsl:function name="f:customers">
 <xsl:copy-of select="doc('customers.xml')/*/customer"
 saxon:read-once="yes" xmlns:saxon="http://saxon.sf.net/"/>
</xsl:function>

<xsl:template name="main">
 <xsl:apply-templates select="f:customers()"/>
</xsl:template>

Without the processing hint expressed by the saxon:read-once attribute, this
 code would parse the source document customers.xml and build a tree
 representation of the document in memory. It would then search the tree for the elements
 matching the path /*/customer, and for each of these in turn it would create a
 copy of the subtree rooted at this element, returning it from the function and then applying
 templates to it.
It is easy to see that in this operation, building the tree representation of the large
 customers.xml document is unnecessary; it can be bypassed if the elements
 matching /*/customer can be recognized in the event stream issuing from the XML
 parser. Instead of one large tree, the processor can build a series of smaller trees, each
 representing a single customer record. So long as the size of the customer record is kept
 within bounds, there is then no limit on the number of customer records present in the input
 document. This is sometimes referred to as windowing or
 burst-mode streaming: the source document is processed as a sequence
 of small trees, rather than as one large tree.
The use of the xsl:copy-of instruction here is significant. In the implementation, there is no physical
 copying taking place, because the original whole-document tree is never built. But the result is equivalent to the result
 of building the whole-document tree and then copying the sequence of subtrees. In particular, the nodes in one subtree
 are not linked in any way to the nodes in other subtrees; there is no way the application can navigate outside the boundaries
 of a subtree. Attempting to retrieve the ancestors or siblings of the customer element returns nothing,
 just as it would with a true subtree copy.
Saxon implements this construct by reusing the WatchManager machinery
 described in the previous section. Having analyzed the select attribute of the
 xsl:copy-of instruction to confirm that it satisfies the constraints on
 streamable XPath expressions, the document customers.xml is then processed
 using a SAX parser which sends parsing events to a WatchManager which in this
 case notifies a new kind of Watch, a CopyWatch, of the start and
 end of elements matching the path expression; between these start and end events, the
 CopyWatch is notified of all intermediate events and uses these to build a
 tree representing the customer element.
Note again that two elements matching the path can be active at the same time. This cannot happen with the example above, because
 the path /*/customer has a fixed depth. But change the example to //section, and it is clear that
 the set of section elements selected by the path can include one section that is a subtree of another. This situation
 requires some internal buffering: the language semantics require that the sections are delivered in document order, which means that
 the outermost section must be delivered before its nested sections. The trees representing the nested sections must therefore
 be held in memory, to be released for processing only when the endElement event for the outermost section is
 notified. The code is written so that it is always prepared to do this buffering; in practice, it is very rarely needed, and
 no extra costs are incurred in the case where it is not needed. In some cases it would be possible to determine statically
 that no buffering will be needed, but this knowledge confers little benefit.
The reader may be puzzled by the choice of name for the attribute
 saxon:read-once="yes". Although the implementation of the
 xsl:copy-of instruction in streaming mode is very different from the
 conventional execution plan, the functional behaviour is identical except in one minor
 detail: there is no longer a guarantee that if the customers.xml file is read
 more than once within the same transformation, its contents will be the same each time. At
 the time this feature was first implemented, the XSLT 2.0 conformance rules required
 implementations to deliver stable results in this situation. The streaming implementation
 necessarily departed from this rule (the only practical way to enforce the rule is to make
 an in-memory copy of the tree), so the saxon:read-once attribute was provided
 as a way for the user to assert that the file would not be read more than once, thus
 licensing the non-conformance in the case where the assertion was not honoured. In the final
 version of the XSLT 2.0 specification, there was explicit provision that implementations
 were allowed to provide a user option to waive the stability requirement for the
 doc() function, thus making this extension conformant.
A further complication in the implementation is caused by the fact that the
 CopyWatch component delivers its results (the sequence of small
 customer trees) using a push interface (it calls the next component in the
 pipeline to deliver each one in turn), whereas the xsl:apply-templates
 instruction that calls the user-defined function expects to use a pull interface (it calls
 the XPath engine to deliver each one in turn). There is thus a push-pull conflict, which is
 resolved using the design described in Kay2009 and shown in Figure 2. The push
 code operates in one thread, writing the sequence of customer trees to a cyclic
 buffer, which is then read by a parallel thread delivering the trees in response to requests
 from the xsl:apply-templates instruction.
Figure 2: Figure 2: Two-thread processing model
[image:]
Thread One contains the parser and the push-mode evaluation of the streaming path
 expression (the WatchManager and CopyWatch). This emits a sequence of small trees (each
 representing one customer record) to the cyclic butter, from where they are read by the
 pull-mode XPath engine running in Thread Two. Arrow represent flow of control.

Refinements of the Streaming Copy feature
In releases subsequent to Saxon 8.5, the streaming copy mechanism described in the previous section was enhanced in a number of ways,
 without changing its fundamentals.
In Saxon 8.8 (September 2006) two changes were made. Firstly, the set of XPath expressions
 that could be handled in streaming mode was extended, to include union expressions and
 simple predicates. Secondly, the need for the two-thread model was eliminated in cases where
 no further processing of the copied subtrees was required: for example, in a transformation
 whose output contained these subtrees without modification.
In Saxon 9.1 (July 2008) the mechanism was extended to XQuery, via a new extension
 function saxon:stream(), which was also made available in XSLT. This might be
 regarded as a pseudo-function: the call
 saxon:stream(doc('customers.xml')/*/customer) delivers a copy of the value of
 its argument (that is, a sequence of customer subtrees), but it requires its
 argument to conform to the syntax of streamable path expressions. [1]
In Saxon 9.2 (August 2009) a further refinement was introduced to allow the processing of
 the input stream to terminate prematurely. For example, the query
 saxon:stream(doc('customers.xml')/*/@version) will return the value of the
 version attribute from the outermost element of the document, and will read
 no further once this has been seen. This makes it possible to obtain information from near
 the start of an XML document in constant time, regardless of the document size, which is
 especially useful in a pipeline when making decisions on how to route a document for
 processing based on information in its header. (It's a moot point whether this is consistent
 with the requirement in the XML 1.0 specification that all well-formedness errors in a
 document must be reported to the application. But the facility is so useful that we can
 ignore the standards-lawyers on this one.)

Streaming with Retained State
A limitation of the streaming copy approach as outlined above is that there is no way of
 using the information in a subtree once the processing of that subtree has finished; so
 there is no way that the processing of one subtree can influence the processing of
 subsequent subtrees. (Saxon always had a workaround to this problem, the deprecated
 saxon:assign instruction which introduces mutable variables to the language;
 but this plays havoc with optimisation).
An answer to this problem was found in the form of the xsl:iterate
 instruction defined in the XSLT 2.1 working draft. This was implemented in Saxon 9.2 in the
 Saxon namespace (as saxon:iterate), but I will present it using the W3C syntax,
 which becomes available in Saxon 9.3.
Consider the problem of processing a sequence of transaction elements, and outputting the
 same sequence of elements but with an additional attribute holding the running balance on the account, obtained
 by accumulating the values of all the preceding transactions.
The classic solution to this would use sibling recursion:

 <xsl:template match="transaction">
 <xsl:param name="balance" as="xs:decimal"/>
 <transaction value="{@value}" balance="{$balance + @value}"/>
 <xsl:apply-templates select="following-sibling::transaction[1]">
 <xsl:with-param name="balance" select="$balance + @value"/>
 </xsl:apply-templates>
 </xsl:template>
There are a number of difficulties with this approach. Firstly, everyone who has taught
 XSLT appears to agree that students have considerable difficulty producing the code above as
 the solution to this exercise, despite its brevity and apparent simplicity. Secondly, it
 relies rather heavily on the XSLT processor implementing tail call optimization; if you run
 this on a variety of popular XSLT processors, many of them will run out of stack space after
 processing 500 or so transactions, showing that they do not implement this optimization.
 Finally, the analysis needed to demonstrate that a streaming implementation of this code is
 feasible is far from easy, and one suspects that minor departures from this particular way
 of writing the code will invalidate any such analysis.
For all these reasons, XSLT 2.1 introduces a new instruction xsl:iterate, which allows the solution to
 be expressed as follows:

 <xsl:iterate select="transaction">
 <xsl:param name="balance" as="xs:decimal" select="0"/>
 <transaction value="{@value}" balance="{$balance + @value}"/>
 <xsl:next-iteration>
 <xsl:with-param name="balance" select="$balance + @value"/>
 </xsl:next-iteration>
 </xsl:iteration>
This has the appearance of a simple loop rather than functional recursion; it behaves like
 the familiar xsl:for-each instruction with the added ability to set a parameter
 after the processing of one value which is then available for use when processing the next.
 A key difference compared with the recursive solution is that the set of transactions to be
 processed is identified in one place, the select attribute of the
 xsl:iterate instruction, rather than being the product of a sequence of
 independent calls on following-sibling. A useful consequence of this difference
 is that termination is guaranteed.
Another way of looking at xsl:iterate is as syntactic sugar for the
 foldl higher-order function found in many functional programming languages:
 this applies a user-supplied function (the body of xsl:iterate) to each item of
 an input sequence (the value of the select expression), with each iteration
 delivering an accumulated value of some kind, which is made available as a parameter to the
 user-supplied function when called to process the next item.
Saxon 9.2 implements this new instruction (albeit in its own namespace) and allows the
 select expression to select the stream of subtrees arising from a streaming
 copy operation: for example <xsl:iterate
 select="saxon:stream(doc('transactions'xml')/*/transaction">. By this means,
 information computed while processing one input transaction can be made available while
 processing the next. The implementation of xsl:iterate in fact knows nothing
 about streaming; it is processing the sequence of subtrees just as it would process any
 other sequence of items.

Limitations of Streaming Copy
The streaming copy feature has enabled many applications to be written using Saxon that
 would otherwise have been impossible because of the size of the input document. Many of the
 streaming use cases published by the W3C Working Group (Cimprich2010) can be implemented using
 this feature. But despite the various refinements that have been described, there are some
 serious limitations:
	There is no way of getting access to part of the streamed source document other than
 what is contained in the copied subtrees. This problem can be mitigated by using a union expression to select
 all the data that is needed. However, the programming then becomes rather complex.

	The design pattern works well with "hedge-like" source documents: those where the hierarchy
 fans out quickly to a large number of small subtrees. But there are many large source
 documents that do not fit into this pattern - this arises particularly with
 "document-oriented" XML, but also for example with GML (Geography Markup Language) [gml]
 where individual geographical features represented in the data stream can each be of
 considerable size.

These limitations arise because streaming copy treats the input document as a flat
 sequence of elements, not really as a hierarchy. To address these limitations, it is
 necessary to restore the ability to process the input tree using recursive descent using
 template rules. The way in which template rules can be made to work in a streaming manner is
 the subject of the next section.

Streaming Templates
Consider a stylesheet containing the following two rules:

 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="note"/>

This follows a familiar coding pattern: first a generic template which acts as the default processing for all
 elements in the source document (this example copies the element to the output, sans attributes, and uses the
 xsl:apply-templates instruction to invoke recursive processing of its children); then one or more templates
 for specific named elements to process them in a way that differs from the general rule. The effect of this stylesheet
 is to copy the source document to the result document unchanged except for the loss of all attributes, and of elements
 named note together with their descendants.
It is easy to see how this stylesheet could be implemented in a single pass over the
 source document, without building an in-memory tree. A simple filter can be applied to events
 emanating from the parser before passing them on to the serializer: all events are passed on
 unchanged, except for (a) events representing attribute nodes and (b) events that occur
 between the startElement event and corresponding endElement event
 for a note element.
In XSLT 2.1 streamability is a property of a mode (Kay2010a).
 If a mode is declared to be streamable, then all the template rules in that mode must
 obey the restrictions placed on streamable templates. The analysis defined in the XSLT 2.1
 specification to determine streamability is rather complex; the rules currently implemented in
 Saxon are much simpler (and in most cases, more restrictive), while still allowing a wide
 class of transformations to be expressed. I will present first the Saxon 9.2 implementation,
 which is relatively easy to understand, and then the Saxon 9.3 extensions, which add
 considerable complexity and power.
Streaming Templates in Saxon 9.2
Saxon 9.2 follows the principle that streamability is a property of a mode, though its
 restrictions on streamable templates are far more severe than those in the XSLT 2.1 draft.
 The rules for streamable templates can be summarised (in simplified form) as follows:
	The match pattern must contain no predicates.

	The template body may contain at most one drill-down construct. This may
 be an xsl:apply-templates instruction with defaulted select
 expression, or one of the following expressions or instructions applied to the context
 node: xsl:copy-of, xsl:value-of, string(),
 data() (or implicit atomization), or one of a small number of other
 constructs.

	The drill-down construct may have only the following as its containing (ancestor)
 instructions: xsl:element, literal result elements,
 xsl:value-of, xsl:attribute, xsl:comment,
 xsl:processing-instruction, xsl:result-document,
 xsl:variable, xsl:sequence.

	Apart from the drill-down construct and its ancestors, any expression within the template that
 has a dependency on the context item must fall into one of the following categories: (a)
 a function (for example, local-name() or exists()) that
 returns a local property of the node, or of one of its attributes or ancestors, or of an
 attribute of an ancestor; (b) an expression that returns the string value or typed value
 of an attribute of the node or an attribute of one of its ancestors.

The effect of these rules is that the stylesheet given above, with the addition of the declaration
 <xsl:mode streamable="yes"/>[2],
 is fully streamable.
These rules allow a wide variety of transformations to be expressed. However, they impose
 many arbitrary restrictions. For example, a template cannot contain the instruction
 <xsl:value-of select=". + 3"/>, because an addition expression
 (+) is not an acceptable ancestor of the implicit drill-down construct
 data(.). To get around this restriction, it is possible to bind a variable to
 the value of data(.) and then perform the addition using the value of the
 variable.
To understand the reason for such arbitrary restrictions, it is necessary to understand
 something of the architecture of the implementation: whose explanation, indeed, is the main
 purpose of this paper.
Traditionally, Saxon constructed the source tree using a push pipeline. XSLT instructions
 were then interpreted, and by-and-large, they evaluated their XPath subexpressions using a
 pull pipeline of iterator objects navigating the source tree, and generated output
 (including temporary trees) by pushing SAX-like events to a serializer or tree builder
 pipeline. To implement streaming templates, this model has been turned upside-down, almost
 literally. During streamed evaluation, everything operates in push mode, driven by events
 coming from the XML parser. In effect, the code implementing a template rule operating in
 push mode is a Jackson inversion (Kay2009) of the code used to implement
 the same template rule in the traditional architecture. This inversion is analogous to
 rewriting a top-down parser as a bottom-up parser: instead of the application being in
 control and making getNextInput() calls to the parser, the application becomes
 event-driven and is called when new input is available. In consequence, the application has
 to maintain its own stack to represent the current state; it can no longer rely on the call
 stack maintained by the compiler of the implementation language.
The inverted code for a template is generated by the XSLT compiler, and consists (in Saxon
 9.2) of a sequence of pre-descent actions, a drill-down action, and a sequence of
 post-descent actions. The pre-descent actions generally involve writing
 startElement events or evaluating complete instructions; the post-descent
 actions similarly involve either complete instructions or endElement actions.
 These correspond to the instructions that are permitted as ancestors of the drill-drown
 construct: mainly instructions such as xsl:element, which are classified as
 divisible instructions representing the fact that their
 push-mode execution can be split into two halves, realised by the entry points
 processLeft() and processRight(). The drill-down action is one
 of apply, copy-of, value-of, or skip,
 and indicates what is to be done with the content of the matched element (the events that
 occur after the startElement that activates the template rule and before the
 corresponding endElement). The value skip causes these events to
 be skipped, and arises when the template rule contains no drill-down construct. The value
 copy-of indicates that a subtree is to be built from these events;
 value-of indicates that a string is to be constructed by concatenating the
 text nodes and ignoring everything else. Finally, the value apply indicates
 that the events should be matched against template rules for the relevant mode; when a match
 occurs, the selected template rule will then receive the events until the matching
 endElement event occurs.
This is all implemented using the a StreamingDespatcher that despatches events
 to the relevant template rules. This functions in a very similar way to the
 WatchManager described earlier, and in the current Saxon 9.3 code base the
 two despatching classes have been combined into one.

Streamable Templates in Saxon 9.3
Saxon 9.3 (not yet released at the time of submitting this paper) extends streamable templates to handle a much
 larger subset of the XSLT language, while still falling a little short of the capabilities defined in the XSLT 2.1 draft.
The first extension is in the area of match patterns for templates. Saxon 9.3 integrates the two concepts of a match pattern
 and a streamable XPath expression. This makes sense because both are implemented by testing to see whether a given
 node matches the pattern; the only difference is that with an XSLT match pattern in non-streaming mode, the predicates can
 contain XPath expressions that perform arbitrary tree navigation. For XSD selector and field expressions, the parsing still
 artificially restricts the path expression to conform to the XSD-defined XPath subset, but the object that results from the parsing,
 and that is used at run-time, is a Pattern object equivalent that used when starting from an XSLT match pattern.
 The pattern used in a streamable template rule can be any XSLT pattern provided it does not contain a predicate that is
 positional (for example, is numeric or calls position() or last()) or that uses
 the child, descendant, descendant-or-self, following, following-sibling, preceding, or preceding-sibling axes.
The body of the template rule is inverted in the same way as with Saxon 9.2, but the
 rules for what it may contain are less restrictive. There is still a rule that only one
 downward selection is allowed: more specifically, in the expression tree (abstract syntax
 tree) representing the body of the template rule, there must be only one leaf node whose
 path to the root of the expression tree contains a downwards selection. This path through
 the expression tree is referred to as the streaming route.
 This rule is relaxed in the case where the template contains a conditional instruction such
 as xsl:choose; in this case each branch of the conditional may make downwards
 selections. Unlike the XSLT 2.1 draft, Saxon does not currently allow a node in the streamed
 input document to be bound to a variable, or passed as a parameter to another template or
 function. A further rule is that the template must not return a node in the streamed
 document (for example, <xsl:sequence select="."/>) - this is because there
 is no way of analyzing what the caller attempts to do with such a node.
It is also possible, of course, for the template rule to make no downward selection at all: this results in the subtree
 below the matched node being skipped.
All the expressions that appear on the streaming route must be capable of push
 evaluation, that is, they must have an implementation that is event-driven. Saxon supports
 push evaluation at two different levels of granularity (Kay2009),
 parse-event granularity and item granularity; the corresponding event streams are referred
 to respectively as decomposed or composed streams. In the first case the expression
 evaluator is notified every time a parse event occurs (for example, startElement and
 endElement). In the second case, it is notified only for complete XDM items (nodes or atomic
 values). The sum() function supports push evaluation at the item level, which
 means that given the expression sum(.//value), each descendant
 value element is assembled as a complete node, which is then atomized, and
 the resulting atomic values are notified one by one to the sum implementation, which adds
 each one in turn to the running total. By constrast, the functions count() and
 exists() have implementations that work at the parse-event level, which means
 that there is no need to build the nodes being counted as trees in memory: thus
 count(.//employee) merely tallies the startElement events that match its
 argument expression .//employee without ever building a tree representation of
 an employee element.
A push component that takes a composed stream (XDM items) as input is referred to as a feed; an evaluator
 that works on a decomposed stream (parse events) is referred to as a watch. This classification
 is based on the nature of the input stream. Orthogonally, the component may deliver its result as either a composed or
 decomposed stream: so there are four categories overall: a composing and decomposing Watch, and a composing and decomposing Feed.
 Examples of the four categories are shown in the table below:

Table I
	Input/Output	Composed	Decomposed
	Composed	remove($in, 3)	<e>{$in}</e>
	Decomposed	data($in)	<xsl:for-each select="$in"/>

In general, the flow is that decomposed events arrive from the source XML parser. After
 some processing they are turned into composed items; these are then further processed, and
 eventually decomposed into events to be sent to the serializer. To make this more concrete
 consider the streaming template:

 <xsl:template match="emp">
 <employee name="{@name}" nr="{@empNr}">
 <xsl:value-of select="distinct-values(skills/skill)"/>
 </employee>
 </xsl:template>

The streaming route here contains a literal result element (employee), the
 xsl:value-of instruction, the distinct-values() function call,
 and the path expression skills/skill. It also contains expressions added by the
 compiler, reflecting the implicit atomization and type checking performed by the
 distinct-values() function, and the implicit call on
 string-join() that is performed to insert separator spaces on behalf of the
 xsl:value-of instruction. The full expression tree is shown in Figure 3, with
 the streaming route highlighted.
Figure 3: Figure 3: The expression tree of a template, showing the streaming route
[image:]
The expression tree omits some nodes, for example type-checking operators, for clarity. The
 highlighted "path" node acts as the Watch, looking for events coming from the parser that match the
 pattern skills/skill. The data() node composes these events into strings
 representing the typed value of the skill elements; these are fed through the operators
 found on the streaming route until they reach the <employee> element
 constructor, which delivers a stream of events representing the newly constructed element. Typically
 these events go straight to the serializer. The parts of the expression tree that are not on the streaming
 route (the two attribute constructors) are evaluated in pull-mode as normal.

The distinct-values() function implicitly atomizes its input. So the first
 thing that happens to the incoming data is that it is sent to a TypedValueWatch: this takes
 in a decomposed sequence of events and outputs a composed sequence of atomic values
 representing the typed values of the skill elements. This is piped into a type
 checker that checks that the values in this sequence are all strings. The type-checked
 csequence is then piped into the component that evaluates the distinct-values()
 function, which again outputs a composed stream (this being identical to its input stream
 except that values are removed from the stream if they have been encountered before). The
 xsl:value-of instruction is initially compiled into a pipeline of primitive
 instructions that first joins adjacent text nodes, then atomizes, then inserts separators
 between adjacent strings, then converts the resulting string to a text node; in this case
 the optimizer knows from type analysis that the first two steps are superfluous, so we are
 left with a pipeline that takes a composed sequence of strings as its input, and produces a
 composed sequence comprising a single text node as its output. Finally, the component
 representing the literal result element employee takes this composed input, and
 produces decomposed output consisting of a startElement event, two attribute events, a text
 node event, and an endElement event. Typically these events will be sent directly to the
 serializer.
An expression, of course, may have more than one sub-expression, and it may be capable
 of push evaluation in respect of some of those sub-expressions but not others. All
 expressions support push evaluation in respect of sub-expressions that are singletons
 (cardinality zero-or-one). Thus, for example, the expression (sum(.//value) +
 1) is streamable, because although there is no specific support for evaluating the
 addition in push mode, the system is capable of constructing the two singleton arguments and
 using the conventional pull-mode addition. Many expressions also benefit from a generic
 implementation in cases where an argument is a non-singleton sequence. This generic
 implementation buffers the argument sequence in memory and then uses the pull-mode
 implementation once the sequence is complete. This of course is not pure streaming, but it
 provides useful scaffolding to enable less commonly used expressions to appear in a
 streaming template while awaiting a pure streaming implementation. Currently this mechanism
 is used for comparison expressions such as .//value = 17 (recall that in XPath,
 this returns true if at least one of the value elements is equal to 17); there
 is no technical reason that prevents the creation of a pure push-mode implementation of a
 general comparison expression with respect to either argument, but it has not yet been
 implemented, and it is not a top priority because in the vast majority of cases the
 arguments actually turn out to be singletons.
The compile-time template inversion process operates by means of a recursive walk of the
 expression tree. At every level there must be at most one branch that performs downward
 selection; this branch is taken, and by this means the streaming route is identified. The
 process then attempts to identify the longest suffix of the streaming route that constitutes
 a streamable pattern. For example, if the body of the template is <xsl:value-of
 select="sum(.//value) + 1"/>, the streamable pattern is .//value. The
 immediate parent of this pattern on the streaming route must always be an expression that
 can be evaluated as a Watch. The number of expressions implemented as a Watch is suprisingly
 small:
	TypedValueWatch handles all expressions that use the atomized value of the
 selected nodes.

	StringValueWatch handles all expressions that use the string value of the
 selected nodes.

	CountWatch handles the count(), exists(), and
 empty() functions.

	CopyWatch (the one we met earlier) handles xsl:copy-of.

	VoidWatch is used for templates or branches of a conditional that make no
 downwards selection.

	SimpleContentWatch implements the rules for instructions such as
 xsl:value-of and xsl:attribute; specifically, it
 concatenates adjacent text nodes, removes empty text nodes, and reduces all other nodes
 to string values.

	ApplyTemplatesWatch is used where the downwards selection appears in the select
 expression of an xsl:apply-templates instruction, and also supports
 xsl:apply-imports and xsl:next-match.

	ForEachWatch is used where the downwards selection appears in the select
 expression of an xsl:for-each instruction.

Most of these Watch implementations are composing: they emit a sequence of XDM items.
 The two exceptions are the ForEachWatch and the ApplyTemplatesWatch, which
 emit a sequence of parse events.
We have already seen the CopyWatch earlier in the paper: it is used for a
 simple streaming copy, as well as for xsl:copy-of instructions appearing within
 a streaming template. When it receives a startElement event representing an element selected
 by its controlling pattern (we'll assume to keep things simple that it is watching for
 elements), it starts building a tree. All subsequent parse events until the matching
 endElement are directed to this tree builder. When the tree is complete, the node at the
 root of the tree is emitted to the Feed that implements the parent of the
 xsl:copy-of instruction, that is, the parent expression in the streaming
 route through the expression tree.
The StringValueWatch and TypedValueWatch work in a very
 similar way, except that instead of building a tree from the incoming events, they construct
 the string value or typed value of the node by concatenating the values of those events that
 represent text nodes.
All these Watch implementations have a complication that has already been mentioned for Streaming Copy: a startElement
 event for a matching element might be notified while an existing matching element is already being processed; that is, the
 pattern that the Watch matches may select a node that is a descendant of another matched node. For this reason, the Watch
 does not actually construct the tree (or string value or typed value) directly; instead it creates an event receiver
 dedicated to this task, which it passes back to the WatchManager; the WatchManager then notifies all events to all active
 event receivers to do the necessary work, taking care of deactivating them when needed. When the endElement event occurs,
 the Watch passes the constructed tree to the next Feed in the streaming route only if the matched element has no matching
 ancestors; for an inner matched node, the tree is held in a queue until the outer tree is complete, since the outer tree
 comes first in document order and must therefore be notified to the waiting Feed before the inner trees. This queue
 again represents a departure from pure streaming; the XSLT 2.1 draft has an open issue on this question.
The ApplyTemplatesWatch is similarly notified of the startElement event for
 a node that matches the select expression of the xsl:apply-templates
 instruction. It responds to this by searching for a matching template rule — this is
 possible because the constraints on match patterns in a streamable template ensure that the
 pattern can be evaluated when positioned at the startElement event (the object representing
 the event, it should be mentioned, provides methods to get local properties of the node such
 as the name and type annotation, and also to navigate to the node's ancestors and their
 attributes). Having identified the template to be applied, which because it is in a
 streaming mode will always have been compiled with template inversion, it then gets the
 Watch expression identified during the analysis of the called template, and nominates this
 Watch expression to the WatchManager. All events up to the corresponding endElement will
 therefore be sent by the WatchManager to the called template, where the same process
 continues recursively. At the same time, the same events are being sent to the calling
 ApplyTemplatesWatch, because as with xsl:copy-of, it is entirely
 possible for the select expression of xsl:apply-templates to
 select an element that is a descendant of another element already being processed; the
 results of the processing of such nested elements will again be buffered.
The ForEachWatch operates in a very similar way to the
 ApplyTemplatesWatch, except that there is no need to search for a matching
 template. Rather, the body of the xsl:for-each instruction is compiled directly
 as an inverted template and is invoked unconditionally for each startElement event matching
 a selected node.
A similar streaming implementation has been written for xsl:iterate; none
 is yet available for xsl:for-each-group, but it is expected that it will follow
 the same principles.

Conclusions
Streaming of XSLT transformations has long been an aspiration, and many partial solutions have
 been developed over the years. It has proved difficult or impossible to create streaming implementations
 of the full XSLT language as defined by W3C.
The draft XSLT 2.1 specification has been developed as a solution to this problem. It
 defines a subset of the full XSLT language that is intended to be streamable without requiring
 unknown magic on the part of the implementation, and at the same time it provides extensions
 to the language (such as xsl:iterate) that make it possible to write powerful
 transformations without straying from the streamable subset. The design of the language is
 informed by experience with both XSLT 2.0 and STX, and by a large collection of use cases
 describing problems that benefit from a streamed implementation.
Successive releases of Saxon, some predating this work and some influenced by it, have provided partial
 solutions to the streaming challenge with increasing levels of sophistication. At the time of writing, there are
 many ideas in the specification that are not yet implemented in Saxon, and there are some features in the Saxon
 implementation that are not yet reflected in the specification. Nevertheless, development of the language
 standard and of an industrial implementation are proceeding in parallel, which is always a promising indicator
 that standards when they arrive will be timely and viable. Both the language and the implementation, however,
 still need a lot more work.
Saxon's approach to the problem is based on using a push architecture end-to-end, to eliminate the
 source tree as an intermediary between push-based XML parsing/validation and pull-based XPath processing.
 Implementing the entire repertoire of XPath expressions and XSLT instructions in an event-based pipeline
 is challenging, to say the least. However, enough has been completed to show that the undertaking is viable,
 and a large enough subset is already available to users to enable some serious large-scale transformation
 tasks to be performed.

Bibliography
[Barton2003] Charles Barton et al.
 An Algorithm for Streaming XPath Processing with Forward and Backward Axes.
 In Proc. 19 Int Conf Data Eng, Banagalore, India, 5-8 March 2003. ISBN: 0-7803-7665-X
 http://www.research.ibm.com/xj/pubs/icde.pdf
[BarYossef2004] Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski.
 On the Memory Requirements of XPath Evaluation over XML Streams.
 J Comp Sys Sci Vol 73 Iss 3 pp 391-441, May 2007, ISSN 0022-0000
 http://www.almaden.ibm.com/cs/people/fontoura/papers/pods2004.pdf.
 doi:https://doi.org/10.1016/j.jcss.2006.10.002.

[Cimprich2010] Petr Cimprich (ed).
 Requirements and Use Cases for XSLT 2.1. W3C Working Draft 10 June 2010.
 http://www.w3.org/TR/xslt-21-requirements/
[CityGML] Exchange and Storage of Virtual 3D City Models.
 Thomas H Kolbe (ed). http://www.citygml.org/. Retrieved 2010-07-10.
[Dvirakova2008] Jana Dvořáková.
 A Formal Framework for Streaming XML Transformations.
 PhD Thesis, Comenius University, Bratislava, Slovenia, 2008.

[Dvorakova2009a] Jana Dvořáková.
 Automatic Streaming Processing of XSLT Transformations Based on Tree Transducers.
 Informatica: An International Journal of Computing and Informatics,
 Special Issue - Intelligent and Distributed Computing, Slovene Society Informatika, 2009

[Dvorakova2009b] Jana Dvořáková and F Zavoral.
 Using Input Buffers for Streaming XSLT Processing,
 Proceedings of the International Conference on Advances in Databases - GlobeNet/DB 2009,
 Gosier, IEEE Computer Society Press, 2009.
 doi:https://doi.org/10.1109/DBKDA.2009.25.

[Florescu2003] Daniela Florescu et al.
 The BEA/XQRL Streaming XQuery Processor. In Proc. 29 VLDB, 2003, Berlin, Germany, pp 997-1008. ISBN:0-12-722442-4
 http://www.vldb.org/conf/2003/papers/S30P01.pdf
[Frisch2007] Alain Frisch and Keisuke Nakano. Streaming
 XML transformations using term rewriting. PLAN-X 2007 Nice, France, 20 Jan 2007 pp 2-13.
 http://yquem.inria.fr/~frisch/xstream/long.pdf

[GML] OpenGIS Geography Markup Language (GML) Encoding Standard.
 OGC (Open Geospatial Consortium). http://www.opengeospatial.org/standards/gml. Retrieved 2010-07-10.
[Guo2004] Zhimao Guo, Min Li, Xiaoling Wang, and Aoying Zhou.
 Scalable XSLT Evaluation. In Proc 6 Asia-Pacific Web Conf, Hangzhou, China, 14-17 April 2004. ISBN 3-540-21371-6
 http://arxiv.org/pdf/cs.DB/0408051
[Kay2009] Michael Kay.
 You Pull, I’ll Push: on the Polarity of Pipelines.
 Presented at Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009.
 In Proceedings of Balisage: The Markup Conference 2009. Balisage Series on Markup Technologies, vol. 3 (2009).
 doi:https://doi.org/10.4242/BalisageVol3.Kay01.

[Kay2010a] Michael Kay.
 Streaming in XSLT 2.1.
 Proc XML Prague 2010. 13-14 March 2010, Prague, Czech Rep.
 http://www.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
[Kay2010b] Michael Kay (ed). XSL Transformations (XSLT) Version 2.1.
 W3C Working Draft 11 May 2010. http://www.w3.org/TR/xslt-21/.
[Li2005] Xiaogang Li and Gagan Agrawal.
 Efficient evaluation of XQuery over streaming data.
 In Proc. 31 VLDB, 2005, Trondheim, Norway, pp 265-276. ISBN 1-59593-154-6
 http://www.vldb2005.org/program/paper/wed/p265-li.pdf
[Joshi] Amruta Joshi and Oleg Slezburg.
 CS276B Project Report: Streaming XPath Engine. Undated. http://www-cs-students.stanford.edu/~amrutaj/work/papers/xpath.pdf
 Retrieved 2010-04-12
[Saxonica] The Saxon XSLT and XQuery Processor.
 http://www.saxonica.com/ Retrieved 2010-07-10.
[STX] Streaming Transformations for XML (STX).
 http://stx.sourceforge.net/ Retrieved 2010-07-10. Contains links to articles and presentations by Tobias Trapp,
 Oliver Becker, and Petr Cimprich.
[Zergaoui2009] Mohamed Zergaoui. Memory management in
 streaming: Buffering, lookahead, or none. Which to choose? Int Symp on Processing XML
 Efficiently. 10 Aug 2009, Montreal, Canada. Balisage Series on Markup Technologies, vol. 4
 (2009). doi:https://doi.org/10.4242/BalisageVol4.Zergaoui02.
 http://www.balisage.net/Proceedings/vol4/html/Zergaoui02/BalisageVol4-Zergaoui02.html

[1] Looking at this syntax, one might reasonably ask whether a pull pipeline would not
 deliver the result with less complexity. For this example, it probably would. The push
 code was used primarily because it already existed and could be reused. But I think this
 is no accident: I tend to the view that components implemented with a push model are
 likely to be reusable in a wider variety of configurations. For more details on push
 versus pull pipelines, see Kay2009.
[2] In Saxon 9.2, the element is in the Saxon namespace as saxon:mode

Balisage: The Markup Conference

A Streaming XSLT Processor
Michael Kay
Director
Saxonica Limited

<mike@saxonica.com>
Michael Kay is the editor of the W3C XSLT specification, and is a member of the XQuery
and XML Schema Working Groups. He is the developer of the Saxon XSLT, XQuery, and XML Schema processor.
He is the author of XSLT Programmer's Reference (now in its fourth edition) and a contributor
to many other books.
He is a member of the Advisory Board for Balisage 2010. In 2009, he chaired the associated Symposium
on Processing XML Efficiently.

Balisage: The Markup Conference

content/images/Kay01-001.png
Source
XML

Source Tree

Engine

Engine

Result Tree

content/images/Kay01-002.png
Thread One

Thread Two

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Kay01-003.png
new elem
{employee)

string-join

