[image: Balisage logo]Balisage: The Markup Conference

Refining the Taxonomy of XML Schema Languages. A new Approach for Categorizing XML Schema
 Languages in Terms of Processing Complexity
Maik Stührenberg

Christian Wurm

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © 2010 by the authors. Used with
 permission.

How to cite this paper
Stührenberg, Maik, and Christian Wurm. "Refining the Taxonomy of XML Schema Languages. A new Approach for Categorizing XML Schema
 Languages in Terms of Processing Complexity." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Stuhrenberg01.

Abstract
This paper presents a refined taxonomy of XML schema languages based on the work by
 . It can be seen as first building block for a more elaborate
 formal analysis of XML and its accompanied specifications, in this case: XML schema
 languages such as DTD, XSD and RELAX NG.

Balisage: The Markup Conference

 Refining the Taxonomy of XML Schema Languages. A new Approach for Categorizing XML
 Schema
 Languages in Terms of Processing Complexity

 Table of Contents

 	Title Page

 	Introduction

 	XML and Formal Language Theory

 	Formal Language Theory and XML

 	Refining the Taxonomy of XML Schema Languages
 	Introduction to the Formal Concepts

 	An Example Grammar
 	The Example Grammar Realized by a DTD (Local Tree Grammar)

 	The Example Grammar Realized by an XSD (Single Type Tree Grammar)

 	The Example Grammar Realized by a RELAX NG Grammar (Regular Tree Grammar)

 	Determinism and Local Ambiguity
 	Determinism, Algorithms and Local Ambiguities

 	Deterministic Content Models

 	The Murata Hierarchy as Hierarchy of Locality Conditions

 	Structure and Global Ambiguity
 	Restrained Competition Grammars and Variants

 	Inherently Ambiguous Languages

 	Unambiguous Languages

 	Application and Future Research

 	About the Authors

 Refining the Taxonomy of XML Schema Languages. A new Approach for Categorizing XML Schema
 Languages in Terms of Processing Complexity

Note
The authors would like to thank both the reviewers for their constructive comments and our
 colleagues Marcus Kracht and Jens Michaelis who provided additional insightful remarks.

Introduction
In this paper, we continue the fruitful research that has been performed on XML and
 formal language theory (see section “Formal Language Theory and XML”). As there is a close
 correspondence between schema languages and a hierarchy of tree languages discussed by Murata et al., 2005, and to which we will refer as the Murata hierarchy, formal language
 theory has been very useful to determine and describe the expressiveness and computability of
 different XML schema languages. From the point of view of formal language theory (ignoring
 things such as user-friendliness or software support, amongst others), the question which
 grammar formalism is most apt for defining a document grammar for a given XML markup language
 is determined by a trade-off between expressiveness on one side and processing complexity on
 the other side. The more expressive a grammar formalism is, the more resources we need for
 processing the corresponding languages, and the more likely are they to fall prey to
 ambiguity.
Expressiveness thus always comes at a cost; it is, however, not always quite clear at
 which cost. To make these things more clear is one goal of this paper. We will look at some
 well-known classes of formal grammars/languages that are relevant for XML, and scrutinize
 their expressivity and processing cost. Pursuing this approach, we will see that there are
 some other interesting and relevant classes, which have not been formally established yet to
 the best of our knowledge, and which we will define in the sequel. These classes partly
 refine, partly complement the hierarchy of Murata et al., 2005, and, as we will see,
 are partly already tacitly in use. Our main focus will not be on (non-)determinism in content
 models, that is, on properties of regular expressions; rather we will focus on determinism in
 tree structures, and try to formally clarify the relation between determinism and
 expressivity, as well as between locally and globally ambiguous grammars/trees. On the way, we
 provide some new results for the problem of ambiguity not only of grammars, but also of
 languages: as we will see, there are languages for which there is no unambiguous grammar, and
 not yet a class of grammars which generate all and only the languages for which there is an
 unambiguous grammar.
In contrast to other comparative analysis of XML schema languages, such as Lee and Chu, 2000 or Ansari et al., 2009, the main research goal of our paper is
 thus a more elaborate and fine-grained theoretical approach based on work that has been
 already undertaken (see section “Formal Language Theory and XML”). The application examples shown in
 this paper (especially the ones given in section “The Murata Hierarchy as Hierarchy of Locality Conditions”) are clearly
 for demonstration purposes and do not necessarily introduce new findings.

XML and Formal Language Theory
The history of document grammars begins long before XML's success: in Goldfarb, 1978 the first published formal document type
 descriptions can be found, while 1986 SGML Document Type Definition (DTD, SGML) were established, followed by XML's DTD (XML 1.0) and
 other XML schema languages that were created during XML's ongoing success. This time line
 begins even earlier, in 1955, when Noam Chomsky published his theory on formal grammar (Chomsky, 1955, Chomsky, 1956).
One of the several benefits of XML markup languages is the possibility to use a schema (a
 document grammar) to assure not only well-formedness, but
 also validity of an instance of a given markup language. The
 XML specification defines well-formedness as follows: A textual object is a well-formed XML document if:
	Taken as a whole, it matches the production labeled document.

	It meets all the well-formedness constraints given in this specification.

	Each of the parsed entities which is referenced directly or indirectly within the
 document is well-formed.

— XML 1.0 (Fifth Edition), Section 2.1 "Well-Formed XML Documents"

 A valid instance in addition declares conformance and actually conforms to the
 rules of a schema of a given markup language. Or, in a more general way: The intention or purpose of validation is to subject a document or data set to a test,
 to determine whether it conforms to a given set of external criteria.
— Piez, 2001, p. 144

 A validating parser takes an instance document (and the corresponding schema) as
 input and produces a validation report, which includes at least a return code reporting
 whether [t]he document is valid and an optional Post Schema Validation Infoset (PSVI),
 updating the original document's infoset (the information obtained from the XML document by
 the parser) with additional information (default values, datatypes, etc.) (van der Vlist, 2001). During this process different levels of validation may be
 checked, depending on the XML schema language used: validation of the instance's structure
 (i.e., the markup), datatyping (i.e., the content of individual leaf nodes), integrity (in
 terms of links, either between nodes within a document or between documents). In addition,
 other tests, usually called business rules may apply as well
 (see van der Vlist, 2001). While one may differentiate between the terms
 valid (as defined by the XML specification and therefore
 only referring to validity according to a Document Type Definition) and schema-valid (i.e., valid according to one of the externally defined XML schema
 languages) we will use the former term throughout this paper as equal term for depicting the
 feature of confirmation to a given set of external criteria regardless of the schema language
 used. Furthermore, we will only discuss validation mechanisms through schema languages,
 therefore, technologies such as the Content Assembly
 Mechanism (CAM, see Carey, 2009) or meta-validation techniques
 such as Namespace-based Validation Dispatching Language
 (NVDL) are not observed any further. Since we will focus on grammar-based schema languages, rule-based[1] (or constraint-based) schema languages such as Schematron, the Constraint Language in XML (CLiX, Nentwich, 2005) or DSD2 will not be observed either.[2] For clarification reasons we follow the definitions of Costello and Simmons, 2008:A grammar-based schema language specifies the structure and contents of elements and
 attributes in an XML instance document. For example, a grammar-based schema language can
 specify the presence and order of elements in an XML instance document, the number of
 occurrences of each element, and the contents and datatype of each element and attribute.
 A rule-based schema language specifies the relationships that must hold between the
 elements and attributes in an XML instance document. For example, a rule-based schema
 language can specify that the value of certain elements must conform to a rule or
 algorithm.
— Costello and Simmons, 2008

When someone starts developing a new XML-based markup language sooner or later the
 question about a formalism to define the corresponding document grammar arises, since there is
 a variety of schema (definition) languages available. While a schema can be considered as a
 formal definition of a grammar of the XML-based markup language (e.g. as a set of rules or
 criteria), the schema language is a formal language for expressing schemas
 (Møller and Schwartzbach, 2006). Usually, choosing a schema language depends on several
 factors such as familiarity with a given formalism or support provided by the chosen authoring
 software or processing tools such as XSLT 2.0 or XQuery 1.0.
 These factors are very specific for one's own needs and environment and we will not give any
 advice regarding these topics. However, what we want to demonstrate in this paper are the
 differences in terms of expressiveness and computability between the three most used XML
 schema languages, starting with XML's inherent Document Type Definition (DTD, see XML 1.0), based on SGML's DTD (see SGML, Goldfarb, 1991, Maler and Andaloussi, 1995) where a non-XML syntax is used[3], over W3C's XML Schema Description Language (XML Schema 1.0 Part 0,
 XML Schema 1.0 Part 1, XML Schema 1.0 Part 2) and the formal language
 theory based RELAX NG (see RELAX NG, van der Vlist, 2003, RELAX NG (2nd Ed.) as a successor to both RELAX (RELAX Core) and TREX
 (Clark, 2001).

Formal Language Theory and XML
Although the formal model of an XML instance is always a single rooted tree, the different
 schema languages that can be used to define and constrain instances can be differentiated
 according to their expressiveness and – in a further step – according to their
 computability, which may be interesting when dealing with a task such as programming a
 validating parser. Different authors have dealt with the relationship between XML applications
 and formal languages, for example Brüggemann-Klein and Wood, 1992, Brüggemann-Klein, 1993, Brüggemann-Klein and Wood, 1997, Hopcroft et al., 2000, Rizzi, 2001, Mani, 2001, Murata et al., 2001, Brüggemann-Klein and Wood, 2002, Sperberg-McQueen, 2003, Klarlund et al., 2003, Brüggemann-Klein and Wood, 2004, Murata et al., 2005, Martens et al., 2005, Kilpeläinen and Tuhkanen, 2007, Comon et al., 2008, Martens et al., 2009, and Gelade et al., 2009. Often, a formal specification of
 XML's inherent ID/IDREF mechanism is omitted; however, Abiteboul et al., 2000, p. 33 claim that these references can be used to describe graphs
 rather than trees, since they allow for multidominance structures. (see Stührenberg and Jettka, 2009 for a practical implementation of using
 ID/IDREF for realizing graph structures within XML's tree model).
 Kracht, 2010 uses modal logic to provide a semantics for XML-documents, and
 to characterize XML markup and search and retrieval mechanisms such as XPath. Other work
 leaves the formal model of XML and deals with graph structures that can be described by either
 XML or XML-like markup languages (see Marcoux, 2008 for a graph
 characterization of TexMECS and other overlapping markup formalisms), but in this paper we
 will concentrate on schema languages that describe well-formed (that is tree-like)
 XML-documents.
Typically, DTDs are characterized as extended context-free
 grammars (see Hopcroft et al., 2000 and Rizzi, 2001),
 that is, on the right-hand-side of a production rule regular expressions are allowed. This
 means for the declaration of an element that its allowed content is described by a regular
 expression using other element names (i.e., referring to other or the very same globally
 declared elements) or reserved keywords such as #PCDATA or EMPTY. In
 current work, especially Murata et al., 2005 and Møller and Schwartzbach, 2006, a
 family of tree grammars is used to model XML schema
 languages; for example, DTDs are defined as local tree
 grammars which can be considered strongly equivalent to CFGs, with the only
 difference that they allow non-finitary branching: Ignoring the attributes for a moment, there is a simple but elegant connection between
 DTDs and context-free grammars, namely, each DTD corresponds to an extended context-free grammar, where productions may have regular
 expressions on their right-hand side. Then, an XML document is valid with respect to the
 DTD precisely when its associated tree is a correct derivation tree for that
 grammar.
— Klarlund et al., 2003, p. 13

In addition to using local tree grammars for characterizing DTDs, Murata et al., 2005 construe a taxonomy of XML schema languages. The authors introduce
 single-type tree grammars, as characterizing XML Schema,
 and use regular tree grammars to characterize RELAX NG.
 Although this work is quite extensive, the formal analysis can be further improved by
 clarifying some propositions. Given the (still growing) importance of XML and the broad range
 of tasks it is used for, stronger theoretical background seems to be the best way to find new
 applications. Before we present our results, we have to introduce the formal concepts we are
 working with.

Refining the Taxonomy of XML Schema Languages
Introduction to the Formal Concepts
In this paper, we will mainly use tree grammars. Since the use of tree grammars is well
 established in the XML community, we will just shortly provide the necessary definitions;
 for a more explicit treatment and motivation, we defer the reader to Gécseg and Steinby, 1997 or Murata et al., 2005.
Definition 1
 A regular tree grammar (RTG) is a 4-tuple (N,T,S,P), where N is a
 finite set of nonterminals, T is a finite set of terminals, S is a set of start symbols,
 which form a subset of N, P is a set of production rules, which have the form: A →
 a(r), where A ∈ N, a ∈ T, and r is a regular expression over elements of N. We
 call A the left hand side of a rule, a the terminal or label which is introduced by the
 rule, and r its content model.
 We generally use uppercase letters for nonterminals, and lower-case letters for
 terminals. Note that this grammar generates trees, not strings, and that the nonterminals do
 not remain the labels of the (non-leaf) nodes they introduce, but are substituted by the
 terminal labels. The class of languages generated by RTGs is called the regular tree
 languages (RTLs). This is the most general class of languages we will consider here; and we
 now introduce various restrictions on this class of grammars, as they are defined by Murata et al., 2005.
Definition 2
 We call two rules of a RTG competing, if they introduce the same
 terminal nodes, but have different left hand sides. Thus, A → a(r) and B →
 a(r') are competing.
In general, in an RTG we can merge any two rules which have the same left-hand side and
 introduce the same terminal, by merging their content models, because for any two regular
 expressions we can easily form a single expression which denotes is the union of both.
 Therefore, we will generally assume that in our grammars any two rules with same left-hand
 side and same terminal do not exist. As a consequence, the concept of competing rules is the
 crucial point if we deal with determinism and ambiguity. For the same reason, we can speak
 of competing nonterminals almost in the same way as of competing rules: competing
 nonterminals are the left-hand sides of competing rules; a grammar has competing
 nonterminals exactly if it has competing rules, and exactly as many as.
Definition 3
 A local tree grammar (LTG) is an RTG with no competing
 rules.
In an LTG, we have thus a one-to-one correspondence of nonterminals and terminals, which
 makes them very similar to context-free grammars (though not identical, since regular
 content models allow for non-finitary branching).
Definition 4
 A single type tree grammar (STG) is an RTG, where competing
 nonterminals must not occur in the same content model.
As Murata et al., 2005 point out, LTGs roughly correspond to DTDs, STGs
 correspond to XML Schema, and RTGs correspond to Relax NG. Note that this correspondence is
 established by only regarding the "core" syntactic features of the schema languages, that is
 XML's inherent reference mechanism is not taken into account. These are thus the most
 important grammar types for XML. Murata et al., 2005 still add another type:
Definition 5
 A restrained competition grammar (RCG) is an RTG, where competing
 nonterminals must not occur in the same content model and with the same prefix of
 nonterminals; we thus disallow rules with identical left-hand side, terminals, and content
 models of the form (Γ A Δ) and (Γ B Δ'), where A and B are competing
 nonterminals, and where uppercase Greek letters refer to possibly empty sequences of
 nonterminals.
Notably, the restriction concerns only the left context of the competing nonterminals.
 Of course, there exists a parallel definition for the right context. The problem is that
 both definitions lack some generalization, as they both generate different classes of
 languages, and there is no inclusion in either direction. If we, however, generalize the
 restriction of competition to both the left and the right context (which weakens the overall
 restriction on the grammar), some problems arise. We will discuss possible generalizations
 later on.
It is easily seen that there is a hierarchy of proper inclusion of the grammar types
 presented: LTGs are always STGs, which are always RCGs, which are always RTGs, whereas the
 converse does not hold.
We furthermore define an interpretation of a given tree against a given grammar as
 follows:
Definition 6
 An interpretation I of a
 tree t against a grammar G is a mapping from each node label of t, denoted by e, to a
 nonterminal N of the grammar, such that
	I(e) is a start symbol when e is the root of
 t,

	for each e and its daughter nodes e0,
 e1,...,en, there is a production rule
 A → a(r) in G, such that
	I(e) is A,

	the label of e is a,

	I(e0),
 I(e1),...,I(en) matches
 r.

As is easily seen, with this definition, the ease of interpretation directly interacts
 with the Murata hierarchy. We will continue in this vein. To keep things clear, it is
 crucial to distinguish between the label of a node and its interpretation: the label of a
 node corresponds to its terminal in the production rule (recall that tree grammars directly
 generate trees, not strings via trees as CFGs), and it is immediately visible in the tree.
 By the interpretation of a node in turn we denote the nonterminal by which the node label
 has been produced. This nonterminal is not visible and has to be inferred. In addition, we
 have to distinguish between rule and rule instantiation: since content models are regular
 expressions over nonterminals, they denote sets of sequences of nonterminals, and one member
 of this set is an instantiation. An additional problem arises in interaction with the fact
 that there is no necessary one-to-one correspondence of nonterminals and terminals (i.e.,
 labels); a possible consequence is that the same sequence of labels can be produced by
 different instantiations of a content model (we will exhaustively discuss this source of
 ambiguity later on).
So far, we have introduced the main concepts which are well-known in the literature, and
 which we are going to use and elaborate in this paper.

An Example Grammar
We will use the following example to demonstrate some of our findings. We want to define
 a document grammar for a text. The text may contain an optional title, followed by either at
 least a single section or a single paragraph. An optional author entity (possibly decoded
 using an attribute) may contain information about the text's author. Inside a section an
 optional title followed by other (sub-)sections or paragraphs are allowed. The title
 consists of raw text while a paragraph may contain raw text or a reference to other
 paragraphs, since these may have an optional identifier (using XML's ID
 type).
If we try to express these constraints more formally we might end up with a grammar
 similar to the one shown in Figure 1. Again, nonterminals are printed
 in capital letters, while node labels or terminals are printed in small letters. Note, that
 in this formulation elements, attributes and raw text are defined as terminals.
Figure 1: An example grammar
S → text(author,Title? (Section|Para))
Section → section(Title? (Section|Para))
Title → title(#pcdata)
Para → para(id, #pcdata|Xref)
Xref → xref(href,ε)

The Example Grammar Realized by a DTD (Local Tree Grammar)
Following Murata et al., 2005, DTDs can be classified as local tree grammars.
 A possible realization for our example grammar can be seen in Figure 2.
Figure 2: DTD realization of the example grammar
<!ELEMENT text (title?, (section | para)+)>
<!ATTLIST text author CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (title?, (section | para)+)>
<!ELEMENT para (#PCDATA | xref)*>
<!ATTLIST para id ID #IMPLIED>
<!ELEMENT xref EMPTY>
<!ATTLIST xref href IDREF #REQUIRED>

Since local tree grammars and DTDs only support globally declared elements (and
 locally declared attributes), the content models of the text and the
 section element share references to the same three elements
 (title, section and para) and contain both a
 sequence and a choice together with the occurrence indicators + (at least one
 occurrence) and ? (optional). The content model of the para
 element contains mixed content, that is both raw text and the xref element
 are allowed as children. Since DTDs force the use of the choice group (|) and
 the trailing asterisk (*) as occurrence indicator, there is no other way to
 define this specific content model using this schema language.
Note that DTDs do not support any type mechanism. Buck et al., 2000, Papakonstantinou and Vianu, 2000, Balmin et al., 2004 and Martens et al., 2006 suppose the extension of DTDs by adding types, while DTD++,
 proposed by Vitali et al., 2003 adds namespace awareness on top, and DTD++ 2.0
 (see Fiorello et al., 2004) even supports co-constraints.

The Example Grammar Realized by an XSD (Single Type Tree Grammar)
An XML schema description (i.e., a single type tree grammar) of the same document
 grammar may look like the one in Figure 3.
Figure 3: XSD realization of the example grammar
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="text">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="textType">
 <xs:attribute name="author" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="section" type="textType"/>
 <xs:element name="para">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element name="xref" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="href" type="xs:IDREF" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute ref="id" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:complexType name="textType">
 <xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:group ref="sectOrPara" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:group name="sectOrPara">
 <xs:choice>
 <xs:element ref="section"/>
 <xs:element ref="para"/>
 </xs:choice>
 </xs:group>
</xs:schema>

Note that this XML schema description is only one possible realization out of a
 variety of different XML schema descriptions that would fit our needs. Although it may be
 not very human-readable, it was designed to show some features that are supported by XSD.
 The text element is derived by extension of the globally declared complexType
 textType which itself refers to the globally declared model group
 sectOrPara. The schema contains both locally and globally declared
 attributes (author vs. id) and elements (xref as an
 example for a locally declared element). Apart from that, XSD supports XML Namespaces (Third Edition) which are not shown in the example above. As Martens et al., 2006 has already pointed out, that the actual extra expressive power
 of XSDs over DTDs can only be used to a very limited extent due to the Element Declarations Consistent (EDC) constraint (see XML Schema 1.0 Part 1, Section 3.8.6).

The Example Grammar Realized by a RELAX NG Grammar (Regular Tree Grammar)
RELAX NG can be classified as regular tree grammar according to Murata et al., 2005. A possible realization with RELAX NG is shown in Figure 4.
Figure 4: RELAX NG realization of the example grammar
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="text">
 <optional>
 <attribute name="author"/>
 </optional>
 <choice>
 <optional>
 <group>
 <ref name="element.title"/>
 <ref name="element.section"/>
 </group>
 </optional>
 <optional>
 <group>
 <ref name="element.title"/>
 <ref name="element.para"/>
 </group>
 </optional>
 </choice>
 </element>
 </start>
 <define name="element.title">
 <element name="title">
 <text/>
 </element>
 </define>
 <define name="element.section">
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <ref name="sectOrPara"/>
 </element>
 </define>
 <define name="element.para">
 <element name="para">
 <optional>
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 </optional>
 <zeroOrMore>
 <choice>
 <text/>
 <element name="xref">
 <attribute name="href">
 <data type="IDREF"/>
 </attribute>
 <empty/>
 </element>
 </choice>
 </zeroOrMore>
 </element>
 </define>
 <define name="sectOrPara">
 <group>
 <oneOrMore>
 <choice>
 <ref name="element.section"/>
 <ref name="element.para"/>
 </choice>
 </oneOrMore>
 </group>
 </define>
</grammar>

Compared to DTD or XSD, RELAX NG is based both on the mathematical theory of regular
 expressions and the concept of hedge grammars (van der Vlist, 2003 and Murata et al., 2005). As an XML schema language, RELAX NG has some advantages over
 other schema languages: while in DTDs and XSD mixed content models may contain child
 elements and text nodes in any arbitrary order, RELAX NG allows for ordering of the
 element child nodes (see van der Vlist, 2003, p. 57f.). Co-occurrence
 constraints can be used to specify the content model of an item according to the value of
 another item, allowing non-deterministic content models which cannot be realized in DTD or
 XSD (see van der Vlist, 2003, p. 62f, and section “Determinism, Algorithms and Local Ambiguities”
 for a discussion). In general, a co-occurrence constraint (or co-constraint as they are
 called by Pawson, 2007) may be a constraint over multiple items,
 not just two items and may exist between XML structure components
 (elements, attributes) as well as between data values. One may differentiate
 between element-to-element, element-to-attribute, or attribute-attribute co-occurrence
 constraint, based on the items involved.
 In addition, SGML's interleave operator & (see Goldfarb, 1991, p. 291) that is missing in XML DTD and XSD can be used in
 RELAX NG as well, although this adds nothing to its expressive power. In contrast to the
 two other schema languages discussed in this paper, RELAX NG does not support default
 values (which are supported for attributes in DTD and for attributes and elements in XSD).
 While both DTD and XSD support XML references via
 ID/IDREF(S) attribute types, RELAX NG has no
 included datatype library; however, as seen in the example grammar, it is possible to
 include the datatype library of XML Schema 1.0 Part 2.
The document instance given in Figure 5 would be valid according
 to all of the above defined document grammars (the example shows validation against the
 XML schema, adding a Doctype declaration and removing the
 noNamespaceSchemaLocation attribute of the root element would result in a
 valid instance according to the DTD. Note that RELAX NG does not contain a standard way to
 associate a RELAX NG schema to an XML instance since it was designed as part of the ISO
 DSDL framework (in this framework, the NVDL should be used as general
 external mechanism for validating instances).
Figure 5: Valid XML instance
<?xml version="1.0" encoding="UTF-8"?>
<text xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="text.xsd" author="maik">
 <title>A simple title</title>
 <section>
 <title>A section title</title>
 <para id="p1">Introductory para</para>
 <section>
 <title>A subsection title</title>
 <para>Some text with a reference: <xref href="p1"/>.</para>
 </section>
 </section>
</text>

Determinism and Local Ambiguity
Determinism is a important property for XML Documents, schema languages and
 interpretation. If a grammar is deterministic, parsing will be much more efficient, since in
 general we do not have to keep in mind any information, do not have to backtrack, do not need
 any non-local information in case we search, etc.[4] The concept of determinism is closely related to the concept of local ambiguity:
 if there is no local ambiguity, then at every point in the parsing process we know the
 structure (in this case: interpretation) of what we have seen so far, because there is
 only one possible local analysis. If there is some local ambiguity, non-determinism arises: we
 cannot assign a unique interpretation locally, for we would need information which is not
 available yet, and we need to apply some heuristics.
Determinism, Algorithms and Local Ambiguities
In this section we will review the concept of determinism, as opposed to local ambiguity
 of a grammar. As introductory issue, we show that determinism does not only depend on the
 grammar we use, but also on the algorithm. In regular tree languages, there can be no
 one-dimensional concept of determinism, as there is for regular string languages. Note that
 this is more than a metaphor, since we can perceive of regular string languages as
 one-dimensional structures; in order to talk about trees or the strings formed by their
 leaves, we need at least two dimensions (see Rogers, 2003). In the
 remainder, we will show how different grammar types provide determinism for all, some
 particular class of, or no algorithms.

Deterministic Content Models
Firstly, we consider the concept of deterministic content models. This draws on the
 notion of deterministic (or 1-unambiguous) regular expressions (DREs), thoroughly surveyed
 by Brüggemann-Klein and Wood, 1997[5]. Assume we have a string s which is denoted by
 some regular expression E. Assume furthermore we build our
 expressions with letters from an alphabet Π, which is
 identical to the alphabet Σ, except for the fact that
 we have additional indices for the letters (taken here from the set of natural numbers). If
 we build an expression from Π, we have to make sure
 that every index must occur at most once in it. Constructors for regular expressions are as
 usual, and indices are passed on to the letters of the strings the expression denotes. We
 say that a letter in s instantiates a letter in E, if the following holds:

 Definition 7
 A letter ai in s instantiates a letter
 aj from E, if i = j.
The index ensures that for every string an expression denotes, there is a unique
 surjective mapping from letters in s to letters in
 E. We now define a mapping ♮ on strings over Π to strings
 over Σ, such that
 ♮(xi):= x,
 ♮(xs):=♮(x)♮(s), where s
 is a string and x a letter (the first of the string). This
 homomorphism simply deletes the indices and leaves anything else untouched. Note that for a
 unique string ♮s, and a given expression E, there might be several s ∈
 E, such that their mapping under ♮ is
 identical. In this case we say that a letter in s might
 instantiate several letters in E. A deterministic regular
 expression over Π is then defined as follows:

 Definition 8
 E is deterministic or one-unambiguous, if for all strings u, v, w over
 Π, and all letters x, y in Π, the following holds: if uxv and uyw ∈ L(E),
 and x ≠ y, then also ♮ x ≠ ♮ y.
 This means that we can skip the indices, and we still know which letter in E is instantiated by any letter in s, simply from knowing its left context. Formally, this means that the mapping
 ♮ is reversible. A regular language is deterministic if it is denoted by a
 deterministic regular expression. A simple example of a non-deterministic expression is the
 expression a*b*a*, as we can easily check for the string
 a, which might be the instantiation of either of the two
 as.
As a consequence for processing, quite informally, we can state that reading s ∈ L(E) from the left to
 the right, where E is a DRE, at any point in s, we know at which point in E we
 find ourselves. In automata theory, DREs correspond to deterministic Glushkov
 automata.
There is however a problem if we apply this concept to content models in regular tree
 grammars: in regular expressions, we can see from a letter in the string which type of
 letter in the expression it instantiates (thus, we have a unique letter in Σ, though not in Π). We
 can thus deduce from a letter in the string a letter in the expression, though not a letter
 instantiation, if the expression is not deterministic. We cannot, however, deduce from a
 given tree node label a unique type of nonterminal: if we have competing rules, different
 nonterminals introduce identical labels; and we still have to keep them apart. Thus, if the
 content model of nonterminals itself is deterministic, this is of little use if we cannot
 infer from a given label the unique nonterminal it belongs to.
By way of example, consider the following grammar rule:
A → a(ABC|CBA)
 Its content model is surely deterministic. However, if A and C are competing rules (have identical
 labels), this is of little use. We have to check each subtree until we have its unique
 interpretation. This means, in the worst case, we have to check both subtrees (as we will
 see, this is the case in which the trees generated by A (C)
 form a subset of the trees generated by C (A)).
The obvious reason for the fact that this concept of determinism comes short is that it
 originates in one-dimensional strings. As our trees are two dimensional, we can define
 determinism only with respect to directions in which our analysis proceeds. The main
 difference is, of course, the one between top-down and bottom-up processing. In this paper
 we will not consider the difference between depth-first and breadth-first parsing, though
 this is surely worthwhile.
In the next subsection, we will reformulate and complete the Murata hierarchy in a way,
 that makes clear which kind of determinism is facilitated by which kind of grammar. In the
 sequel, we will disregard the one-dimensional problem of non-deterministic content models,
 since they have been thoroughly analyzed, and we have nothing to add (see Brüggemann-Klein and Wood, 1997). At this point, our interest is the second dimension:
 importantly, this means that talking about determinism, we implicitly always add: provided
 that content models are deterministic in the above sense. We thus exclude all problems which
 may arise from regular expressions.

The Murata Hierarchy as Hierarchy of Locality Conditions
As our main concern will be the formal properties of the grammar types, as they affect
 processing, we will firstly reformulate the hierarchy. This reformulation aims at making
 clear which information we need in order to uniquely interpret a local node or
 subtree.
	In a local tree grammar, for any node a in any context, we know its unique interpretation. This is
 obvious, since for any node label, there is only one single rule which generates it, by
 the very definition of a local tree grammar. As a consequence, parsing is deterministic
 for any algorithm (provided we have deterministic content models), and the problem of
 giving a certain node of a given tree its interpretation is solvable in a constant
 amount of steps.

	In a single type tree grammar, for any node label
 a in any context, we can determine its unique
 interpretation if we know the interpretation of its mother node. This follows directly
 from the definition: if we know the interpretation of a node's mother node (rules
 correspond to interpretations), we know its content model. Within a content model there
 must not occur any competing nonterminals.
Note, however, that it is not sufficient to know the mother nodes label. We can
 easily construct an example to show this: we have two competing rules, A → a(C) and B →
 a(D), whose nonterminals do not occur in the same content model of any
 rule.
Furthermore, we have the two rules C → b(r)
 and D → b(r'). Then both nodes, as introduced by
 C and D, have label
 b, their mother nodes both have the label a, despite they have different interpretations.
For processing, this has an immediate consequence: a top down parser will at any
 point immediately know the interpretation of any node, whereas if we start
 interpretation from the bottom, in the worst case we will have to go up to the root in
 order to get the correct interpretation. The matter of providing the interpretation of a
 given node is nonetheless a linear search problem, since for a given tree and a given
 node, it is sufficient to go a path from the root to that node.

	 In a restrained competition grammar (RCG), in
 order to give a node its unique interpretation, we must have the interpretation of its
 mother node, and check its left siblings, in case it has any. Note that from how we
 defined RCGs, it follows that we only need the label of the siblings, not their
 interpretation: because any two competing nonterminals within a single content model are
 distinguished by a unique prefix, this prefix itself must not consist of competing
 nonterminals only, and neither must it be empty. This keeps the grammar unambiguous, and
 easy to process. However, it makes some restrictions we do not necessarily want to make:
 maybe the unique interpretation of a label should not depend on a left sibling, but on a
 right sibling. For example, in RCGs we cannot have competing nonterminals as leftmost
 symbols in a content-model, but as rightmost, given some left context. This causes an
 asymmetry which seems quite arbitrary. Of course we can equally define the asymmetric
 counterpart of RCG, checking for unique suffixes instead of prefixes; but care is to be
 taken: since we have to fix the type for the class of languages (i.e., document
 grammars) we define, we have the same problem. If we generalize the concept to both
 unique suffix and prefix, some problems arise, which can however be remedied.

	We now define a generalized restrained competition
 grammar (GRCG), as follows:
In a GRCG, for any two competing nonterminals A and
 B within a single content model r, one of (Γ A Δ) and
 (Γ B Δ) fails to match r (Greek variables range over possible empty sequences of
 nonterminals).
We now have generalized the restriction from the left (right, respectively) to the
 entire context. Note that we have relaxed the overall restriction on the grammar, by
 making the restriction on content models more specific (indeed, this type properly
 includes the RCGs).
 This little relaxation however causes a vast increase in processing complexity:
 because now, in order to give its unique interpretation to any node a in any context, in the worst case one needs to know the
 interpretation of its mother, the interpretation of its siblings, and the interpretation
 of its subtrees as well. And even then, GRCGs might still be ambiguous, allowing more
 than one interpretation for a entire single tree.
This needs some explanation. The first point is easy to see: that we need to know
 the interpretation of the mother node follows a fortiori from the preceding argument
 (single type grammars are properly included in restrained competition grammars). But
 this is insufficient, since competing nonterminals may occur within the same content
 model. We have to match all the sister labels to the nonterminals of the content model
 of the mothers interpretation in order to get a unique interpretation (according to the
 definition).
Note, however, that we need the interpretation of the sister nodes; it is not
 sufficient to have their labels. This we can easily verify with the following grammar
 rule: A → a(BC|B'C'), where B and B' and C and C' are competing rules, introduce
 the labels b and c,
 respectively.
This satisfies all conditions on GRCGs. In order to get the correct interpretation
 for the labels b and c, it is not sufficient to know the sister node's label, but its
 interpretation.
Things can thus get even worse, if we consider the case where the interpretation of
 a sister node depends on the interpretation of the node under consideration itself. Look at the following example rule: A → a(BC|CB), where B
 and C are competing rules.
Obviously, they are both uniquely determined by their neighbor within the content
 model of A (A may only
 occur with B to its left or its right, and vice versa).
 However, as they carry the same labels, it is insufficient to determine either of them
 if we just check the label of its sister (since it is identical). Furthermore, we might
 have the case where it is impossible to interpret one of the subtrees, without its
 sisters interpretation (e.g., if one of the competing nonterminals generates a subset of
 the trees generated by the other).
We will consider this case more thoroughly in the next section, showing that there
 are globally ambiguous GRCGs, and that for every language that can be generated by an
 RTG, there is also a GRCG grammar that generates the same language.
From the point of view of processing, we see that in GRCGs, expressive power comes
 at a high cost: neither a bottom-up nor a top-down parser is capable of assigning a
 unique interpretation locally, and maybe not even globally. The problem of giving a
 given node its unique interpretation might thus be an exponential search problem, and in
 the worst case not even decidable. We will therefore introduce a subtype of GRCG, which
 we will call unambiguous RCG. This type is properly included in the class of GRCG
 grammars, and includes properly the class of STGs as well as RCGs, as can be seen
 easily.

	We now introduce unambiguous restrained competition
 grammars (URCGs). What we want to eliminate is ambiguity, which can be
 caused by the fact that in a GRCG, we might have entire competing contexts, or the
 interpretation of the context of a label in a content-model might depend on the
 interpretation of the label itself. In the resulting grammar, it should be possible to
 yield the unique interpretation of a node from the interpretation of its mother and the
 labels (not interpretations) of its sisters.
We characterize the grammar type in the following terms: We introduce an alphabet of
 meta-variables O, which we use in the following way:
We form a set of all sets of nonterminals from N
 which compete with each other; we call these sets the competition
 sets (which are possibly singletons). We are interested in the sets where
 every nonterminal occurs in exactly one competition set, such that the whole set forms a
 partition of N. For every such partition we iterate the
 following procedure: To every competition set, we assign a single symbol from O. We call this an O-assignment. Then, for all content models, we check for all nonterminals,
 whether the content models still satisfy the GRCG condition, if we replace all other
 nonterminals by the symbols from O they are assigned
 to. In case there is more than one overall assignment, that is, a single nonterminal
 belongs to more than one competition set, we have to iterate this for every possible
 assignment. If for every assignment, nonterminal and content model, the resulting
 grammar is a GRCG, then the original grammar is a URCG.
Note that the assignments are only introduced for this evaluation procedure. We will
 call contexts which are identical under the O-assignment
 similar. We define accordingly a URCG as a grammar
 where competing nonterminals must not occur in the same content model and in similar
 contexts (this obviously subsumes identical contexts). It is easy to see that now we
 have made sure that competing nonterminals must not occur within the same contexts of
 labels (as opposed to nonterminals).
Thus, a URCG is a GRCG where for every node we find its unique interpretation if we
 have the interpretation of the mother node and the labels of its sister nodes. In
 particular, we can interpret any node without having to recur to its sister node's
 interpretation: the content model (BC|CB), where
 B and C are
 competing nonterminals, does not satisfy the condition, because both B and C occur in the context
 __X or X__,
 respectively, where X is the O-assignment for both.
This kind of grammar is useful for the following reason: there is no global
 ambiguity in it (as we have deleted the only source of ambiguity, that interpretations
 of labels may depend on each other); and it is the strongest of the non-ambiguous
 grammar types we have considered. However, it is not capable of generating every
 language which is not inherently ambiguous, as we will show later. Note, that in order
 to provide the unique interpretation of a node, we still might have to check all of its
 sister nodes, but it is sufficient to check the labels.
It is easily seen that URCGs properly include RCGs, as both left and right context
 can count as distinctive (we will make this more precise later on). As we will also see
 further down, there are languages which can be generated by GRCGs, but not by URCGs.
 This will follow from the fact that actually every RTL can be generated by a GRCG, but
 there are languages for which there are no unambiguous grammars, and, obviously, URCGs
 are always unambiguous.
Interestingly, the search problem for URCGs is still linear, since we only need to
 go down the path from the root to a given node, and in addition check finitely many
 sister labels (note that while regular expressions allow for arbitrary branching, the
 branching of a given tree is, of course, always finite).
An example of a URCG could be the use of attribute based co-occurrence constraints
 or attribute-element constraints in the following RELAX NG declaration. We extend our
 example grammar by adding a type information to the section
 element. If the type is set to the value "global" other section
 child elements are allowed as part of the content model, if its value is set to
 "sub" only para child elements are allowed (see Figure 6). Figure 6: Extended RELAX NG grammar
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="text">
 <optional>
 <attribute name="author"/>
 </optional>
 <optional>
 <ref name="element.title"/>
 </optional>
 <oneOrMore>
 <choice>
 <ref name="element.section"/>
 <ref name="element.para"/>
 </choice>
 </oneOrMore>
 </element>
 </start>
 <define name="element.section">
 <choice>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>global</value>
 </attribute>
 </optional>
 <oneOrMore>
 <choice>
 <ref name="element.section"/>
 <ref name="element.para"/>
 </choice>
 </oneOrMore>
 </element>
 </oneOrMore>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>sub</value>
 </attribute>
 </optional>
 <ref name="element.para"/>
 </element>
 </oneOrMore>
 </choice>
 </define>
 <define name="element.title">
 <element name="title">
 <text/>
 </element>
 </define>
 <define name="element.para">
 <element name="para">
 <interleave>
 <optional>
 <attribute name="id"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <data type="ID"/>
 </attribute>
 </optional>
 <optional>
 <element name="xref">
 <attribute name="href"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <data type="IDREF"/>
 </attribute>
 </element>
 </optional>
 <text/>
 </interleave>
 </element>
 </define>
</grammar>

The interesting part is the definition of the element.section pattern.
 It allows for two different elements named "section" with different content
 models according to the value of the optional type attribute. The result is
 that the instance shown in Figure 7 is valid according to
 this RELAX NG grammar while the one shown in Figure 8 is
 not.
Figure 7: Valid XML instance according to the extended RELAX NG grammar
<?xml version="1.0" encoding="UTF-8"?>
<text author="ms">
 <title>A simple title</title>
 <section type="global">
 <title>A section title</title>
 <para id="p1">Introductory para</para>
 <section type="sub">
 <title>A subsection title</title>
 <para>Some text with a reference: <xref href="p1"/>.</para>
 </section>
 </section>
</text>

Note
Without any type attribute the instance shown in Figure 7 would still be valid.

Figure 8: Invalid XML instance according to the extended RELAX NG grammar
<?xml version="1.0" encoding="UTF-8"?>
<text author="ms">
 <title>A simple title</title>
 <section type="sub">
 <title>A section title</title>
 <para id="p1">Introductory para</para>
 <section type="sub">
 <title>A subsection title</title>
 <para>Some text with a reference: <xref href="p1"/>.</para>
 </section>
 </section>
</text>

Other well deployed RELAX NG examples of attribute based co-occurrence constraints
 can be found in van der Vlist, 2003, Chapter 7, in Clark et al., 2003, Section 15, or in the RELAX NG schema for the JLTF (Japanese
 Layout Taskforce) aligned document shown in Sasaki, 2010.
Importantly, co-occurrence constraints do not add anything to the formal generative
 capacity of the grammar. This is because attributes (or their values, respectively) add
 an additional specification to the terminals. Thereby
 we can convert competing terminals (or, equivalently, rules) into non-competing ones,
 but not vice versa. Any co-occurrence constraint thus gives us the possibility to
 distinguish maybe otherwise indistinguishable non-terminals, thereby at most keeping the
 complexity of the grammar constant, or even reducing it. Furthermore, as co-occurrence
 constraints do only affect immediate subtrees (i.e., content models), their expressivity
 is entirely contained within the expressive capacities of standard regular tree
 rewriting rules; the only thing we might need to add to our formal grammar model is some
 additional specification on the terminals.
Neither DTD[6] nor XSD 1.0 support such attribute-element constraint, although there are
 some workarounds or hacks that can be used in XML schema to mimic co-occurrence
 constraints: either the use of the xsi:type attribute or
 xs:key[7]. Another option to realize this particular constraint is the use of embedded
 Schematron business rules or conditional type assignment using type
 alternatives or assertions that are introduced in XML Schema 1.1 Part 1 (for
 complex Types) and XML Schema 1.1 Part 2 (for simple Types). Figure 9 shows a possible XSD 1.1 realization.
Figure 9: XSD grammar with XSD 1.1 assert element
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="text">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="textType">
 <xs:attribute name="author" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="section">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:group ref="sectOrPara" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="type" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="global"/>
 <xs:enumeration value="sub"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:assert test="@type!='sub' and (child::para | child::section) or
 @type='sub' and not(child::section)" />
 </xs:complexType>
 </xs:element>
 <xs:element name="para">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element name="xref" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="href" type="xs:IDREF" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute ref="id" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="textType">
 <xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:group ref="sectOrPara" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:group name="sectOrPara">
 <xs:choice>
 <xs:element ref="section"/>
 <xs:element ref="para"/>
 </xs:choice>
 </xs:group>
 <xs:attribute name="id" type="xs:ID"/>
</xs:schema>

The section element contains an XSD 1.1 assert element
 that uses an XPath expression in its type attribute to restrain the
 possible child elements according to the type attribute's value of the
 section element.
Note that when using XSD 1.1 assertions for expressing co-occurrence constraints we
 are not limited to immediate subtrees: although the evaluation of the XPath expression
 is done in the context of the parent element (i.e., XSD 1.1's xs:assert
 element uses a tree fragment rooted at the element whose type it is tested against) one
 could put the assertion at the level of the common ancestor, that is, the element that
 contains all the data needed to compute the assertion. The support for full XPath (i.e.,
 axes such as ancestor, parent or preceding and preceding-sibling and following and
 following-sibling, respectively) may be implementation-dependent. XSD 1.1 type alternatives
 are restricted to tests against constants or attributes on the element itself but not to
 ancestors, descendants, siblings or children or their attributes while Schematron
 business rules are not restricted to an XPath subset.

	There is one type we should add, which cannot be assigned a place on the hierarchy
 from STGs to RTGs, which is, however, weakly and strongly between LTGs and RTGs.
 Grammars of this type satisfy the following conditions: we want to be able to assign a
 unique interpretation to any node a, provided we know
 the complete subtree it governs. This kind of grammar would facilitate deterministic
 parsing for bottom-up algorithms. In terms of grammar, this imposes the following
 restrictions on the formalism:
	Every leaf-terminal is introduced by a single nonterminal,

	for every nonterminal N in a given grammar,
 there is at most one rule which has a given terminal a, and N appears in its content
 model.

We call this grammar type unique subtree grammar
 (USG). Note that this grammar type does not include STGs and URCGs, nor is it included
 by them. The restrictions do not restrain the occurrence of competing nonterminals in
 content models, but rather the labels which belong to nonterminals in the content model.
 More precisely, whereas the former types restrain the occurrence of competing
 nonterminals within content models, USGs restrain the content models of competing rules
 itself.
However, as all other types, they properly include the class of LTGs, as every LTG
 is a USG, but not vice versa, and it easy to find a language which is generated by a
 USG, but not by LTG. Furthermore, they are properly included in the class of RTGs, in
 the strong and the weak sense (and weakly within the class of GRCGs, as we will see).
As is also easy to see, the distinctive USG property provides deterministic bottom
 up parsing. In order to get the interpretation of a given node, it is therefore
 sufficient to find a path from the leaves, which is a linear search problem.

Structure and Global Ambiguity
First, we will present some well-known results, which are important for our further
 discussion.

 Theorem 1 RTGs are weakly equivalent to
 CFGs (that is, the set of strings of leaves generated by CFGs is equivalent to the set of
 strings of leaves generated by RTGs).

Theorem 2
 RTGs are strongly equivalent
 to graphs generated by a CFGs, modulo a homomorphism of node labels (i.e., a homomorphism
 which maps various node labels in a given tree onto a single one), provided the RTG has
 finitary branching.

Theorem 3
 LTGs are strongly equivalent
 to graphs generated by CFGs, provided finitary branching.

Proof is trivial: as in LTGs every node label is generated by exactly one nonterminal; and
 in CFGs, nodes which are not leaves are labeled by nonterminals, there is a one-to-one
 correspondence. This has some importance for the relation of LTGs and RTGs. It follows, that
 LTGs and RTGs are equivalent up to homomorphism, as well as all grammar types in between.
 Every discussion we have about generative capacity concerns only non-equivalence in
 isomorphism. Since also the strings of leaves for all grammar types are identical, we can only
 be interested in the sets of trees. In the sequel, if we speak of the weak generative capacity
 of a tree grammar, we refer to the sets of trees it generates, not the strings of
 leaves.
Since to our knowledge, only the strong generative capacity of the grammar types of Murata et al., 2005 has been in the focus of research, we will now scrutinize their weak
 generative capacity.
Theorem 4 The
 sets of trees generated by STGs form a proper subset of the sets of trees generated by
 RCGs.
For proof, consider the trees generated by the following grammar: S → a(AB)
A → b(C)
B → b(D)
C → c(D)
D → c(ε)

This is an RCG, since A and B do not occur in similar contexts. In order to see that there
 is no way to generate this tree with an STG, consider the following fact: a governs two identical labels, which however govern different
 subtrees. It is therefore impossible to introduce them with identical rules, and (by
 definition of STGs) forbidden to have two competing rules in the content model of the first
 rule. This is sufficient for the proof of weak inclusion, since all STG rules are also RCG
 rules, and therefore the languages generated form a proper subset.
Theorem 5 The
 sets of trees generated by LTGs form a proper subset of the sets of trees generated by
 STGs.
Consider the trees generated by the following grammar: A → a(B)
B → b(C)
C → a(D)
D → c(ε)

This is a single type tree grammar, and no LTG is able to generate such a tree (remember
 that LTGs are strongly equivalent to graphs generated by CFG, provided finitary
 branching).
Restrained Competition Grammars and Variants
In this section we will scrutinize formal properties of the different types of
 restrained competition grammars. We will show which kind of languages cannot be generated by
 RCGs; we will prove that there are GRCGs which are ambiguous, and that for every language
 which can be generated by an RTG, there is a GRCG which generates the same language.
 Finally, we will show that URCGs do not have these properties, are properly included within
 GRCGs and properly include RCGs.
The type of languages we cannot generate with RCGs is quickly described as follows: all
 grammars, where a single content model contains competing nonterminals, which can be
 uniquely distinguished only from their left (right, respectively) context, are not RCGs.
 Consequently, we cannot generate sets of trees, where a certain node has different subtrees
 depending on its right siblings. If we want to get rid if this asymmetry, and allow for
 GRCGs, where competing nonterminals in a single content model are uniquely determined by
 their left or right context, we run into problems:
Theorem 6 There
 are GRCGs which are ambiguous.
 For proof, consider the following rule: S →
 a(AB|BA). Suppose, A and B are competing nonterminals; suppose furthermore, that there is some
 overlapping between A and B; i.e., the nonterminals generate overlapping sets of trees. In particular,
 we may assume that the trees generated by A form a subset
 of the trees generated by B. For example, A and B generate identical trees
 up to depth n; B in
 addition generates a tree of depth n+1. In this case, the
 trees of the language have the root a, with two symmetrical
 sets of subtrees up to depth n, and possibly one subtree
 with depth n+1. It is easily seen that now it is impossible
 to merge A and B, for then
 we would be incapable of expressing the condition that at most one subtree has depth
 n+1. However, for the trees, where the subtrees
 introduced by A and B have
 depth at most n, there is necessarily more than one
 analysis. The grammar we have described so far is, however, a GRCG, because neither
 A nor B occur in
 identical contexts (though in similar contexts, remember the preceding section).
Theorem 7 For
 every language which can be generated by an RTG, there is a GRCG which generates the same
 language.
 To proof this theorem, we describe a simple procedure to convert any RTG into a GRCG,
 which generates the same language. We define competing sequences of length n of nonterminals as follows: two sequences of nonterminals
 compete, if for all n, the nth nonterminal of one sequence competes with the nth nonterminal of the other sequence. We have to assume a content model
 r which is not GRCG conform. Therefore, there have to be
 two competing nonterminals or competing sequences of nonterminals A and B in r, such that for possibly empty sequences of nonterminals Γ and Δ, (Γ A Δ) and (Γ B Δ) match
 with r.
 Given this, we can be sure, that in the instantiations of r, which violate the GRCG condition, A and
 B occur in exactly the same global tree contexts. By
 global tree context we here mean that a tree with a governing the subtrees generated by
 A is part of the language iff a also governs the set of
 subtrees generated by B. Since this is the case, we can
 simply merge the two nonterminals to a new one, C, which is
 the union of the former two. This new nonterminal substitutes all instantiations of
 A and B, which occur in
 the same global tree context. This, by definition, are the instantiations which violate the
 GRCG condition. This we can apply to all nonterminals which violate the GRCG condition. The
 only thing we have to take care of is that we apply this only to those instantiations of the
 content models where two competing nonterminals match equally (this might force us to change
 some regular expressions). We do not show an exact algorithm at this point, since it is
 clear that an equivalent GRCG exist, and the details of the construction are of no practical
 interest at this point.
We now show that there is a hierarchy of proper inclusion RCG ⊂ URCG ⊂ GRCG.
 To show that RCG ⊂ URCG, consider the following: every rule which is admitted by an
 RCG is also admitted by a URCG, because if competing nonterminals in the same content model
 have a unique prefix, a fortiori they also have a unique context (we have already shown that
 a unique prefix of nonterminals is paramount to a unique prefix of labels/siblings, by
 induction). Above, we have already shown that for an RCG it is impossible to generate
 languages as the following, which is a URCG. S → a(AC|BD)
A → b(C)
B → b(D)
C → c(ε)
D → d(ε)

 A and B compete, but are
 determined uniquely by their context.
This concludes the first part; the second part will be a corollary of the next section:
 We will show that some languages are inherently ambiguous, that is, there is no unambiguous
 grammar for them. By Theorem 7 we know that we can generate these languages with GRCGs, but
 URCGs cannot:
Proposition 1 A URCG cannot be ambiguous.
This is easy to see: an ambiguous grammar assigns two different sequences of
 nonterminals to the daughters of one node (since root nodes are unambiguous): Then however,
 there must be at least two competing nonterminals which occur in the same content model in
 similar contexts, which, by definition, is impossible.

Inherently Ambiguous Languages
As a corollary, we can show that there are regular tree languages, for which there is no
 unambiguous grammar. There are sets of trees, which are generated by an ambiguous GRCG, but
 by no URCG. We will call these languages inherently
 ambiguous.
Theorem 8 Some
 regular tree languages are inherently ambiguous.
This can be seen easily, if we spell out a grammar which we described in the above
 subsection. We will then show that there is now way to write an unambiguous grammar which
 generates the same language.S → r(AB|BA)
A → a(C)
B → a(D)
C → b(ε)
D → b(ε|E)
E → c(ε)

There is no way to merge A and B, since they generate different sets of subtrees (we can write L(A)≠L(B)); but since they overlap (L(A)∩ L(B)≠ ∅), there is no way to have a unique
 interpretation in the cases where the subtrees generated by the nonterminals are identical.
 There will always be two ways to generate trees in this case.
We can, furthermore, precisely state the conditions, under which a regular tree language
 is ambiguous. To this end, however, we need to introduce some notation. We now for
 simplicity write trees as terms: a tree with root a and
 daughters b and c is
 denoted as a(b,c), etc. As a next step, we define a context
 as the position, where certain subtrees occur within trees of a language.

 Definition 9
 A context C is a tree-term with exactly one variable. We say that a
 set of subtrees α occurs in a context C in a language L, if the following holds: We
 can instantiate the variable of C with any tree from α, and the resulting tree is in
 L.
Note that sets of subtrees correspond to nonterminals, when we speak of languages rather
 than grammars. In the sequel, for simplicity we will use lower case Greek variables equally
 for sets of subtrees as for ordered sequences of sets of subtrees. The definition of a
 context is easily accommodated to sequences. A set of sequences of trees of length n consists of ordered tuples of trees of length n, of the form (t0,...,tn-1). Sets of subtrees
 are then simply sets of one-tuples. Importantly, we will not provide a proof for the
 following proposition, and leave it open as a conjecture. However, we will sketch the
 argument. We now make the following conjecture:
Conjecture 1
 A tree-language is inherently ambiguous iff at least one node fulfills
 all of the following conditions:
We need to have one node with an arbitrary label a, with at least
 two (sequences of) sets of subtrees α and β, such that
	α ∩ β ≠ ∅;

	α ≠ β;

	There is at least one context C in L, such that both a(Γ,
 (t1,...,tn), Δ,
 (u1,...,un), Θ) and
 a(Γ,
 (u1,...,un), Δ,
 (t1,...,tn), Θ) occur
 in C, for all (t1,...,tn) ∈ α
 and all (u1,...,un)
 ∈ β, where uppercase Greek letters designate possibly empty
 sequences of daughter sub-trees; note that the sequences need to have equal length in
 order to meet condition 1.

Due to space restrictions, we leave the prove for this conjecture open here; this
 reminds however of a theorem in Odgen, 1968 for string languages. But we
 will give some rather informal discussion of the points in the next section. It is not hard
 to see that this is merely a generalization of the cases we have been described above. As we
 will see, we can derive some useful facts from these properties of ambiguous languages, even
 without a general proof: we can show that we can construe grammars for languages which do
 not fulfill one of the conditions, and, moreover, which type of grammars we can
 construe.

Unambiguous Languages
Theorem 9
 From the grammar types sketched so far, there is no type which
 generates all and only the RTLs that are not inherently ambiguous.
We will demonstrate this going through the three conditions mentioned in the preceding
 section, and look which unambiguous grammar we can construe if one condition is not met.
 This is to be read as follows: if one condition is not met, then it means, that from all
 nodes of the tree language, there might be any one which meets the ones not in question, but
 none which meets the one currently under consideration.
	If there is no intersection between the subtrees of a given node, the grammar is of
 course not ambiguous. We can, however not necessarily construe a URCG for this grammar,
 since in the content model of the mother node there are competing nonterminals in
 similar contexts (recall the example given above).
We can, however, construe a USG for such a language, since subtrees are uniquely
 identifiable.

	This means that there are no two sets of subtrees governed by the same node which
 are not identical. We can thus introduce them by the same nonterminals, and have a local
 tree grammar (having no different sets of subtrees governed by the same node amounts to
 say we need no competing rules in the grammar, as nonterminals correspond to sets of
 subtrees).

	If the third condition is not met, then we can construe nonterminals (corresponding
 to the sets of subtrees) such that for all of them the following holds: assuming they
 compete (introduce identical labels), they either occur in different contexts, in which
 case they are distinguishable thereby and no ambiguity arises; or they occur in
 identical contexts, in which case we can use a unique nonterminal which is the merge of
 both (this also holds for root nodes). The critical case, where the content of one
 (sequence of) set(s) of subtrees depends on the other one, which makes them occur in
 similar contexts, while making it impossible to merge them, however, we have excluded by
 assumption.
Since this argument holds inductively from the root to all subtrees, we can construe
 a URCG for the language were condition 3 is not met, but we cannot use any strictly
 weaker type. The only thing we have provided is that if two sets of subtrees occur in
 similar contexts (for the grammar we construe), then they actually occur in identical
 contexts. It follows that we do not need competing nonterminals in similar
 contexts.

This shows that we still have not solved the problem to define a canonical grammar type
 which generates all and only the unambiguous languages, since there are languages which are
 generated by USGs, but no other canonical class which does not allow any ambiguity type, and
 languages which are generated by URCGs and no other such type. So far, we are still lacking
 a characterization of the unambiguous languages in terms of grammar rules.

Application and Future Research
When we speak of XML schema languages and applications, the first thing that comes into
 mind is parsing an instance and validate it according to a respective schema. Murata et al., 2005 have shown algorithms for parsing the three types of tree grammars we
 discussed already. However, a task which is still open is to provide algorithms for the new
 grammars types we have defined.
Mani and Lee, 2002 demonstrated the use of the theory of regular tree grammars for
 the XML to relational conversion as an additional application of formal language in the XML
 context. Again, this work could be extended using the newly established grammar types.
Regarding future research this paper may serve as just a foundation in the fields of XML
 applications and formal languages. New features that are introduced in XSD 1.1 such as
 conditional type assignment, assertions and the openContent element as well as
 the relaxed Unique Particle Attribution rule (UPA, aka the
 determinism rule, see XML Schema 1.1 Part 1, Section 3.8.6.4), or changed behavior
 regarding wildcards have effects on the expressiveness. Apart from these natural enhancements,
 another focus may lie in examining the relationships between XPath and XQuery and formal
 languages on the basis of the work undertaken in this paper; we expect to shed some light on
 this topic during future research. In addition, a more formal approach in the analysis of
 overlapping markup structures such as GODDAGs (Sperberg-McQueen and Huitfeldt, 2004) could
 be an interesting field for future work.
Seen from a practical perspective and under consideration of the findings in Martens et al., 2006, a large portion of the XML document grammars that can be found in
 the wild are structurally equivalent to DTDs or specialized
 DTDs (that is, adding a mechanism to decouple element names from their types to
 regular DTDs, see Papakonstantinou and Vianu, 2000 and Balmin et al., 2004
 – also called EDTDs by Martens et al., 2006), hence use roughly the
 expressiveness of local tree grammars. This is often due to nontransparent restrictions in the
 XML Schema spec such as the already discussed Element Declarations
 Consistent (EDC) constraint. Bex et al., 2009 and Martens et al., 2007 provide simplifications for XSDs and XSD authoring tools that should
 relive authors from the burden of these constraints by automatically transforming
 nondeterministic expressions into concise deterministic ones. Regarding RELAX NG
 document grammars we think that restraining its expressive power to the class of URCGs would
 provide a feasible compromise. Up to this point we hope that this more fine-grained hierarchy
 may serve others as guide for choosing a specific XML schema language depending on the
 expressivity of the markup language that has to be developed.

Bibliography
[Abiteboul et al., 2000] Abiteboul, S., P.
 Buneman, and D. Suciu (2000). Data on the Web: From Relations to Semistructured Data and XML.
 Morgan Kaufmann Publishers, San Francisco, California.
[Ansari et al., 2009] Ansari, M. S., Zahid, N., and
 K.-G. Doh. A Comparative Analysis of XML Schema Languages. In Slezak, D., Kim, T., Zhang, Y.,
 Ma, J., and K. Chung, eds., Database Theory and Application. International Conference, DTA
 2009, Held as Part of the Future Generation Information Technology Conference, FGIT 2009, Jeju
 Island, Korea, December 10-12, 2009. Proceedings, volume 64, pages 41– 48. Springer, Berlin,
 Heidelberg, 2009. doi:https://doi.org/10.1007/978-3-642-10583-8_6.
[Balmin et al., 2004] Balmin, A., Papakonstantinou,
 Y., and V. Vianu (2004). Incremental validation of XML documents. ACM Transactions on Database
 Systems (TODS), 29(4):710–751. doi:https://doi.org/10.1145/1042046.1042050.
[Bauman, 2008] Bauman, S., (2008). Freedom to
 Constrain: where does attribute constraint come from, mommy? In Proceedings of Balisage: The
 Markup Conference 2008. Balisage Series on Markup Technologies, vol. 1 (2008). doi:https://doi.org/10.4242/BalisageVol1.Bauman01.
[Bex et al., 2009] Bex, G. J., Gelade, W., Martens, W.
 and F. Neven (2009). Simplifying XML Schema: Effortless Handling of Nondeterministic Regular
 Expressions. In SIGMOD ’09: Proceedings of the 35th SIGMOD international conference on
 Management of data, pages 731–744, New York, NY, USA, ACM. doi:https://doi.org/10.1145/1559845.1559922.
[Brüggemann-Klein and Wood, 1992] Brüggemann-Klein, A., and D. Wood (1992). Deterministic Regular Languages. In Finkel, A. and
 M. Jantzen, eds., STACS 92. 9th Annual Symposium on Theoretical Aspects of Computer Science
 Cachan, France, February 13–15, 1992 Proceedings, volume 577 of Lecture Notes in Computer
 Science, pages 173–184. Springer, Berlin, Heidelberg. doi:https://doi.org/10.1007/3-540-55210-3_182.
[Brüggemann-Klein, 1993] Brüggemann-Klein,
 A. (1993). Formal Models in Document Processing. Habilitation, Albert-Ludwig-Universität zu
 Freiburg i. Br.
[Brüggemann-Klein and Wood, 1997] Brüggemann-Klein, A., and D. Wood (1997). One-unambiguous regular languages. Information and
 computation, 142:182–206. doi:https://doi.org/10.1006/inco.1997.2695.
[Brüggemann-Klein and Wood, 2002] Brüggemann-Klein, A., and D. Wood (2002). The parsing of extended context-free grammars.
 HKUST Theoretical Computer Science Center Research Report HKUST-TCSC-2002-08, The Hong Kong
 University of Science and Technology Library.
[Brüggemann-Klein and Wood, 2004] Brüggemann-Klein, A., and D. Wood (2004). Balanced context-free grammars, hedge grammars and
 pushdown caterpillar automata. In Proceedings of Extreme Markup Languages, Montréal,
 Québec.
[Buck et al., 2000] Buck, L., Goldfarb, C. F., and P.
 Prescod (2000). Datatypes for DTDs (DT4DTD) 1.0. W3C Note 13 January 2000, World Wide Web
 Consortium.
[Carey, 2009] Carey, B. M. (2009). Meet CAM: A new XML
 validation technology. Take semantic and structural validation to the next level. IBM
 developerworks, IBM Corporation. http://www.ibm.com/developerworks/xml/library/x-cam/?S_TACT=105AGX54&S_CMP=C0924&ca=dnw-1036&ca=dth-x&open&cm_mmc=6015-_-n-_-vrm_newsletter-_-10731_131528&cmibm_em=dm:0:13962324.
[Chomsky, 1955] Chomsky, N. (1955). Logical Syntax
 and Semantics: Their Linguistic Relevance. Language, 31(1):36–45, 1955. doi:https://doi.org/10.2307/410891.
[Chomsky, 1956] Chomsky, N. (1956). Three Models for
 the Description of Language. IRE Transactions on Information Theory, 2:113–124,
 1956. doi:https://doi.org/10.1109/TIT.1956.1056813.
[Clark, 2001] Clark, J. (2001). TREX – Tree Regular
 Expressions for XML Language Specification. Technical report, Thai Open Source Software Center
 Ltd.
[Clark et al., 2003] Clark, J., J. Cowan, and M.
 Murata, (2003). Relax NG Compact Syntax Tutorial. Working Draft 26 March 2003, OASIS –-
 Organization for the Advancement of Structured Information Standards. http://relaxng.org/compact-tutorial-20030326.html.
[Comon et al., 2008] Comon, H., M. Dauchet, R.
 Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi (2007). Tree Automata
 Techniques and Applications. Release November, 18th 2008. http://www.grappa.univ-lille3.fr/tata.
[Costello and Simmons, 2008] Costello, R. L., and
 R. A. Simmons (2008). Tutorials on Schematron: Two Types of XML Schema Language. http://www.xfront.com/schematron/Two-types-of-XML-Schema-Language.html.
[DSD2] Møller, A. (2005). Document Structure
 Description 2.0. Technical report, BRICS (Basic Research in Computer Science, Aarhus
 University), 2005. http://www.brics.dk/DSD/dsd2.html.
[Fiorello et al., 2004] Fiorello, D., Gessa, N.,
 Marinelli, P., and F. Vitali. DTD++ 2.0: Adding support for co-constraints. In Proceedings of
 Extreme Markup Languages, Montréal, Québec.
[Gelade et al., 2009] Gelade, W, Martens, W., and F.
 Neven (2009). Optimizing Schema Languages for XML: Numerical Constraints and Interleaving.
 SIAM Journal on Computing, 38(5):2021–2043. doi:https://doi.org/10.1137/070697367.
[Goldfarb, 1978] Goldfarb, C. F. (1978). DCF GML
 User’s Guide (IBM SH20-9160). IBM, 1978.
[Goldfarb, 1991] Goldfarb, C. F. (1991). The SGML
 Handbook. Oxford University Press, Oxford.
[Gécseg and Steinby, 1997] Gécseg, F., and M. Steinby
 (1997). Tree languages. In Handbook of Formal Languages, volume 3, pages 1-68. Springer, New
 York.
[Hopcroft et al., 2000] Hopcroft, J., R. Motwani,
 and J. Ullman (2000). Introduction to Automata Theory, Languages, and Computation. 2nd
 edition. Addison Wesley Longman, Amsterdam.
[Jeliffe, 2009] Jeliffe, R. (2009). Is Schematron a
 rules language? Online: http://broadcast.oreilly.com/2009/01/is-schematron-a-rules-language.html.
[Kilpeläinen and Tuhkanen, 2007] Kilpeläinen,
 P., and R. Tuhkanen (2007). One-unambiguity of regular expressions with numeric occurrence
 indicators. Information and Computation, 205(6):890–916. doi:https://doi.org/10.1016/j.ic.2006.12.003.
[Klarlund et al., 2003] Klarlund, N., T.
 Schwentick, and D. Suciu (2003). XML: Model, Schemas, Types, Logics and Queries. In Chomicki,
 J., R. van der Meyden, and G. Saake, eds., Logics for Emerging Applications of Databases,
 pages 1-41. Springer, Berlin, Heidelberg.
[Kracht, 2010] Kracht, M. (to appear). Modal Logic
 Foundations of Markup Structures in Annotation Systems. In Mehler, A., Kühnberger, K.-U.,
 Lobin, H., Lüngen, H., Storrer, A., and A. Witt, eds., Modeling, Learning and Processing of
 Text Technological Data Structures, Studies in Computational Intelligence. Springer,
 Dordrecht.
[Lee and Chu, 2000] Lee, D. and W. Chu. Comparative
 Analysis of Six XML Schema Languages. ACM SIGMOD Record, 29(3):76–87, September
 2000. doi:https://doi.org/10.1145/362084.362140.
[Maler and Andaloussi, 1995] Maler, E., and J. E.
 Andaloussi (1995). Developing SGML DTDs: From Text to Model to Markup. Prentice Hall, Upper
 Saddle River, New Jersey
[Mani, 2001] M. Mani (2001). Keeping chess alive: Do we
 need 1-unambiguous content models? In Proceedings of Extreme Markup Languages, Montréal,
 Québec.
[Mani and Lee, 2002] Mani, M., and D. Lee (2002). XML
 to Relational Conversion using Theory of Regular Tree Grammars. In Proceedings of the 28th
 VLDB Conference, Hong Kong, China.
[Marcoux, 2008] Marcoux, Y. (2008). Graph
 characterization of overlap-only TexMECS and other overlapping markup formalisms. In
 Proceedings of Balisage: The Markup Conference 2008. Balisage Series on Markup Technologies,
 vol. 1. Montréal, Québec. doi:https://doi.org/10.4242/BalisageVol1.Marcoux01.
[Martens et al., 2005] Martens, W., Neven, F., and
 T. Schwentick (2005). Which XML Schemas Admit 1-Pass Preorder Typing? In Eiter, T., and L.
 Libkin, eds., Database Theory – ICDT 2005, volume 3363 of Lecture Notes in Computer Science,
 pages 68–82. Springer, Berlin, Heidelberg, 2005. doi:https://doi.org/10.1007/978-3-540-30570-5_5.
[Martens et al., 2006] Martens, W., Neven, F.,
 Schwentick, T., and G. Bex (2006). Expressiveness and Complexity of XML Schema. ACM
 Transactions on Database Systems (TODS), 31(3):770–813. doi:https://doi.org/10.1145/1166074.1166076.
[Martens et al., 2007] Martens, W., Neven, F. and T.
 Schwentick (2007). Simple off the shelf abstractions for XML schema. SIGMOD Rec.,
 36(3):15–22. doi:https://doi.org/10.1145/1324185.1324188.
[Martens et al., 2009] Martens, W., Neven, F. and T.
 Schwentick (2009). Complexity of Decision Problems for XML Schemas and Chain Regular
 Expressions. SIAM Journal on Computing, 39(4):1486–1530. doi:https://doi.org/10.1137/080743457.
[Møller and Schwartzbach, 2006] Møller, A., and M.
 Schwartzbach (2006). An Introduction to XML and Web Technologies, chapter Schema Languages,
 pages 92–187. Addison-Wesley, Harlow, England.
[Murata et al., 2001] ﻿Murata, M., D. Lee, and M.
 Mani (2001). Taxonomy of XML Schema Languages using Formal Language Theory. In Proceedings of
 Extreme Markup Languages, Montréal, Québec.
[Murata et al., 2005] ﻿Murata, M., D. Lee, M. Mani,
 and K. Kawaguchi (2005). Taxonomy of XML Schema Languages Using Formal Language Theory. ACM
 Transactions on Internet Technology, 5(4):660–704. doi:https://doi.org/10.1145/1111627.1111631.
[Nentwich, 2005] Nentwich, C. (2005). CLiX – A
 Validation Rule Language for XML. Presented by Anthony Finkelstein at W3C Workshop on Rule
 Languages for Interoperability, 27-28 April 2005, Washington D.C. http://www.w3.org/2004/12/rules-ws/paper/24/.
[NVDL] ISO/IEC 19757-4:2006. Information technology —
 Document Schema Definition Languages (DSDL) — Part 4: Namespace-based Validation Dispatching
 Language (NVDL), International Standard, International Organization for Standardization,
 Geneva.
[Odgen, 1968] Odgen, W. (1968). A Helpful Result for
 Proving Inherent Ambiguity. In Mathematical Systems Theory, 2(3):191–194. doi:https://doi.org/10.1007/BF01694004.
[Pawson, 2007] Pawson, D. (2007). ISO Schematron
 tutorial. http://www.dpawson.co.uk/schematron/.
[Papakonstantinou and Vianu, 2000] Papakonstantinou, Y., and V. Vianu (2000). DTD inference for views of XML data. In PODS ’00:
 Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
 systems, pages 35–46, New York, NY, USA, ACM. doi:https://doi.org/10.1145/335168.335173.
[Piez, 2001] Piez, W. (2001). Beyond the “descriptive
 vs. procedural” distinction. In Markup Languages – Theory & Practice,
 3(2):141–172. doi:https://doi.org/10.1162/109966201317356380.
[RELAX Core] ISO/IEC TR 22250-1:2002. Information
 technology – Document description and processing languages – Regular Language Description for
 XML – part 1: RELAX Core. International Standard, International Organization for
 Standardization, Geneva.
[RELAX NG] ISO/IEC 19757-2:2008. Information technology –
 Document Schema Definition Language (DSDL) – Part 2: Regular-grammar-based validation – RELAX
 NG (ISO/IEC 19757-2). International Standard, International Organization for Standardization,
 Geneva.
[RELAX NG (2nd Ed.)] ISO/IEC 19757-2:2008. Information
 technology – Document Schema Definition Language (DSDL) – Part 2: Regular-grammar-based
 validation – RELAX NG (ISO/IEC 19757-2). Second Edition. International Standard, International
 Organization for Standardization, Geneva.
[Rizzi, 2001] Rizzi, R. (2001). Complexity of
 context-free grammars with exceptions and the inadequacy of grammars as models for XML and
 SGML. Markup Languages – Theory & Practice, 3(1):107–116. doi:https://doi.org/10.1162/109966201753537222.
[Rogers, 2003] Rogers, J. (2003). Syntactic
 Structures as Multi-dimensional Trees. In Research on Language and Computation,
 1(3-4):265–305. doi:https://doi.org/10.1023/A:1024695608419.
[Sasaki, 2010] Sasaki, F. (2010). How to avoid
 suffering from markup: A project report about the virtue of hiding xml. In XML Prague 2010
 Conference Proceedings, pages 105–123, Prague, Czech Republic, March 13–14 2010. Institute for
 Theoretical Computer Science.
[Schematron] ISO/IEC 19757-3:2006 Information
 technology — Document Schema Definition Languages (DSDL) — Part 3: Rule-based validation —
 Schematron. International Standard, International Organization for Standardization,
 Geneva.
[SGML] ISO 8879:1986. Information Processing — Text and
 Office Information Systems — Standard Generalized Markup Language. International Standard,
 International Organization for Standardization, Geneva.
[Sperberg-McQueen, 2003] Sperberg-McQueen,
 C. M. (2003). Logic grammars and XML Schema. In Proceedings of Extreme Markup Languages,
 Montréal, Québec.
[Sperberg-McQueen and Huitfeldt, 2004] Sperberg-McQueen, C. M. and C.
 Huitfeldt (2004). GODDAG: A Data Structure for Overlapping Hierarchies. In King, P. and E. V.
 Munson, eds. Proceedings of the 5th International Workshop on the Principles of Digital
 Document Processing (PODDP 2000), volume 2023 of Lecture Notes in Computer Science, pages
 139–160. Springer, 2004
[Stührenberg and Jettka, 2009] Stührenberg, M.
 and D. Jettka (2009). A toolkit for multi-dimensional markup: The development of SGF to
 XStandoff. In Proceedings of Balisage: The Markup Conference 2009. Balisage Series on Markup
 Technologies, vol. 3 (2009). Montréal, Québec. doi:https://doi.org/10.4242/BalisageVol3.Stuhrenberg01.
[Vitali et al., 2003] Vitali, F., Amorosi, N., and N.
 Gessa. Datatype- and namespace-aware DTDs: A minimal extension. In Proceedings of Extreme
 Markup Languages, Montré́al, Québec.
[van der Vlist, 2001] van der Vlist, E. (2001).
 Comparing XML Schema Languages, 12 December 2001. http://www.xml.com/pub/a/2001/12/12/schemacompare.html.
[van der Vlist, 2003] van der Vlist, E. (2003).
 RELAX NG. O’Reilly, Sebastopol.
[XML 1.0] Extensible Markup Language (XML) 1.0. W3C
 Recommendation, World Wide Web Consortium, 10 February 1998. http://www.w3.org/TR/1998/REC-xml-19980210.
[XML 1.0 (Fifth Edition)] Extensible Markup Language (XML)
 1.0 (Fifth Edition). W3C Recommendation, World Wide Web Consortium, 26 November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/.
[XML Namespaces (Third Edition)] Namespaces in XML 1.0
 (Third Edition). W3C Recommendation, World Wide Web Consortium, 8 December 2009. http://www.w3.org/TR/2009/REC-xml-names-20091208/.
[XML Schema 1.0 Part 0] XML Schema Part 0: Primer
 Second Edition. W3C Recommendation, World Wide Web Consortium, 28 October 2004. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.
[XML Schema 1.0 Part 1] XML Schema Part 1:
 Structures Second Edition. W3C Recommendation, World Wide Web Consortium, 28 October 2004.
 http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.
[XML Schema 1.0 Part 2] XML Schema Part 2:
 Datatypes Second Edition. W3C Recommendation, World Wide Web Consortium, 28 October 2004.
 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.
[XML Schema 1.1 Part 1] W3C XML Schema Definition
 Language (XSD) 1.1 Part 1: Structures. W3C Working Draft, World Wide Web Consortium, 3
 December 2009. http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/.
[XML Schema 1.1 Part 2] W3C XML Schema
 Definition Language (XSD) 1.1 Part 2: Datatypes. W3C Working Draft, World Wide Web Consortium,
 3 December 2009. http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203/.
[XSLT 2.0] XSL Transformations (XSLT) Version 2.0. W3C
 Recommendation, World Wide Web Consortium, 23 January 2007. http://www.w3.org/TR/2007/REC-xslt20-20070123/.
[XQuery 1.0] XQuery 1.0: An XML Query Language. W3C
 Recommendation, World Wide Web Consortium, 23 January 2007. http://www.w3.org/TR/2007/REC-xquery-20070123/.

[1] For a short discussion if Schematron is a rules language (or rule-based language) see
 Jeliffe, 2009.

[2] For a different discussion on the topic of expressing constraints see Bauman, 2008.
[3] We will not discuss any proposals for extended DTDs such as Buck et al., 2000, Papakonstantinou and Vianu, 2000, Vitali et al., 2003
 Balmin et al., 2004 or Fiorello et al., 2004 since these play only minor
 roles in the wild, if any.
[4] Murata et al., 2005 present an algorithm using tree-automata that allows for
 efficient parsing of regular tree grammars.
[5] See Mani, 2001 for a discussion of the pros and cons of
 1-unambiguous content models in XML schema languages.
[6] Fiorello et al., 2004 discuss DTD++ 2.0 which supports a large number
 of co-constraints using a syntax closely resembling DTD.
[7] See van der Vlist, 2003, p. 65 and http://ajwelch.blogspot.com/2008/06/xml-schema-co-occurrence-constraint.html
 for further information.

Balisage: The Markup Conference

Refining the Taxonomy of XML Schema Languages. A new Approach for Categorizing XML Schema
 Languages in Terms of Processing Complexity
Maik Stührenberg
Maik Stührenberg studied Computational Linguistics at Bielefeld University. After
 working for four years as research assistant at Giessen University in different
 text-technological projects, he is now a Ph. D. student and research assistant at
 Bielefeld University. His main research interests include XML schema languages and
 specifications for structuring and querying multi-dimensional annotated data.

Christian Wurm
Christian Wurm is a Ph. D. student in Computational and Mathematical Linguistics at
 Bielefeld University in the Cognitive Interaction Technology – Center of Excellence
 (CITEC) at Bielefeld University.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

