[image: Balisage logo]Balisage: The Markup Conference

Scripting Documents with XQuery: Virtual Documents in TNTBase
Vyacheslav Zholudev
PhD Student
Jacobs University Bremen

<vyacheslav.zholudev@gmail.com>

Michael Kohlhase
Professor
Jacobs University Bremen

<m.kohlhase@jacobs-university.de>

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © 2010 Vyacheslav Zholudev, Michael Kohlhase. Licensed under the Creative Commons License http://creativecommons.org/licenses/by-sa/3.0/.

How to cite this paper
Zholudev, Vyacheslav, and Michael Kohlhase. "Scripting Documents with XQuery: Virtual Documents in TNTBase." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Zholudev01.

Abstract
This paper introduces the concept of Virtual Documents and its prototypical realization
in our TNTBase system, a versioned XML database. Virtual Documents integrate XQuery-based
computational facilities into documents like JSP/PHP do for relational queries. We view
the integration of computation in documents as an enabling technology and
evaluate it on a handful of real-world use cases.

Balisage: The Markup Conference

 Scripting Documents with XQuery: Virtual Documents in TNTBase

 Table of Contents

 	Title Page

 	Introduction

 	TNTBase, a Short Recap
 	The Core

 	Application Layer of TNTBase
 	Validation, Presentation, Interface Extraction, Plugin Architecture

 	Custom XQuery modules

 	Virtual Documents

 	Virtual Documents
 	VDoc Specifications and Skeletons
 	VDoc Skeletons

 	Queries

 	Parameters

 	VDocs as TNTBase FS Entities and Their Materializing

 	Querying VDocs

 	VDoc Editing

 	VDoc Schema Validation

 	Implementation Details

 	Use Cases
 	Automated Exam Generation

 	Multiple Versions of Documents

 	Managing Document Collections

 	Refactoring Ontologies

 	Conclusion & Further Work

 	About the Authors

 Scripting Documents with XQuery: Virtual Documents in TNTBase

Introduction
One of the big promises of XML as a representation paradigm is that documents become uniformly
machine-processable. Indeed XSLT is widely used for pre/postprocessing XML-encoded documents, and
XQuery is poised to become for semi-structured data what SQL is for relational data. But in both
cases, traditional workflows have important features that are largely missing from XML workflows.
(i) Document authoring and management systems[1] allow user-definable, in-document macros that allow the computation repetitive
writing tasks or processing of outside data.
(ii) Relational databases support database views as first-class citizens,
i.e. computational devices that look like tables to the user, but internally are embedded queries.

Both in-text macros and views could in principle be externalized from production workflows at the
cost of losing locality and ease-of-use. And indeed their integrated nature has brought levels of
customization and functionality that have not been achieved in practice without.
In this paper, we present Virtual Documents (VDocs), a general framework for
integrating XQueries into XML documents as computational devices and processing them
efficiently. As a rough approximation, VDocs are “XML database views”
analogous to views in relational databases;
these are tables that are virtual in the sense that they are the results of SQL queries computed on
demand from the explicitly represented database tables. Similarly, TNTBase Virtual Documents
are the results of XQueries computed on demand from the XML files explicitly represented in TNTBase,
presented to the user as entities (files) in the TNTBase file system. Like views in relational
databases TNTBase VDocs are editable, and the TNTBase system transparently patches the differences
into the original files in its underlying versioning system. Thus a user does not have to know about
the original source of document parts which allows him to focus only on relevant pieces of
information. Again, like relational database views, VDocs become very useful abstractions in the
interaction with versioned XML storage.
We have already discussed VDocs [ZKR10], concentrating on theoretical issues such
as when XML-based document formats admit virtual documents. Since
then, our VDocs implementation has been extended and has
matured considerably, and we will concentrate on features and real word use cases and practical issues. In the
next section we recap the basics of our TNTBase system, before we introduce the functionality of VDocs
in Section section “Virtual Documents”. Section section “Use Cases” discusses some high-profile use cases of VDocs
and Section section “Conclusion & Further Work” concludes the paper.

TNTBase, a Short Recap
The TNTBase system is a versioned XML-database with a client-server
architecture. Essentially, it consists of two parts: the core and the application-specific
layer. Let us briefly discuss them.
The Core
The core of TNTBase consists of the xSVN module, which integrates Berkeley DB
XML [Ber09b] into a Subversion server [SVN08]. DB XML stores HEAD
revisions of XML files; non-XML content like PDF, images or LaTeX source files,
differences between revisions, directory entry lists and other repository information are
retained in a usual SVN back-end storage (Berkeley DB [Ber09a] in our
case). It is worth mentioning here that TNTBase also supports branching
as SVN does (see also Section section “Multiple Versions of Documents” for a use-case of virtual
documents with on this). Keeping XML documents in DB XML allows us to access those files
not only via any SVN client, but also through the DB XML API that supports efficient
querying of XML content via XQuery [BCF+07] and modifying that content via
XQuery Update [CDF+08]. As with many XML-native databases, DB XML (and hence
TNTBase) supports indexing, which improves performance of certain
queries. TNTBase also adopted transactional support (atomicity,
consistency, isolation, durability) from DB XML.
The TNTBase system is realized as a web-application that provides two different interfaces
to communicate with: an xSVN interface and a RESTful interface (for
details refer to [Z+10]) for XML-related tasks. The
xSVN interface behaves like the normal SVN interface — the mod_dav_svn Apache module
serves requests from remote SVN clients — with one exception: If one of the committed XML
files is ill-formed, then xSVN will abort the whole transaction. The RESTful [JSR09] interface
provides XML fragment access to the versioned collection of documents:
	Querying:
	As every XML-native database, TNTBase supports XQuery, but extends the DB XML
syntax by a notion of file system path and revision to address different versions of path-based
collections of documents.

	Modifying:
	Apart from modifying any kinds of documents via any SVN client, TNTBase takes
advantage of XQuery Update facilities, and, in contrast to pure DB XML, modified documents are
versioned, i.e., a new revision is committed to xSVN whenever some changed are made to the
documents stored in a TNTBase repository .

	Querying of previous revisions:
	Although xSVN’s DB XML back-end by default holds only HEAD
(the last) revisions of XML documents, and others are stored as reverse deltas against HEAD
revisions, it is also possible to access and query previous versions by additionally providing a
revision number to the TNTBase XQuery extension functions. It is necessary to note that
previous versions cannot be modified because once a revision is committed to an xSVN repository it
becomes persistent.

	Virtual Files:
	This is a precursor technology to the Virtual Documents discussed in this
paper. It has been described in detail in [ZK09]: a Virtual File is a
TNTBase file system entity whose content is defined by a single XQuery expression. For the end
user they are like normal files whose contents are the wrapped results of an associated query. Virtual
Files also can be queried and modified.

For more information about the TNTBase core refer
to [ZK09]. Since then we have significantly increased stability and
performance that can be proved that TNTBase is being used for the LATIN
Project [LAT], for General Computer Science lectures repository (that counts
more than 2000 XML documents with over 2500 revisions) and Translation SUMO to OMDoc
Project [Mis10]. Moreover, we are mirroring some of TNTBase
repositories to normal SVN repositories by replication functionality adopted from
Subversion. This possibility once more justifies the decision of combining the two
systems. If something went wrong with a TNTBase repository and the data got corrupted
(actually, it never happened to us), then we can easily restore them from a replicated SVN
repository with all history preservation.

Application Layer of TNTBase
TNTBase:
 TNTBase

[image:]

In our experiments it turned out that many tasks specific to particular XML formats can be done by
TNTBase. This was a reason to derive a separate layer on top of the TNTBase core and
augment this layer with format-specific functionalities (see Figure TNTBase). Although the detailed information can be
found in [ZKR10], let us briefly describe the major features:
Validation, Presentation, Interface Extraction, Plugin Architecture
TNTBase
provides facilities to integrate format-specific validation (e.g. for RelaxNG schemas) and
presentation (e.g. via XSL transformations). But sometimes a format requires more specific
functionality, e.g. extraction and caching RDF information upon commit or retrieval of
rendered MathML. Such functionality can be supplied as additional modules and injected
into the application layer via the TNTBase plugin API. Configuration files are also
stored in a TNTBase repository, so a user do not have to have an access to a server:
for instance, commit-time behavior is defined by an SVN tntbase:validate property
that can be assigned to files as well as to whole directories. Pre-commit or post-commit
hooks that are automatically generated take care of processing committed information based
on the configuration files. In case of pre-commit processing a corresponding plugin has
access to the documents that are about to be committed, and may reject a transaction if
the collection of committed documents is format-inconsistent, or clashes with existing
documents in the repository. Last but not least, TNTBase RESTful URLs that are used to perform validation
or presentation are dynamically changed once configuration files are modified.

Custom XQuery modules
A user can write his own XQuery extensions and store
them in the repository. Thus it is not necessary to have modules located in the server’s
file system or remotely. XQuery modules can be referenced inside repository itself, which
might happen to be useful if the development of XQuery modules is still in progress.

Virtual Documents
Virtual Documents are also a part of an application layer,
but we will focus on them in the next sections.
TNTBase also gained number of features that have been requested by TNTBase users. To
name just a few of them: integration with JOBAD framework [JOB08], extracting RDF
from OMDoc [Koh10] documents upon commit and storing it in
TNTBase, integration with LaTeXML [Mil10] and
Virtuoso [Ope] (for more details refer
to [DKL+10]). Those features are pluggable, so a new
TNTBase installation does not have to include them.

Virtual Documents
This section introduces practical aspects and technical details of Virtual Documents (for
the theory we refer to [ZKR10]) using a simple running example to
fortify our intuitions. Section section “Use Cases” will tackle the real-world scenarios
and justify VDocs in TNTBase.
VDoc Workflow: VDoc Workflow
[image:]

VDocs are the first class citizens in the TNTBase file system. Whereas internally they
are quite different from usual documents in the repository, for a user they look like
normal files: one can browse them, validate, apply stylesheets, query and even modify. VDocs
are essentially a tight mix of static XML parts with XQuery queries and instructions in
XML form that prompt TNTBase how to organize the XQuery results inside a VDoc. Let us
start with a simple example. Assume that we want to have a joined list of mathematical
exercises together with authors contributed to them. We might want to have the root
element and the elements that embrace authors and exercises (we will refer to
Figure VDoc Workflow throughout this section). XQueries that select necessary data will
augment our document. The way we describe the VDoc is the subject of the next subsection.
VDoc Specifications and Skeletons
VDoc Specification (VDoc Spec) is the most important part of any VDoc. Basically, it is a
document template with XQuery inclusions and some other auxiliary elements helping
TNTBase to figure out how to execute a particular XQuery and how to populate query
results. It must be XML. In Listing Example of a VDoc Spec one can see a simple example of a
VDoc Spec that is supposed to define a VDoc that would contain thematic lecture exercises
together with their authors. For the complete RelaxNG [Rel] schema refer
to [ZK].
Example of a VDoc Spec: Example of a VDoc Spec
<tnt:virtualdocument xmlns:tnt=”http://tntbase.mathweb.org/ns”>
 <tnt:skeleton xml:id=”exercises”>
 <omdoc xmlns:dc=”http://purl.org/dc/elements/1.1/”>
 <dc:title>Exercises for Computer Science lectures</dc:title>
 <dc:creator>Michael Kohlhase</dc:creator>
 <omdoc>
 <dc:title>Acknowledgements</dc:title>
 <omtext>
 The following individuals have contributed material to this document:
 <tnt:xqinclude query=”tnt:collection(’/exercises//*.omdoc’)//dc:creator”>
 <tnt:return><tnt:result/></tnt:return>
 </tnt:xqinclude>
 </omtext>
 </omdoc>
 <omdoc>
 <dc:title>Exercises</dc:title>
 <tnt:xqinclude>
 <tnt:query name=”exercises.xq”/>
 <tnt:return><tnt:result/></tnt:return>
 </tnt:xqinclude>
 </omdoc>
 </omdoc>
 </tnt:skeleton>

 <tnt:query name=”exercises.xq”>
 for $t in $topics return
 tnt:collection(concat(’/exercises/’, $t, ’/*.omdoc’))//exercise[position() le $max]
 </tnt:query>

 <tnt:params>
 <tnt:param name=”max”>
 <tnt:value>10</tnt:value>
 </tnt:param>
 <tnt:param name = ”topics”>
 <tnt:value>search</tnt:value>
 <tnt:value>graphs</tnt:value>
 </tnt:param>
 </tnt:params>
</tnt:virtualdocument>

A VDoc Spec consists of a VDoc Skeleton (VDoc Skel), number of named queries that are
referenced from VDoc Skel and arbitrary parameters that are used in XQueries. Let us consider
these elements in order:
VDoc Skeletons
contain a mixture between any XML nodes and
tnt:xqinclude elements. The latter ones specify a single
XQuery query and “the rules” how results of that query will be mixed with other elements
in a VDoc. The rules are enclosed into a single tnt:return
child element that, in turn, contains a mixture of any XML elements with empty
tnt:result elements. In order to understand how VDoc content
is produced let us consider the following sequence of actions:
	We take a tnt:xqinclude element and obtain an XQuery
associated with it

	We get the results of that query and iterate over them

	For every result we get children of the tnt:return
element and substitute any tnt:result element with a
considered query result

	We concatenate all children obtained from step 3) in order

	The result of concatenation replaces the considered
tnt:xqinclude element

	Repeat steps 1)-5) for all tnt:xqinclude elements in a
VDoc Spec

Although this workflow might seem complicated, the logics behind it are quite intuitive,
which is observed in the following example. The part of a VDoc:
<tnt:xqinclude query=”tnt:collection(’/exercises//*.omdoc’)//dc:creator/text()”>
 <tnt:return><omtext><tnt:result/></omtext></tnt:return>
</tnt:xqinclude>

assuming for the sake of simplicity that results of the query
tnt:collection(’/exercises//*.omdoc’)//dc:creator/text()

are “Paul” and “John”, will be substituted by:
<omtext>Paul</omtext>
<omtext>John</omtext>

VDocs allow an arbitrary number of tnt:xqinclude elements in
the VDoc Skel (not nested, though) with different XQueries. XQueries can be defined in 4
ways: in the attribute, in the child element as text, as a reference to outside defined
queries (see next bullet) and as a reference to another file in a TNTBase repository
that contains the implied query. It is worth mentioning that VDoc Specs may contain only
references to skeletons in other VDoc Specs and differ just in queries or parameters. This
approach becomes very handy when we want to leverage from the same skeleton but tweak
another parts of a VDoc Spec, i.e. queries or parameters (see below for examples).

Queries
Apart from being defined in
tnt:xqinclude elements, XQueries can also be described in
 separate tnt:query elements, again as a text or as a
reference to another file in the repository. Query should contain a name that serves as
a link point from a VDoc Skel. There are no constraints on a query: it may reference
older revisions of documents (that justifies a temporal aspect of TNTBase),
other VDocs or auxiliary information associated with documents, e.g. RDF
(see [ZKR10] for more details). Such “external” query definition
may be handy when we want to override the queries for a particular VDoc Skel. Getting
back to our example, assume that we want to embed only statements of assignments in our
VDoc preserving the common structure. We do not need to modify a VDoc Skel. Instead we create
a new VDoc Spec that references the existing one with an overriding XQuery:
<tnt:virtualdocument xmlns:tnt=”http://tntbase.mathweb.org/ns”>
 <tnt:skeleton href=”/basic-spec.xml”/>
 <tnt:query name=”exercises.xq”>
 for $t in $topics return
 tnt:collection(concat(’/exercises/’, $t, ’/*.omdoc’))//exercise/statement
 </tnt:query>
</tnt:virtualdocument>

Here we assume that the full-fledged VDoc Skel can be found in the VDoc Spec under the path
/basic-spec.xml. Thus we can ”inherit” VDoc Skels recursively and override
XQueries in any combination that comprised quite a flexible mechanism to reuse existing
VDoc Skels and queries and override only parts when needed. Also it is possible to create
VDoc Specs whose skeletons reference queries that are not present in the same VDoc Spec. This
feature is comparable to e.g. Java abstract classes, i.e. such a VDoc Spec cannot be used as such,
but can be referenced from another VDoc Specs that defines the missing queries.

Parameters
XQueries can reference variables that are not defined in the
current context. Those can be externally defined in the
tnt:param elements outside the
query. This approach separates logics
from the input. Similarly to queries, parameters can also be overridden or be absent in a
particular VDoc Spec. In the latter case, VDoc Specs that inherit the current VDoc Spec should define
absent parameters. In our example in Listing Example of a VDoc Spec we are using two
parameters: a list of topics for which we retrieve exercises
($topics) and a maximum number of returned exercises for
each topic ($max). Such a mechanism considerably improves
reusability and flexibility of VDocs.
In this subsection we described the VDoc Specs — means to define the structure of
VDocs. In Figure VDoc Workflow a VDoc Spec is denoted as the left bottom picture in the life cycle
of VDocs. But how do we handle and consume VDoc content?

VDocs as TNTBase FS Entities and Their Materializing
In order to make VDocs as a part of a TNTBase file system and expose them to users, one has
to utilize the RESTful API of TNTBase [Z+10]. When creating
a VDoc, a user has to provide a path and a name of a VDoc, a VDoc Spec and its
revision which a VDoc will be
linked to and, optionally, a set of parameters, analogously to those that a VDoc Spec has
(thus, one can override VDoc Spec parameters or define new ones). Note that it is possible to
associate a VDoc with a VDoc Spec of a particular revision, not only with the HEAD
revision. Parameters associated with VDoc file system entities make VDoc Spec even more
reusable. When retrieving content of a VDoc (i.e. the expanded version of a VDoc Spec), a user
might also provide parameters that will override those defined in a
VDoc Spec and in a VDoc
itself. It might be very useful for dynamic alternation of a VDoc or during debugging. In
Figure VDoc Workflow the content of a VDoc is presented in the second picture at the
bottom. We see how data are aggregated and mashed up with the static
parts of a VDoc Spec.
Currently every time VDoc content is requested, TNTBase executes every query included into a VDoc Spec and aggregates the results.
 For certain VDoc Specs it may be time-consuming. Furthermore, generated on the fly VDoc content is not accessible via xSVN working copy. Therefore a user may want to
 fix the content and make it versioned. In our example when a user is satisfied with exercises
 list he got through a VDoc, he may desire to make it persistent by putting it into a
 repository file under a certain path. To satisfy these demands TNTBase RESTful interface provides a VDoc feature that turns
 the content of a VDoc into a regular file in a repository. We call such a process
as VDoc materializing. If there is already a document
under a provided path, the materializing process results in a new revision of that file. Thus we make VDocs content accessible via SVN client and track the revision history.

Querying VDocs
The contents of a VDoc can be addressed in a query via the TNTBase XQuery extension
function tnt:vdoc($path as xs:string), where
$path is a path of a VDoc in a TNTBase repository. Thus
one may combine querying of usual repository files together with multiple VDocs. It is
also possible to retrieve just the expanded version of a VDoc Spec (not the content of a VDoc
which might be different due to additionally defined parameters). The XQuery extension
function looks similar - tnt:vd-spec($path as xs:string),
but instead of a VDoc path, we provide a path to a VDoc Spec. As an example, assume that we
want to get a number of authors that contributed to exercises in a VDoc. The query will be
simple:
count(tnt:vdoc(’/path/to/vd’)//dc:author)

VDoc Editing
One of the strongest features of VDocs is that they can be edited and committed to
TNTBase via the RESTful interface. Changed parts of a VDoc that came from files in a
repository will be transparently propagated back to the sources with repository history
preservation, i.e. a new revision will appear in TNTBase. In Figure VDoc Workflow on the
bottom right picture we can see the final phase of a VDoc workflow: editing and submitting
it back -- the modified parts (marked with red) are populated back to their “home”. All
changes are performed in a single xSVN transaction and only those files will be part of it
that were implicitly affected by VDoc editing.
In a VDoc we distinguish static parts (i.e. those that come from the VDoc Spec) from
generated ones (i.e. those parts that are results of a particular VDoc Spec query). Currently, static parts are not editable in a VDoc – TNTBase will abort a commit,
if they have been changed. However, static parts can be modified by changing VDoc Spec file
directly in a repository. From the generated part, only the XML elements that come from the
repository are editable; TNTBase annotates them with
tnt:doc and tnt:xpath
attributes that cache information about the element source needed for the commit. In our
exercise example an editable part might look like:
<exercise topic=”algebra” tnt:xpath=”/omdoc[1]/theory[3]/exercise[2]”
 tnt:doc=”/exercises/algebra/isomorphic-sets.omdoc”>
 ...
</exercise>
 ...
<exercise topic=”algebra” tnt:xpath=”/omdoc[1]/theory[2]/exercise[1]”
 tnt:doc=”/exercises/algebra/relations.omdoc”>
 ...
</exercise>

A user may add attributes, text, comments, new elements or delete the old ones, but he is
not allowed to modify tnt:doc and
tnt:xpath attributes, otherwise TNTBase will abort
committing.
So far we have considered only editable parts of the generated part.
There could be, however, non-editable, generated nodes (e.g. dates or
average of some values), which we
call constructed. In some cases, we can even partially modify these and
propagate changes back to a repository: If XQueries
wrap some of DB XML elements into some other elements, making these
constructed. For example, the query associated with some
tnt:xqinclude element could be:
<author>{tnt:collection(’/exercises//*.omdoc’)//dc:creator}</author>

So the results might be:
<author>
 <dc:creator>Paul</dc:creator>
 <dc:creator>John</dc:creator>
</author>

In such cases we can make these elements editable via the XQuery wrapper function
tnt:make-editable supplied by TNTBase for this purpose. This function adds
tnt:doc and tnt:xpath
attributes to the wrapped elements if possible (i.e. if the input sequence of elements are
nodes in DB XML) to mark them as editable. So in our example the query should really be:
<author>{tnt:make-editable(tnt:collection(’/exercises//*.omdoc’)//dc:creator)}</author>

This leads to the following result which parts are editable:
<author>
 <dc:creator tnt:doc=’…’ tnt:xpath=’…’>Paul</dc:creator>
 <dc:creator tnt:doc=’…’ tnt:xpath=’…’>John</dc:creator>
</author>

The editing approach has a number of natural limitations:
	If VDoc content contains multiple results that are the same document node in a
repository, then TNTBase will not allow committing this VDoc either because in this case
it is not clear which of modified nodes should be propagated to a source document. In
future, this behavior might be changed so that e.g. the first or the last change of the
same node wins and is sent to a repository.

	If VDoc dynamic parts came from older revisions of repository files, then such parts
can not be editable as well because once revision is committed to a repository it becomes
unchangeable.

	From a dynamic part only XML elements[2] are editable. This limitation stems from the
fact that e.g. text may be produced by concatenation of multiple strings inside some
element and TNTBase will not be able to determine how to propagate
changes back and there is no place to put source
information inside a VDoc (the latter holds for all remained types of XML nodes
as well). However, it
is possible to work around this limitation by embedding XQueries
that
return those nodes together with their parent element.

Last but not least, TNTBase follows the “update-modify-commit-merge” cycle from the
underlying version control system in this process, so if another user modified repository
contents while we were editing a VDoc, submitting of the latter will fail, since our VDoc is
“out-of-date” and we have to get the VDoc content again and merge our changes. This
mechanism guarantees that we will not overwrite somebody else’s changes.

VDoc Schema Validation
The obvious well-formedness constraints for a VDoc Spec can easily be expressed in a RelaxNG
schema, which we supply as [ZK]. But schema-validity of the VDoc Spec does not
ensure validity of the resulting VDoc because it
does not take the constraints of the target format into account. Fortunately, we can
easily integrate the VDoc Spec schema with the target schema, if the latter meets (or is
extended to meet) some modularity requirements. As an example we provide such a
combination for OMDoc language in Listing A RelaxNG Schema for Virtual OMDoc Specifications.
A RelaxNG Schema for Virtual OMDoc Specifications: A RelaxNG Schema for Virtual OMDoc Specifications
include ”tnt-vd-spec.rnc” {
 skeleton.model = grammar {include ”omdoc/omdoc.rnc”
 {ss |= parent xq?}}
 return.internal.el = grammar {include ”omdoc/omdoc.rnc”
 {start= omdoc.class|CMP|FMP
 ss |= parent result.el}}}

Here we made use of the fact that the OMDoc schema has a hook (the ss
schema macro) that allows replacement of elements in the declarations: all element
declarations are of the form
CMP = (ss | element CMP {CMP.attribs & CMP.model})

In this situation, we only had to replace the content and attribute model of the
tnt:skeleton element[3] with the
OMDoc document model, which is upgraded to allow an
tnt:xqinclude element in place of all
“ss-replaceable” elements. The content model of the
tnt:return element is instantiated to the model of OMDoc “ss-replaceable” fragments, updated to allow
tnt:result element in place of
“ss-replaceable” elements. When VDoc format-aware schema is ready, we can
associate it with a VDoc Spec via tntbase:validate xSVN property (details
in [ZKR10]), and thus ensure that TNTBase allows committing only
those VDoc Specs which would always produce content that is valid against our format schema.

Implementation Details
VDocs are realized[4] in XQuery with help of XQuery external functions written in Java. External
function are used, for instance, for dynamic query execution from another XQuery (for
expansion of a VDoc Spec), getting the revision information from a repository (to control that
no other revisions have been committed while editing a VDoc) or committing changes under
certain path (to propagate changes to original files one edited VDoc has been submitted
back). In order to support VDoc editing workflow, there is a simple XQuery implementation
of XML differencing, that
	controls that VDoc static parts were not modified,

	controls that tnt:doc and
tnt:path attributes of editable parts were not modified,

	aggregates information about changed editable parts and groups them by source file,

	checks that there are no more than one editable part that corresponds to the same
node in the same XML document.

Use Cases
In this section we discuss four real-world use cases of the VDoc technology. The discussion
here is complemented with an evolving[5] TNTBase sandbox installation [Zho] that supplies
Relax NG schemas and shows VDoc queries and VDoc Specs of our use cases in action.
Automated Exam Generation
This is a dogfood use case from our academic practice, and is (partially) used in
day-to-day operation: The second author teaches a first-year, two-semester Introduction to
Computer Science a Jacobs university and – over the last six years – has accumulated a
collection of about 1000 homework, quiz, and exam problems encoded into the XML-based
OMDoc format [Koh]. For the courses we need to prepare regular four
exams, four “grand tutorial test exams” and two make-up exams per year. While the
homework problems are typically new (and add to the corpus of well-tested problems), we
assemble the exams from it semi-automatically with a VDoc Spec that generates random exam sheet
based on the input list of topics we intend to cover throughout an exam.
There are two kind of proper exams: midterms and finals. Midterms usually are meant to be
for 1 hour, although sometimes it takes 75 minutes or so, whereas finals are designed for
2 hours. Thus we also provide an exam duration as an input parameter for our exam
VDoc. Changing only this parameter together with the topic list allows us to get
different exam sheets that do not exceed the certain time and cover desired topics. All
necessary information is encoded into the problems as RDFa metadata annotations. Our
XQuery for a VDoc Spec takes care about adjusting the timing closely to the provided
limit. When VDoc content is generated, it can be rendered by utilizing XSLTs and developed
in our group JOMDoc library [JOM10] for rendering
MathML[W3C07]. Everything is embedded into TNTBase, and once an exam VDoc
is installed it is a matter of one click in the TNTBase web interface to get the unique
human-readable exam sheet for the students.
VDoc Editing facilities also find an application in our use case. Before giving generated
exam to students we test it on our teaching assistants that may express some of the
comments or suggestions how to improve particular problems. Then we edit the contents of
an exam VDoc and commit it back – all modifications are automatically patched into original
XML sources: easily and painlessly. If one does not like a particular problem to be
included into exam, we can adjust a VDoc parameter that excludes them from the exam.
The biggest advantage of current exam generation approach is that we write a VDoc Spec once and
reuse it next semester by simply adjusting few parameters to a VDoc. When one is satisfied
with the exam presented, it can be materialized and saved in a repository as a normal file
that can be referenced in future to keep track how students performed on different
assignment and figure out what their weaknesses are.
Although a presented approach already meets our requirements, there are some issues that
could be improved. For instance, we might want to take total exam difficulty into account
to generate exams that do not exceed a certain duration and that have difficulty in a
certain range (again difficulty information is embedded into problems XML). That will lead
to a more complicated queries for a VDoc Spec, but is still feasible. Apart from generating
exams, this use cases might be used by students that are willing to sharpen their
knowledge: they could generate practice sheets starting from easy tasks and end up with
the complex ones. Some parameters in e.g. cookies may keep track of what exercises already
appeared in the practice sheet, and a VDoc will never show them again. It could easily be
done by providing dynamic parameters to a VDoc retrieval method as was described in the
previous section.

Multiple Versions of Documents
In most scenarios with long-lived documents, we encounter the problem of document
versions. Let us consider the case of W3C specifications like XQuery 1.0/1.1, XPath 1/2,
XML 1.0/1.1., or even MathML1.0/1.0.1/2.0/2.0(2e)/3.0. They are encoded in XML format
XMLSpec [XML09], so TNTBase and VDocs apply. Usually some parts of specification
remained the same, while other parts change between the versions, and it is an important
task to track the differences. For this use case we are experimenting with XML 1.0 and 1.1
specifications to supply the user with a view that will show only the relevant changes in
the formal parts of specification branches. It is rather simple to provide an Diff
VDoc via an XQuery that summarize changes in formal parts (the rules of the XML grammar
are marked up by special elements in XMLSpec), ignores document order (grammars are sets,
not lists of rules), and presents them as a document XMLSpec documents upgraded with
difference alternatives. Note that our XQuery-based XML-diff comes in handy here. This VDoc
gives a user better understanding in which direction the development is going and what
changes are intended ones and which are made by mistake. Our Diff VDoc is also editable that
allows a user to fix obvious bugs right on spot, without navigating to the source
files. Once Diff VDoc is settled in TNTBase it can be reused to filter only relevant
differences as well as transparently editing them, all in one place. Currently W3C stores
specifications in a CVS repository, but does not make use of its differencing facilities
for version tracking as diff is text-based and outputs even less and least relevant
differences.
Note that the Diff VDoc encapsulates a particular notion of relevance in the filtering part,
which may need to be explained in a document preamble. Thus the representational form of a
VDoc which mixes document parts and queries is beneficial. Moreover, there can be multiple
Diff VDocs for tracking (and editing) various aspects of the differences in the
specifications. Such Diff VDocs may even take over the role of conflict editors we currently
have in version control aware IDEs.

Managing Document Collections
The exam generation use case described above can be seen as a special case of managing
(here extracting custom documents from) a collection of primary (content)
documents and creating secondary documents from them that aggregate parts of the
content. These secondary documents can either be used for communication to the outside
(payload documents) or for management of the document collections. In this
terminology, the exams above can be seen as the payload documents derived from the content
documents in the problem collection. That is where VDocs may naturally come into play as we
have seen above.

A very simple application of VDocs in payload documents are queries for a table of contents
(collecting all sectioning elements in a narrative document), the references (collecting
all citations, sorting them, and completing them with information from a bibliographic
database), or an index. In DocBook [WM08] these aggregated document parts
generated by XSLT stylesheets in the presentation phase, which may incur performance
bottlenecks in practice, since this is not supported by indexing and caching. Moreover,
VDocs make separate conceptually the issue of auto-aggregation and presentation, which
allows to support workflows like previews/editing of aggregated document parts and
materialization (e.g. of branches and tags) for archiving.
Another simple application of VDocs in technical payload documents is in XML-based literate
programming [Knu92], where program text is intermingled with its documentation and
explanation in a single document. Here a VDoc can be used to extract the program text (with
comments that cross-link to) from the literate source. As a concrete XML-based example
take the XMLSpec-based source of the MathML3 Recommendation [ABC+09] from
which we generate the MathML3 RelaxNG Schema. A VDoc would have considerably simplified this
process.
We have already seen Diff VDocs as examples of management VDocs for version management in the
last section. But VDocs can also support proofreading, a very important task in the document
life cycle. Often one wants to proofread special aspects of a document, e.g. whether
certain technical terms are used consistently. For this we can quickly specify these terms
as parameter to an XQuery that assembles all paragraphs that contain them. Then we can
proofread (and edit) the text passages, commit them back to the collection, and move on to
other proofreading tasks.

Refactoring Ontologies
Finally, VDocs can be used for refactoring OWL [SWM04] Ontologies that are
written in XML Syntax, e.g. OWL 2 XML [MPPS09]. VDocs become very handy when
making changes to a small subsets of multiple large ontologies. In the first phase we can
preview ontologies changes in a VDoc using XQuery transform functions. In the second phase,
when we are satisfied with results we can materialize a VDoc thus obtaining a refactored
ontology as a usual document in a repository. Refactorings that can be done using VDocs
include renaming entities, factoring out or merging modules, rewriting axioms, lowering
expressivity or stripping axiom annotations. For more detailed information concerning
ontology refactoring using VDocs refer to [LZ10].

Conclusion & Further Work
In this paper, we have presented the concept of Virtual Documents and their prototypical
realization in our TNTBase system. VDocs integrate computational facilities into
documents like JSP/PHP or TeX/LaTeX, only that VDocs use the versatile and XML-optimized
XQuery processing as a computational process instead of relational database lookup (PHP)
or general macro expansion in the latter case. We view the integration of computation in
documents as an enabling technology that explains much of the success and
usefulness of the respective approaches, and contend that our VDocs are one way of
introducing this to the XML world. We feel that we have just skimmed the practical
possibilities induced by VDocs in the use cases discussed in Section section “Use Cases”.
For instance, we envision that VDocs can serve as a basis for news generation that are
tailored to a particular user and keep track of the news that have been read already. Thus
a reader would receive only those topics that are interested for him and has not been
explored so far. The targeted VDoc would contain an XQuery that takes specific to a
particular user parameters like interested sections or ids of read items. The only part
still missing to realize this is a user model for preferences and explored news, but it is
a separate problem. The important thing that a single VDoc can satisfy needs of multiple
users at the same time. Consider for instance the following situation: If the content
collection contains information conceptual dependencies, then we can use VDocs to generate
guided tours [MU01], i.e. self-contained sub-documents introduce the
necessary prerequisites of a concept. As VDocs allow to re-use the parametric XQueries that
operationalize e.g. the topological sorting of concept descriptions, populating a file
system with guided tours over a content collection becomes a mechanical exercise. In fact,
we surmise that much of the functionality of advanced e-learning systems like
ActiveMath [MAF+03] can be externalized into VDocs.
Note that the viability of virtual documents is intertwined with the targeted document
formats in an interesting way as our discussion of validation in
Section section “VDoc Schema Validation” shows. In [ZKR10] we have begun an
exploration on a theoretical level; from our practical work reported in this paper it
seems that more theoretical investigations are necessary. Note furthermore that our
realization of VDocs is not tied to the TNTBase system – even though version management
can profit from VDocs, it is not a prerequisite; instead of an SVN commit we could just as
well write to an XML database. In particular, as our implementation is based on XQuery in
its core, it should be possible to port it to other XML databases if they supply a notion
of a file system interface.
In our use cases, the ability to re-use XQueries[6] for different situations
and over time has been a crucial ingredient for practical use of VDocs. We therefore
anticipate that common XQueries will be rolled into extensions[7] for document formats much like macro packages in
TeX/LaTeX and thus will create an avenue for user-driven format extensions that may
well drive evolution of XML-based formats in the future.

An enabling technology must of course also have enabling tools, which we
want to develop on top of our TNTBase system. One such tool is an editing framework for
VDocs. Note that this is non-trivial, since — like their underlying XML formats — VDocs
need to be presented to a user in a human-oriented format for reading and
editing. Let us consider XHTML as a presentation format. JavaScript frameworks like
JOBAD [JOB08] could be extended in order to inject JavaScript into XHTML that
marks up the editable parts of a transformed VDoc with help of auxiliary TNTBase
attributes (like tnt:doc and
tnt:xpath). Special markup will allow that framework to
figure out what parts of a presentational document correspond to what parts of the sources
from which VDoc content was comprised. The result could be that every “editable” part of
rendered XHTML contains a small button or a link for editing pressing which results in
some popup that shows an editable fragment of an XML document. Pressing submit button
will modify the original content of a VDoc and commit it back to TNTBase. XML sources
will be transparently patched that will lead to an updated XHTML version of a considered
VDoc. Such an approach will allow a typical user to understand better the meaning of a VDoc
(with help of human-oriented presentations) as well as provide interactive means for
utilizing the concept of VDoc editing.

References
[ABC+09]
Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze,
Stéphane Dalmas, Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter,
Patrick Ion, Michael Kohlhase, Azzeddine Lazrek, Paul Libbrecht, Bruce
Miller, Robert Miner, Murray Sargent, Bruce Smith, Neil Soiffer, Robert
Sutor, and Stephen Watt.
Mathematical Markup Language (MathML) version 3.0.
W3C Candidate Recommendation of 15 December 2009, World Wide Web
Consortium, 2009.

[BCF+07]
Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon.
XQuery: An XML Query Language.
W3C recommendation, World Wide Web Consortium (W3C), January
2007.
available at http://www.w3.org/TR/xquery/.

[Ber09a] Berkeley DB.
available at
http://www.oracle.com/technology/products/berkeley-db/index.html, seen
January 2009.

[Ber09b]
Berkeley DB XML.
available at
http://www.oracle.com/database/berkeley-db/xml/index.html, seen January
2009.

[CDF+08]
Don Chamberlin, Michael Dyck, Daniela Florescu, Jim Melton, Jonathan Robie, and
Jérôme Siméon.
XQUpdate: XQuery Update Facility 1.0.
W3C Candidate Recommendation, World Wide Web Consortium (W3C),
seen February 2008.

[DKL+10]
Catalin David, Michael Kohlhase, Christoph Lange, Florian Rabe, Nikita
Zhiltsov, and Vyacheslav Zholudev.
Publishing math lecture notes as linked data.
In Lora Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten
Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania Tudorache, editors,
ESWC, number 6089 in Lecture Notes in Computer Science, pages 370–375.
Springer, June 2010. doi:https://doi.org/10.1007/978-3-642-13489-0_26.

[JOB08]
JOBAD framework – JavaScript API for OMDoc-based active documents.
http://jomdoc.omdoc.org/wiki/JOBAD, 2008.

[JOM10]
JOMDoc project — Java library for OMDoc documents.
http://jomdoc.omdoc.org, 2010.
seen Feb.

[JSR09]
JSR 311: JAX-RS: The Java API for RESTful Web Services, seen April 2009.
available at
https://jsr311.dev.java.net/nonav/releases/1.0/index.html.

[Knu92]
Donald E. Knuth.
Literate Programming.
The University of Chicago Press, 1992.

[Koh]
Michael Kohlhase.
OMDoc: An open markup format for mathematical documents
(latest released version).
Specification, http://www.omdoc.org/pubs/spec.pdf.

[Koh10]
Michael Kohlhase.
An open markup format for mathematical documents OMDoc [version
1.6 (pre-2.0)].
Draft Specification, 2010.

[LAT]
Latin: Logic atlas and integrator.
http://trac.omdoc.org/latin/.

[LZ10]
Christoph Lange and Vyacheslav Zholudev.
Previewing OWL changes and refactorings using a flexible XML
database.
In Mathieu d’Aquin, Alexander García Castro, Christoph Lange, and
Kim Viljanen, editors, 1st Workshop on Ontology
Repositories and Editors, number 596 in CEUR Workshop Proceedings,
Hersonissos, Greece, May 2010.

[MAF+03]
E. Melis, J. Buedenbender E. Andres, A. Frischauf, G. Goguadse, P. Libbrecht,
M. Pollet, and C. Ullrich.
Knowledge representation and management in activemath.
International Journal on Artificial Intelligence and
Mathematics, Special Issue on Management of Mathematical Knowledge,
38(1–3):47–64, 2003. doi:https://doi.org/10.1023/A:1022959613174.

[Mil10]
Bruce Miller.
LaTeXML: A LaTeX to XML converter.
Web Manual at http://dlmf.nist.gov/LaTeXML/, seen May 2010.

[Mis10]
Dimitar Misev.
Integrating SUMO and OMDoc.
Bachelor’s thesis, Computer Science, Jacobs University, Bremen, 2010.

[MPPS09]
Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider.
OWL 2 web ontology language: XML serialization.
W3C recommendation, World Wide Web Consortium (W3C), 10 2009.

[MU01]
Erica Melis and Carsten Ullrich.
How to teach it – polya-inspired scenarios in activemath.
AI in Education (AIED-2003), IOS Press, pages 141–147, 2001.

[Ope] OpenLink Software.
OpenLink universal integration middleware – Virtuoso product
family.
web page at http://virtuoso.openlinksw.com.

[Rel]
A schema language for XML.
available at http://www.relaxng.org/.

[SVN08]
Subversion, seen June 2008.
available at http://subversion.tigris.org/.

[SWM04]
Michael K. Smith, Chris Welty, and Deborah L. McGuinness.
OWL web ontology language guide.
W3C Recommendation, World Wide Web Consortium (W3C), February
2004.

[W3C07]
W3C.
Mathematical Markup Language (MathML) Version 3.0 (Third Edition).
http://www.w3.org/TR/MathML3/, 2007.
Seen November 2007.

[WM08]
Norman Walsh and Leonard Muellner.
DocBook 5.0: The Definitive Guide.
O’Reilly, 2008.

[XML09]
The XML Spec schema and stylesheets.
http://www.w3.org/2002/xmlspec/, seen March 2009.

[Z+10]
Vyacheslav Zholudev et al.
TNTBase – restful api.
http://tntbase.org/wiki/restful, 2010.

[Zho]
Vyacheslav Zholudev.
Sandbox for Balisage 2010 – Virtual Documents.
http://tntbase.org/wiki/balisage2010.

[ZK]
Vyacheslav Zholudev and Michael Kohlhase.
The RelaxNG schema for vd skeletons.
https://svn.tntbase.org/repos/tntbase/trunk/DbXmlAccessLib/resources/tnt-vd-spec.rnc.

[ZK09]
Vyacheslav Zholudev and Michael Kohlhase.
TNTBase: a versioned storage for XML.
In Proceedings of Balisage: The Markup Conference 2009,
volume 3 of Balisage Series on Markup Technologies. Mulberry
Technologies, Inc., 2009. doi:https://doi.org/10.4242/BalisageVol3.Zholudev01.

[ZKR10]
Vyacheslav Zholudev, Michael Kohlhase, and Florian Rabe.
A [insert xml format] database for [insert cool application].
In Proceedings of XML Prague 2010, 2010.

[1] We take TeX/LaTeX as the most prominent
example from which we take our intuitions. Wikis usually also allow in-text macros and arguably
the VB/VBA extensions of Office suites also allow macros, even if they are less extensively
used.
[2] i.e. that are of
XML Schema type xs:element
[3] which allowed arbitrary
elements that contain tnt:xqinclude queries
[4] Due to some problems in DB XML concerning multiple imported
modules or support of XQuery external functions written in different languages, VDoc
functionality cannot yet be fully integrated, we expect to have a fix for this by the
conference.
[5] At the time of the submission, the sandbox
is not fully operational yet, but we expect it to be the base of our system demos at
the conference
[6] which require specialized
expertise and therefore constitute a significant investment
[7] Think e.g. of
tableofcontents, references, or index elements that
abbreviate respective XQueries.

Balisage: The Markup Conference

Scripting Documents with XQuery: Virtual Documents in TNTBase
Vyacheslav Zholudev
PhD Student
Jacobs University Bremen

<vyacheslav.zholudev@gmail.com>
Vyacheslav Zholudev has graduated in May, 2007 from Saint-Petersburg State University, Russia with a Master degree in Computer Science.
 He is continuing his studies at Jacobs University Bremen as a Ph.D student.
 Starting from September of 2007 he is working in the KWARC research group under the supervision of Prof. Michael Kohlhase.

Michael Kohlhase
Professor
Jacobs University Bremen

<m.kohlhase@jacobs-university.de>
Dr. Michael Kohlhase (born 1964 in Erlangen) is a
 German computer scientist and professor at Jacobs University, Bremen, Germany,
 where he is head of the KWARC research group (Knowledge Adaptation and Reasoning for Content) at the School of Engineering and Science.

Balisage: The Markup Conference

content/images/Zholudev01-002.png
Boolean algebra

TNTBASE REPOSITORY

Discrete math

<author>...</author>
Zoxercise>...<exercise>
<authors...</author>

<exercise>...</exercise>

<author...</author>

<exercise>...</exercise>

(XQuery inclusion ;)
<Jauthors>
<exercises>

(XQuery inclusion ;)
<Jexercises>

<lomdoc>

<author>Michael<author>
> <author>John<author>

<author>Normen<author>
<fauthors>

<exercises>
<exerciss type="algebra">

<lexercise>
<lexercises>

<lomdoc>

Wiite a static procedure ..

Let Bbe a set .

Jexercise>

<exercise type="VM">
Consider a static proc ...

<Jexercise>

<Jexercises>

<lomdoc>

content/images/Zholudev01-001.png
TNTBase TNTBase (F)

L Web Application
Web Application

F-specific layer

XML-layer XML-layer

xSVN XxSVN

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

