[image: Balisage logo]Balisage: The Markup Conference

Tag Libraries for XSLT and XQuery
Erik Hennum
Senior Application Engineer
MarkLogic Inc.

<efhennum@gmail.com>

Vyacheslav Zholudev
PhD Student
Jacobs University Bremen

<v.zholudev@jacobs-university.de>

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 Erik Hennum and Vyacheslav Zholudev

How to cite this paper
Hennum, Erik, and Vyacheslav Zholudev. "Tag Libraries for XSLT and XQuery." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Hennum01.

Abstract
XML has mature tools for validation, transformation, and query,
but current tools require a level of programming skills that many users
who need dynamic documents do not have. Using the organizational pattern
of tag libraries (borrowed from Java tag libraries), we propose to divide
responsibilities for dynamic documents between two classes of people.
Tag-library developers implement query, transformation, or component formatting
for predefined tags in a library; document authors create dynamic documents
by embedding elements from the tag library in HTML, XSL-FO, or other documents;
when the document is processed, elements from the tag library are replaced
by automatically generated content. A callback mechanism allows the document author
to pass document fragments to the tag library for parameterization. Document authors
can use tag libraries in ways not foreseen by the tag library developers and
can combine tag libraries from different developers. A robust tag-library solution
will foster better collaboration between XML developers and creators of XML documents.

Balisage: The Markup Conference

 Tag Libraries for XSLT and XQuery

 Table of Contents

 	Title Page

 	Introduction

 	Essential Terms, Concepts, and Limitations

 	Related Work

 	Similarities and Differences Between XSTag and Java Tag Libraries

 	Tag Processors

 	XSTag Syntax
 	Top-Level Elements of Tag Libraries
 	Basic Tag Libraries

 	Example of a Basic Tag Library

 	Processor-Specific Tag Libraries

 	Tag Documents

 	Tag Processor Implementation

 	Potential Investigations

 	Conclusion

 	Glossary

 	About the Authors

 Tag Libraries for XSLT and XQuery

Introduction
XML provides mature facilities for processing and presenting information.
The solution developer's toolkit includes
XSLT (see [XSL2]) to transform XML documents from one vocabulary
to another,
XQuery (see [XQ1]) to retrieve and modify persisted XML documents
for applications, and
XHTML (see [XH]) and XSL-FO to present information on the screen or
in print.
These standards have become essential tools for web applications,
publishing pipelines, electronic interchange, and many other challenges.
Having successfully addressed such fundamental challenges,
the XML community can now refine the toolkit.
In particular, the XML community can consider whether lessons learned by other
communities could have benefits for the XML technology portfolio.

The experience of the Java community with tag libraries offers
one such opportunity. Java introduced tag libraries to broaden
the appeal of an existing, successful technology, JSP (Java Server Pages)
(see [JSP]).
Widespread adoption exposed a fundamental issue with JSP:
JSP required skill levels that limited the set of users who could
define dynamic documents and, by exposing robust programming capabilities,
provided for a poor separation of concerns.
The Java community solved these problems by introducing tag libraries.
In the Java technology stack, tag libraries are function libraries
called by embedding a markup vocabulary (the tags) within documents.
The approach is open-ended in that each tag library supplies its own
markup vocabulary.

The canonical example of a tag library retrieves rows from a database
for layout and styling in a document. The following example fragment has
a single taglib:attendees tag:

<html:table>
 <taglib:attendees>
 <html:tr>
 <html:td>${last-name}</html:td>
 <html:td>${first-name}</html:td>
 </html:tr>
 </taglib:attendees>
</html:table>

The taglib:attendees tag calls a function in a tag library
(whose Java implementation is omitted here). The function implementation retrieves
attendees from a database and repeats the content of the tag for each attendee.
When generating output from the tag content, the function replaces the embedded
${last-name} and ${first-name} expressions with the
last name and first name values for the currently processed attendee. Thus,
a generated result document would resemble the following example:

<html:table>
 ...
 <html:tr>
 <html:td>Fitzgerald</html:td>
 <html:td>Elena</html:td>
 </html:tr>
 <html:tr>
 <html:td>Green</html:td>
 <html:td>Alfonso</html:td>
 </html:tr>
 <html:tr>
 <html:td>Hutz</html:td>
 <html:td>Egberto</html:td>
 </html:tr>
 ...
</html:table>

As the example shows, the tag library approach provides for
a useful division of responsibilities.
The tag library developer is responsible for packaging functionality (often
information retrieval and manipulation as in the example but also a widget gallery
or anything else that can be executed with a simple interface) as an embeddable
vocabulary.
The tag document author is responsible for assembling the tag library vocabulary
with static elements (often providing style and layout specifications) to produce
a dynamic document.
By fostering collaboration between these audiences, tag libraries extend
the reach of both participants.
The Java community has confirmed the value of this collaboration with comprehensive
toolkits such as JSF (Java Server Faces).

While XSLT and XQuery have always had the ability to combine
literal result elements with dynamic content, the XML technology stack
currently lacks a complete solution for providing this kind of division
of responsibilities.
This paper proposes adapting the Java Tag Library approach by implementing
tag libraries in XSLT or XQuery and making use
of tag vocabularies in XHTML, XSL-FO, or other XML documents.
We use XSTag (for XML Style Tags) as the working title
for this variant on the tag library approach.

Essential Terms, Concepts, and Limitations
The introduction made casual use of several terms that we summarize
more formally here:

	tag
	An XML element that can be embedded in a document to call
a function in a tag library to produce dynamic XML result nodes.

	tag vocabulary
	The tag element set that declares the functions
exposed by a tag library.

	tag library
	A function library (typically implemented in XSLT or XQuery)
exposed by means of a tag vocabulary. (Note that this sense of the term differs
from other senses such as the documentation for an XML vocabulary.)

	host vocabulary
	A static XML vocabulary for documents; typically a presentation
vocabulary such as XHTML or XSL-FO.

	tag document
	A document that mixes a host vocabulary and the tag vocabularies
from one or more tag libraries, potentially with other dynamic constructs such as
embedded XPath expressions and XSTag statements (a small set of flow control,
evaluation, and constructor statements equivalent to the core statements
from Java Tag Libraries). Because the tag vocabularies are not part of the
host vocabulary, tag documents are typically well formed rather than validated.
In practice, this limitation is not burdensome because the generated result
document should be inspected anyway after most changes to the tag document.

	handler
	A document fragment that is supplied by the tag document but
parameterized by the tag library. The section “Introduction”
gives a handler example in the content of the taglib:attendees tag,
which is a document fragment that receives the last-name and first-name parameters
from the tag library.
A tag library can support handlers for any kind of event that might occur
during the execution of the tag including different phases of execution
or different element types encountered.

	tag processor
	An engine that reads a tag document and one or more tag libraries and
generates a result document.

	result document
	A document produced by processing the dynamic elements within
a tag document. A result document can be validated with the schema of the
host vocabulary.

The essential features of the XSTag approach are as follows:

	Simplicity of the tag document. By constructing documents with
special XML elements instead of programming with calls and variable assignments,
people with less expertise can successfully generate dynamic documents.
In particular, the use of special XML elements puts the emphasis
on the semantics of the tag rather than the syntax of the tag call.
From the perspective of the tag document author, the XML element
effectively is the call to a function (without needing any other annotations).

	Assembly of tag libraries by the tag document. This feature
removes the need for programming expertise to produce new combinations of libraries and
thus maximizes the potential reuse of tag libraries.
(UNIX pipes provide a good demonstration of the benefitss of assembly by the consumer.)

	Both pull and push processing (see [PUSHPULL]) in the tag
document. Tags let the tag document pull processing defined in a tag library,
while handlers let the tag library push processing control to the tag document.
Having both pull and push capabilities adds some conceptual complexity but
simplifies tag documents for cases similar to the example in the introduction.
In particular, handlers give the tag document author the ability
to interleave tags from different tag libraries at the fine-grained level in ways
unforeseen by the tag library developer.

The XSTag approach is not a solution for every document processing challenge.
The tag library approach is designed for producing dynamic documents (especially HTML)
through layout and configuration or styling of components and data provided
by reusable libraries.
In particular, handlers are sufficient for push processing of a pre-defined set
of events that occur during execution of one tag.
Handlers don't provide a good tool for transformation of a complex document
from one large vocabulary into a different vocabulary.

Before explaining our approach in detail, we review some existing solutions
for document authors.

Related Work
Several XML initiatives address the challenges of dynamic documents,
including:

	Simplified Stylesheets
	XSLT provides Simplified Stylesheets (see [XSL2]) as a method
for embedding XSLT statements inside a result element at the root level of a document.
Limited to the statements valid within an XSLT template, Simplified Stylesheets
cannot include or import other stylesheets and cannot provide matching templates.
In addition, template calls in Simplified Stylesheets use the xsl:call statement
and thus emphasize the XSLT syntax of the call.

As a result, Simplified Stylesheets have some key limitations
with respect to the simplicity of the document, to assembly of libraries by a document,
and to push processing defined in a document.
An additional stylesheet can include or import Simplified Stylesheets
but this approach requires programming expertise to integrate documents
and libraries.

	Cocoon XSP
	XSP (see [XSP]) provides a method for replacing placeholders
in XML documents with the results from Java logic using bindings defined with XSLT.
Because Cocoon runs in a Java web application environment, the primary focus of XSP is leveraging
Java capabilities for producing content within XML documents.

	XBL
	XBL (see [XBL2]) provides flexible aggregation
of content fragments and of client resources such as JavaScript methods.
XBL has seen only partial implementation and limited adoption, perhaps because the
sophistication of the binding mechanisms is challenging for document authors.

	Template placeholder replacement
	The general approach of writing stylesheets to replace placeholders
in a template document with dynamically generated content
was worked out ten years ago (see [XSTEMP]).
RunDMC (see [RDMC]) is a more recent XSLT-based framework exemplifying
the approach.
RunDMC includes the ability to parameterize dynamic generation with content supplied
by the placeholder.
While encouraging simple documents, template placeholders typically don't address
assembly of libraries by a document or push processing defined in a document.
These tasks typically remain the responsibility of the template processor,
minimizing the potential for a library approach.

	XForms
	XForms (see [XForms]) supports forms interaction
with a separation of model, view, and controller. Such interactions are behaviors
of the runtime document. Thus, XForms solves a fundamentally different
problem than dynamic composition of the runtime document. For instance,
a tag library could encapsulate the XForm model, view, and bindings
for a form, providing a simpler interface for inserting the form into
the document. As another example, a tag library could encapsulate alternative
event handlers, providing a gallery of options of predefined behaviors for a
specific form.

Similarities and Differences Between XSTag and Java Tag Libraries
While borrowing heavily from Java Tag Libraries, XSTag also differs
in some important ways:

	Expression language
	Java Tag Libraries can embed a simple expressions in attribute values or
element content. Scenarios for use of expressions include:

	Evaluating variables

	Manipulating string, numeric, and date values

	Extracting values from XML documents

	Copying portions of XML documents

XSTag follows XQuery in supporting delimited XPath expressions
in both attribute value and element content (thus differing from XSLT,
which allows delimited XPath expressions only in attribute values).

	Basic Statements
	Java Tag Libraries provide a reserved XML vocabulary for basic statements
within a tag document including capturing the result of an expression
in a variable, conditional branching, looping and so on.

These statements have equivalents in the XSLT statements allowed within
a template including xsl:choose, xsl:if, and xsl:variable.
While tag libraries can minimize the need for such statements,
the availability of such statements can have practical importance as a workaround.

	Function Binding
	Java Tag Libraries use declarations to associate
XML elements with Java functions.
In an XML processing contexts, such indirection seems potentially confusing
instead of useful.
Instead, XSTag binds a tag call in the tag document to a tag definition with the
same QName in the tag library.

	Handlers and Parameters
	Java Tag Libraries refer to a handler as a tag body.
In Java Tag Libraries, a tag can have at most one handler.
The Java tag body is also a closure with respect to the tag document
in that variables in scope within the tag document can be evaluated
in the tag body.

While the limitation to one handler is adequate for regular relational data,
a single handler is not enough to process an XML tree structure or complex
XML data vocabularies.
XSLT has template match rules and XQuery has typeswitch expressions for this reason.
To process XML content with a tag, different dynamic content must be produced
for different elements.
For that reason, XSTag allows multiple handlers for a single tag
and permits atomic values or XML nodes as parameters.

	Tag Document Inclusion
	Java Tag Libraries have inclusion statements to insert
one tag document inside another tag document.
Such inclusion statements resemble a tag call.
Rather that introduce two different kinds of tag calls,
XSTag supports reuse of document fragments through basic tag libraries
with tags that merely return a static document fragment.

Having reviewed alternative strategies and Java Tag Libraries
background, we now introduce our approach for processing tag libraries.

Tag Processors
The tag processor is responsible for
parsing the tag document and imported tag libraries and
producing a result document. Whether implemented
by interpretting the sources or by preprocessing and then executing XSLT, XQuery, or
some other language, the steps for producing a result document are conceptually similar:

	The tag processor descends the XML tree of a tag document, defining variables
 in scope within a branch. Those variable are outside any tag call and, essentially, are constants.
 The tag processor also evaluates any expressions outside of a tag call, replacing each expression
 with its result.

	When the tag processor reaches a tag call, it performs evaluation and replacement
 on expressions outside of any handler. We call this phase the time of the call.
 Conceptually, for any expression within a handler, the tag processor replaces any variable
 defined outside the handler with its value at the time of the call.
 That is, a handler is a closure with respect to the tag document outside
 the tag call.

	As the tag processor is executing the tag, when the processor
 reaches a call to a handler, the processor evaluates the expressions
 in the handler, replacing parameters of the handler with their values before
 replacing each expression with its result.
 This phase is called the time of handler processing.

As shown in Workflow, a tag processor can be
implemented in XSLT as a preprocessor that generates XSLT modules for execution
by a general-purpose XSLT processor; a parallel approach is possible in XQuery.

Workflow: Tag Processing Workflow
[image:]
Preprocessing a tag document and tag libraries and
then executing XSLT or XQuery.

XSTag Syntax
Due to the division of responsibilities,
 tag libraries and tag documents have different audiences and thus
 different syntax.

Top-Level Elements of Tag Libraries
The XSTag statements in the tag library and tag document have
a namespace to distinguish them from other XML vocabularies.
(For our prototype, we have used http://code.google.com/p/xstag/ns/2011/.)
Throughout the paper, the XSTag namespace is indicated with the prefix xst.

Tag libraries can be implemented using a basic statement set
that all XSTag processors must support or using the language
of the tag processor (either XSLT or XQuery in our prototype) to implement
the tag.
Basic and processor-specific tag libraries have similar declarations for
the root element and its top-level child elements:

	xst:taglib
	The required root element, which must have an version
 attribute identifying the level of the tag processor.
 In addition, a processor-specific tag library must provide a for attribute identifying
 the tag processor language (such as xslt or xquery).
 A basic tag library may omit the for attribute or supply the xstag value
 for the attribute.

	xst:import
	An optional statement to import other libraries. The body of tags
 can call the functions or tags supplied by the imported library.
 The for attribute identifies the tag processor when the import should only be resolved
 for that processor. If the for attribute is set to xstag or omitted,
 the imported library is a basic tag library, and the import should always be resolved.

	xst:tag and xst:param
	Declares a tag and its parameters.
The name attribute must supply
a QName, e.g. <xst:tag name="pref:myTag">...</xst:tag>,
where prefix pref is bound to some namespace, and myTag is the name of the tag.
The tag element should have an as attribute to declare the return type of the tag,
using any atomic or node type allowed in XPath.
Omitting the as attribute is equivalent to specifying
the item() XPath type and thus requiring calls to tolerate any item.

Similar to XSLT, parameters take a name attribute and
can take the as attribute
to declare any atomic or node type and a select attribute or content to declare a default value
if the tag call does not pass the parameter.
In addition, one of the tag parameter can have an implicit attribute set to true,
which allows a shortcut in tag calls (please see section “Tag Documents”).

In addition to the standard XPath atomic or node types, parameters can also have a
handler type. A handler type resembles an XPath 2.1 function signature but requires
a name for each parameter of the handler. The handler is required or optional on the tag call
based on whether its signature has a required or optional return value.
A tag's handler parameter may contain a default handler definition.

Basic tag libraries and processor-specific tag libraries differ
in the implementation of the body of the tag definition.

Basic Tag Libraries
Within a basic tag library, tag definitions are implemented with basic tag statements.
 These statements are modeled on a subset of XSLT instead of introducing a new vocabulary
 so that XSLT developers can easily write tag libraries and so that advanced document authors
 who learn how to write basic tag libraries can progress to XSLT.

	branching and looping
	xst:choose/xst:when/xst:otherwise, xst:for-each, xst:if

The xst:for-each element differs from xslt:for-each in requiring
 a name attribute for the current iterated item.

	variables and evaluation
	xst:content, xst:variable

Because XSLT has three alternatives (xsl:copy-of, xsl:sequence, xsl:value-of)
 for inserting the result of an expression, we have introduced a xst:content statement
 for inserting the result of an expression as content within an element.

	constructors
	xst:attribute, xst:comment, xst:element, xst:namespace,
 xst:processing-instruction, xst:text

	calls
	xst:call with either the name attribute to call a function
 in an imported function library (such as a callable template in an imported XSLT module or
 a declared function in an imported XQuery library module), the tag attribute to call
 a tag in the current library or an imported tag library, or the handler attribute
 to call a handler passed by the tag call.
 Similar to XSLT, the call can take xst:with-param subelements to pass
 parameters. When calling a tag, the call can also take xst:with-handler subelements
	 to pass handlers to the called tag (similar to an XPath 2.1 function object).

 A tag library can define a handler only as the default implementation for a handler parameter
 (and not, for instance, as the content of a variable).

Intentionally less powerful than XSLT or XQuery, basic tag libraries provide functionality
 that can be supported on any tag processor.
 Basic tag libraries can support reuse of headers and footers through simple tags
 that take no parameters and return a document fragment.

Example of a Basic Tag Library

 As an example, we will use the typical XML example of a book store.
 For simplicity we consider a flat book structure in XML documents. Assume that we have multiple XML documents
 that contain a list of books where each of those may contain the following information:
 a title, genre, multiple authors, a description, a publish date and price.
 Some sample data in this structure:

<books id="publisherX">
 <book id="203">
 <title>XQuery Kick Start</title>
 <author>James McGovern</author>
 <author>...</author>
 ...
 <genre>Computer</genre>
 <year>2010</year>
 <price>46.99</price>
 <description> This book is about ... </description>
 </book>
</books>

 To support a book store use case, a basic tag library with a single tag definition might resemble
 the following example:

<xst:taglib version="0.2"
 xmlns:fn = "http://www.w3.org/2005/xpath-functions"
 xmlns:xst = "http://code.google.com/p/xstag/ns/2011/"
 xmlns:tag = "http://code.google.com/p/xstag/ns/demo/tag/books">

 <xst:tag name="tag:books" as="element()*">
 <!-- tag definition parameters -->
 <xst:param name="years" as="xs:gYear*"/>
 <xst:param name="onBook" implicit="true"
 as="handler($title as xs:string, $authors as xs:string+)
 as element()?">
 <!-- default handler implementation -->
 <tr>
 <td><xst:content select="$title"/></td>
 <td><xst:content select="fn:string-join($authors, '; ')"/></td>
 </tr>
 </xst:param>
 <!-- The tag definition body -->
 <!-- getting the books for the requested years -->
 <xst:variable name="books" as="element()*"
 select="document('books.xml')/books/book[fn:empty($years) or data(year)=$years]"/>
 <!-- processing each book by calling the handler -->
 <xst:for-each name="book" select="$books">
 <xst:call handler="$onBook">
 <xst:with-param name="title" select="$book/title/fn:string(.)"/>
 <xst:with-param name="authors" select="fn:string-join($book/author/fn:string(.), ', ')"/>
 </xst:call>
 </xst:for-each>
 </xst:tag>
</xst:taglib>

The above tag library contains only one tag definition that is bound to
	namespace http://code.google.com/p/xstag/ns/demo/tag/books
 via the prefix tag. The books tag
	takes two parameters: a list of xs:gYear values that denote years
	of publications and a handler parameter that, in turn, takes a title and
	a list of authors. If a tag caller does not provide
	a handler definition then the default implementation within the handler
	is used. In the example, the default
	handler implementation returns an HTML table row that contains two columns: a book title and
	concatenated list of authors. The default handler assumes that the tag document will wrap
	an HTML table around the call to the books tag.

The handler definition body retrieves books based on
	supplied years.
	Then, for each retrieved book element, the tag definition body calls the
	handler definition with the title and authors
	parameters of the handler.

Processor-Specific Tag Libraries
A processor-specific tag library has the same
top-level statements (see section “Top-Level Elements of Tag Libraries”) as
a basic tag library including the tag declaration statements
(that is, the xst:tag and xst:param statements).
The root xst:tag-lib statement must have a for
attribute identifying the processor-specific language
of the tag library.
The body of the tag definitions must be implemented
in the processor-specific language.
For instance, an XQuery-specific tag library uses XQuery statements
after the xst:param elements inside the xst:tag definition.

The only exception applies to calls to handlers.
The tag processor must be able to parse these calls, so calls to handlers must embed
the xst:call statement where appropriate within the tag definition.

The example from section “Example of a Basic Tag Library” could be rewritten as an XQuery-specific
tag library as follows:

<xst:taglib version="0.2"
 for="xquery"
 xmlns:fn = "http://www.w3.org/2005/xpath-functions"
 xmlns:xst = "http://code.google.com/p/xstag/ns/2011/"
 xmlns:tag = "http://code.google.com/p/xstag/ns/demo/tag/books">

 <xst:tag name="tag:books" as="element()*">
 <!-- tag definition parameters -->
 <xst:param name="years" as="xs:gYear*"/>
 <xst:param name="onBook" implicit="true"
 as="handler($title as xs:string, $authors as xs:string+)
 as element()?">
 <!-- default handler implementation -->
 <tr>
 <td><xst:content select="$title"/></td>
 <td><xst:content select="fn:string-join($authors, '; ')"/></td>
 </tr>
 </xst:param>
 <!-- The tag definition body -->
 <!-- getting the books for the requested years -->
 let $books as element()* :=
 document('books.xml')/books/book[fn:empty($years) or data(year)=$years]
 <!-- processing each book by calling the handler -->
 for $book in $books
 return
 <xst:call handler="$onBook">
 <xst:with-param name="title" select="$book/title/fn:string(.)"/>
 <xst:with-param name="authors" select="fn:string-join($book/author/fn:string(.), ', ')"/>
 </xst:call>
 </xst:tag>
</xst:taglib>

The revision above does the same thing as the basic tag library but in XQuery.
Reasons for using a processor-specific tag library
include familiarity with the language as well as requirements that exceed
the limited capabilities of basic tag libraries.

Tag Documents
A tag document calls a tag provided by a tag library
 by embedding an XML element with the same QName as the tag.
 The element making the tag call can have: 	Subelements or attributes that supply parameters of the tag.

	Subelements that supply handler definitions for handler parameters of the tag.
The container subelement must take an xst:handles attribute that lists the parameters
received by the handler.

If the tag definition passes a parameter to the handler definition
that the handler definition does need, the handler definition can simply ignore
the parameter. In particular, the xst:handles
attribute does not have to list parameters that aren't used in the handler definition.
The order of parameters in the xst:handles
attribute does not matter.

A tag document can only define handlers as part of a tag call. A tag call can be nested
 within a handler.
If a tag has an implicit parameter (as explained in section “Top-Level Elements of Tag Libraries”), the
tag element can omit the subelement container and contain the content of the parameter
directly. When containing the content of an implicit handler, the tag call must supply
xst:handles attribute.
Variable scope is limited to following siblings and their descendants. Handlers can refer
 to variables in scope. An example of a tag document:

<html xst:version="0.2"
 xmlns:xst = "http://code.google.com/p/xstag/ns/2011/"
 xmlns:fn = "http://www.w3.org/2005/xpath-functions"
 xmlns:tag = "http://code.google.com/p/xstag/ns/demo/tag/books"
 >
 <!-- Importing a books tag library -->
 <xst:import href="BooksTaglib.xstag"/>
 <xst:variable name="years" select="(2010, 2009, 2008)"/>
 <head>
 <title>Books for {$years} years</title>
 </head>
 <body>
 <table>
 <tag:books years="{$years}" xst:handles="$title, $authors">
 <tr>
 <td>{$title}</td>
 <td>{fn:string-join($authors, ', ')}</td>
 <td>{fn:count($authors)}></td>
 </tr>
 </tag:books>
 </table>
 </body>
</html>

The example above creates an HTML document with a table of
	books for particular years. This tag document makes use
	of a tag library presented in section “Basic Tag Libraries”.
	First of all we import the tag library using the import statement:
 <xst:import href="BooksTaglib.xstag"/>.
	In order to use tags from that library, the namespace for
	the tag call element (tag:books)
	has to match the namespace for the tag definition element but does not have to have the
	same prefix.

Our tag has two parameters (refer to section “Basic Tag Libraries”
	for more details): a sequence of publishing years and
	a handler parameter that takes a string parameter for a title and a
	sequence of strings for the list of authors.
	The tag:books tag call contains
	a years attribute to supply the years parameter
	and content to supply the handler definition for the onBook handler parameter.

The xst:handles attribute on the tag call identifies the set of parameters
	that the handler expects the tag definition to pass.

While a tag processor can check consistency by looking at both a tag
	library and a tag document,
	there are some advantages to having the xst:handles attribute:

	By looking for the xst:handles attribute,
a document author can find the handlers (for instance, after taking on
maintenance responsibility for someone else's tag document).

	A tag processor can compare the parameters expected by a
 handler definition with the parameters declared formally for the handler by the tag definition and detect
 errors if, for instance, a change in the tag library invalidates the tag document.

	A tag processor can also check to confirm that every variable reference in
 the tag document is in scope either within the tag document or as a parameter
 of the handler definition.

The xst:handles attribute does not control the handler call
 from the tag definition to the handler definition.
 Instead, the handles attribute declares the tag document's expecations
 for how the tag definition will call the handler (in this respect, similar
 to a C external function signature for a function defined in a library).

Results of tag calls can be bound to some variables and those variables
	can be reused in other tag calls.

Tag Processor Implementation
Prototype XSLT and XQuery implementations of XSTag are available
at http://code.google.com/p/xstag/.

The XSLT implementation makes use of Dimitre Novatchev's technique for
 dynamic templates (see [FXSL]):
	A tag call is preprocessed to a call passing a temporary XML document that has a
 subelement for each handler and a subelement capturing the state of each variable
 defined outside the call but referenced in a handler.

	A handler is preprocessed to a match template for the handler subelement, assigning local
 variables from the state subelements for each out of scope variable that is referenced in the
 handler.

	 A tag template is preprocessed to a named template with a single parameter for the
 temporary XML document and local variables for the handler subelements that (when not provided
 by the temporary document) default to the content of the handler parameter.

	 A handler call is preprocessed to an apply on the handler subelement of the call
 document.

In the XQuery implementation:
	 If the XQuery processor supports closures, a preprocessor can convert a handler into a
 closure that is passed as part of the tag call. The preprocessor can treat the handlers in a
 tag library as a function item parameter.

	 If the XQuery processor supports function items, a preprocessor can convert a handler
 into function and pass the function to the tag. The preprocessor can also capture the state at
 the point of call and restore the state within the constructed function by passing a temporary
 XML document (as in the XSLT implementation).

	 Otherwise, a preprocessor can generate a copy of the tag library for each tag document,
 generating a function for each handler from the tag document and passing and restoring the
 state as a temporary XML document.

Both the XSLT and XQuery implementations in the prototype have limitations,
especially in their support for processor-specific tag libraries.

Potential Investigations
Tag library developers must provide guidance
to tag document authors on the use of the library.
To make that easier and more consistent, a mechanism similar to JavaDoc
is important for maintaining documentation source within tag libraries
and generating viewable documentation.
Existing projects such as XSLTdoc [XSLD]
or xqDoc [XQD]
may be adaptable for this purpose.

All of the examples in this paper focus on events during
single-pass generation of a result document within an XML processing
environment.
Other scenario are equally possible:

	For Client UI scenarios, a tag library could generate HTML documents
that use JavaScript to process some handlers in response to UI events
such as button clicks.

	For AJAX scenarios, a tag library could generate HTML documents
that process some handlers by connecting to a service on a server.

More generally, tag documents and basic tag libraries with a simpler
expression language than XPath could be converted to JavaScript and executed
on the client.
The advent of JavaScript-based XSLT and XQuery implementations also raises
the possibility of using XPath in the browser.
The specifics for processing some tag calls on document request, some tag calls
entirely on the client, and some tags calls through AJAX requests requires
more investigation.

Tag libraries benefit from the movement by the current draft
XQuery and XSLT standards to support function objects.
Where the processor supports function objects with closure over variables
in scope for the function definition, handlers become trivial to implement.
The current XQuery draft envisions such function objects. The tag library
approach suggests the value of such function objects for XSLT as well.

A more interesting possibility would be incorporating a tag library
capability within the XSLT and XQuery standards as a shared definition (similar
to XPath).
Tag library developers would benefit because (especially in XQuery)
a more natural syntax could be specified for a processor-specific tag library
that is difficult to support with a preprocessor.
Tag document authors would also benefit from direct processing instead of
preprocessing.
For instance, type coercion errors during runtime processing could be traced
directly to the tag document or tag library source for better debugging output.

Conclusion
Java Tag Libraries have seen wide adoption as a strategy
for dynamic documents
because of the division of responsibilities between tag document authors
and tag library developers and because of the ability to combine tag libraries
as needed for new solutions.
In particular, the approach removes the need to write binding logic to add or
change the libraries used in a document.

This paper demonstrates the feasibility of adapting the Java Tag Libraries
approach for use with XML technologies.
Tag libraries can support a set of data retrieval
and manipulation functions as well as UI components. Tag documents can support these
functions by embedding tags within a presentation vocabulary such as XHTML or
XSL-FO. In particular, tag documents can pass handlers to tag libraries
for parameterization of document content by the tag library.

Tag libraries can be implemented in either XSLT or XQuery, enlarging the
environments in which tag libraries can be deployed as well as the pool
of potential tag library developers.
A tag document can be processed in both environments, allowing
tag document authors to provide designs for either kind of environment without
having to learn a new syntax.
Through the contract of the tag signature -- the parameters and handlers
and return type passed to the tag -- contributors can apply their distinct
expertise to collaborate for information processing and presentation.

Glossary
Some terms introduced in section “Essential Terms, Concepts, and Limitations”
also appear here for completeness.
	tag document
	A document that mixes a static XML vocabulary (such as XHTML or XSL-FO) with XPath
 expressions, XML Simple Tag statements, and tags from one or more tag libraries to produce
 dynamic documents.

	tag library
	A function library (typically implemented in XSLT or XQuery) that produces XML content
 for a tag document.

	simple tag statement
	

	tag call
	An element in a tag document processed as a function call to a tag definition with the
 same QName, supplying parameters with its attributes and content and replaced by the
 return value from the tag definition.

	tag definition
	A function provided by a tag library that processes parameters to produce XML content.

	tag parameter
	An atomic value, XML node (typically one or more elements), or handler definition
 passed by a tag call to a tag definition to control production of the XML content or to
 supply content for insertion into the XML content.

	tag definition body
	Content of a tag definition followed after declaration of all tag parameters.
 A tag definition body defines the logic how a tag call will be executed.

	parameter container
	A subelement of the tag call supplying a tag parameter with its content; the
 subelement has a namespace prefix that is the same as the prefix of the tag call and a
 local name that's the same as the name of the tag parameter.

	handler definition
	An XML fragment that is passed as a tag parameter and that is processed with values
 generated during execution of the tag definition; a callback.

	handler definition call
	Processing of a handler definition with values during execution of a tag
 definition.

	handler definition parameter
	A value passed by the tag definition to a handler definition.

	tag processor
	
 An implementation of the tag library and tag document functionality that takes them as an input and
 produces a result document.

	result document
	
 A document produced by a tag processor based on tag libraries and a single tag document that import those libraries.

Bibliography
[FXSL]
 Novatchev, Dimitre, Functional programming in XSLT using the FXSL library, In Proc. Of the
Extreme Markup Languages Conference 2003, seen July 2011.
 Available at http://conferences.idealliance.org/extreme/html/2003/Novatchev01/EML2003Novatchev01.html#t2-2.

[JSP]
 JavaServer Pages Technology, seen July 2011.
 Available at http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

[PUSHPULL]
 Push, Pull, Next!, Bob DuCharme, seen July 2011.
 Available at http://www.xml.com/pub/a/2005/07/06/tr.html.

[RDMC]
 A peek inside RunDMC, seen July 2011.
 Available at http://developer.marklogic.com/blog/a-peek-inside-rundmc-part-2.

[XBL2]
 XML Binding Language (XBL) 2.0, seen July 2011.
 Available at http://www.w3.org/TR/xbl/.

[XForms]
 XForms 1.1, seen July 2011.
 Available at http://www.w3.org/TR/xforms/.

[XQ1]
 XQuery 1.0: An XML Query Language (Second Edition), seen July 2011.
 Available at http://www.w3.org/TR/xquery/.

[XQ3]
 XQuery 3.0: An XML Query Language (W3C Working Draft 14 June 2011), seen July 2011.
 Available at http://www.w3.org/TR/xquery-30/.

[XSL2]
 XSL Transformations (XSLT) Version 2.0, seen July 2011.
 Available at http://www.w3.org/TR/xslt20/.

[XSP]
 XSP Logicsheet Guide, seen July 2011.
 Available at http://cocoon.apache.org/2.1/userdocs/xsp/logicsheet.html.

[XSLD]
 XSLTdoc - A Code Documentation Tool for XSLT, seen July 2011.
 Available at http://www.pnp-software.com/XSLTdoc/index.html.

[XQD]
 XSLTdoc - A Code Documentation Tool for XSLT, seen July 2011.
 Available at http://xqdoc.org/xqdoc_comments_doc.html.

[XH]
 XHTML 1.0: The Extensible HyperText Markup Language (Second Edition), seen July 2011.
 Available at http://www.w3.org/TR/xhtml1/.

[XSTEMP]
 Style-free XSLT Style Sheets, Eric van der Vlist, seen July 2011.
 Available at http://www.xml.com/pub/a/2000/07/26/xslt/xsltstyle.html.

Balisage: The Markup Conference

Tag Libraries for XSLT and XQuery
Erik Hennum
Senior Application Engineer
MarkLogic Inc.

<efhennum@gmail.com>
Erik Hennum is a Senior Engineer at MarkLogic Corporation. He has worked with XML and RDF representations for document repositories and processing over 10 years including projects with taxonomy definition and subject classification. He was a member of the OASIS DITA Technical Committee from inception to the DITA 1.2 specification.

Vyacheslav Zholudev
PhD Student
Jacobs University Bremen

<v.zholudev@jacobs-university.de>
Vyacheslav Zholudev graduated in May 2007 from Saint-Petersburg State University, Russia with a Master degree
 in Computer Science. He is continuing his studies at Jacobs University Bremen as a Ph.D. student. Since
 September of 2007 he has been working in the KWARC research group (Knowledge Adaptation and Reasoning for
 Content) under the supervision of Prof. Michael Kohlhase.

Balisage: The Markup Conference

content/images/Hennum01-001.png
£ Developer

Atag library

A tag library

engine
& Developer

Atag library

An XSLT/
Output
=T XQuery XSLZ.)((;:"W

processor

Aresult

document

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

