[image: Balisage logo]Balisage: The Markup Conference

JXON: an Architecture for Schema and Annotation Driven JSON/XML Bidirectional
		Transformations
David Lee
Senior Principal Software Engineer
Epocrates, Inc.

<dlee@epocrates.com>

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 David A. Lee

How to cite this paper
Lee, David. "JXON: an Architecture for Schema and Annotation Driven JSON/XML Bidirectional
		Transformations." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Lee01.

Abstract
JSON and XML are seen by some as competing markup formats for content and data.
				JSON has become predominant in the mobile and browser domains while XML dominates
				the Server, Enterprise and Document domains. Where these domains meet and need to
				exchange information there is pressure for one domain to impose on the other their
				markup format. JXON is an architecture that addresses this problem by providing for
				high quality bidirectional transformations between XML and JSON. Previous approaches
				provide for only a single mapping intended to cover all cases, but generally cover
				few cases well. JXON uses Schema and annotations to allow highly customizable
				transformations that can be tuned for individual schemas, elements, attributes and
				types yet still be easily configured.

Balisage: The Markup Conference

 JXON: an Architecture for Schema and Annotation Driven JSON/XML Bidirectional
 		Transformations

 Table of Contents

 	Title Page

 	Introduction - JXON

 	Diving In
 	JXON attempts to solve this problem

 	JSON/XML what's the problem?
 	Anonymous values

 	Arrays

 	Implicit Types (e.g. "Duck Typing")

 	Identifiers

 	Namespaces

 	Processing Instructions

 	Attributes

 	Character Set

 	Comments

 	Document Node

 	Serialization

 	Encodings

 	Existing Designs and Implementations
 	Limitations of existing implementations

 	Rationale and Use Cases
 	Categories of Transformations
 	Unidirectional Transformations

 	Bi-directional Transformations

 	Round trip transformations

 	Use Cases for XML/JSON transformations
 	Message passing

 	XML Content Databases

 	HTML/XHTML

 	XML Schemas

 	Using XML technologies with JSON data

 	Preexisting data

 	XML Standard Schemas

 	Developer Familiarity

 	Design
 	Goals
 	Primary Objectives

 	Design Overview
 	Transformation of the Object Model

 	Patterns and Rule Properties

 	Markup Agnostic but XML Based

 	Schema and annotation based transformations

 	Rule Generation

 	Transformation

 	Bidirectional ("Round Tripping")

 	Implicit Information

 	JXON Transformations
 	Atomic Types
 	value element

 	Structured Types

 	Naming and namespaces

 	Elements and Attributes
 	children element

 	attributes element

 	Text elements

 	Implementation
 	JXON Processor
 	Parsing Schema

 	Converting between JSON and JXML

 	XSLT processing

 	Retrospective; Limitations and Lessons
 	Use of XSD Schema
 	Requires an XML Schema

 	Recursive structures

 	Local Elements

 	Use of Schema Annotations

 	Intermediate file (JXON document) generation in Java

 	XQuery for XSLT generation

 	XSLT for transformation
 	Auto generation of XSLT

 	Naming and namespaces

 	Character Set

 	Appendix A. Appendix
 	Patterns

 	Example of JSON file converted into JXML

 	Full example
 	XSD Schema

 	BOOKS XML

 	BOOKS JSON

 	Example XSLT generation

 	About the Author

 JXON: an Architecture for Schema and Annotation Driven JSON/XML Bidirectional
		Transformations

Introduction - JXON
JXON is both a design architecture and a reference implementation of a tool for JSON[1]/XML [2] transformations. Unlike other XML/JSON transformation architectures and
			tools, JXON attempts to fulfill the needs of both XML and JSON authors and developers
			equally.
JXON provides the ability to easily describe both unidirectional and bidirectional XML/JSON
			transformations that produce markup which authors of that particular format would like
			to use.

Diving In
To get a quick idea of the problem that JXON is attempting to solve consider the following
			pair of documents representing the same information in XML and JSON.

			<BOOKS>
 <BOOK id="1">
 <TITLE>My Favorite Book</TITLE>
 <PRICE>1.23</PRICE>
 </BOOK>
 <BOOK id="1a">
 <TITLE>XML for Dummies</TITLE>
 <PRICE>5.25</PRICE>
 </BOOK>
 <BOOK id="3">
 <TITLE>JSON for Dummies</TITLE>
 <PRICE>200.95</PRICE>
 </BOOK>
</BOOKS>

		

			{ "BOOKS" : [
 { "id" : "1" , "title": "My Favorite Book" , "price" : 1.23 },
 { "id" : "1a" , "title": "XML for Dummies" , "price" : 5.25},
 { "id" : "3" , "title": "JSON for Dummies" , "price" : 200.95 }
]}

		
The XML and JSON are both in styles which a native author of that markup type may wish to
			use. It appears that there is an obvious and simple mapping between the formats, and in
			fact there should be a simple reversible lossless transformation so that given a
			document in either XML or JSON it could be transformed to the other format and back and
			end up identical. This seems like such a simple problem not even worth discussing. But
			in reality there are no existing tools which can actually do this generically without
			hand coding a transformation, both directions, in one or more programming languages. The
			resulting code in say XSLT[3] or JAVA[4]
			could be very large and tedious to write. Furthermore
			such code may not easily be reused for a new document schema.
There are many subtleties to this problem. Just a few to think about that highlight the
			issues:

				How would a translation know to consistently use a string value for "id" and "title" but
						a numeric value for "price"?

	Where does the "BOOK" element come from when translating to XML?

	How does the JSON to XML transformation code know to make "id" into an attribute in XML
						but not price or title?

	How does the XML to JSON translation know to construct an array in JSON?

	Where does the name conversion rule for "TITLE" vs "title" and "PRICE" vs "price"
						occur?

		
As a comparison the default XML to JSON transformation from json.org produces the
				following JSON
{
 "childNodes": [
 {
 "childNodes": [
 {
 "childNodes": ["My Favorite Book"],
 "tagName": "TITLE"
 },
 {
 "childNodes": [1.23],
 "tagName": "PRICE"
 }
],
 "id": 1,
 "tagName": "BOOK"
 },
 {
 "childNodes": [
 {
 "childNodes": ["XML for Dummies"],
 "tagName": "TITLE"
 },
 {
 "childNodes": [5.25],
 "tagName": "PRICE"
 }
],
 "id": "1a",
 "tagName": "BOOK"
 },
 {
 "childNodes": [
 {
 "childNodes": ["JSON for Dummies"],
 "tagName": "TITLE"
 },
 {
 "childNodes": [200.95],
 "tagName": "PRICE"
 }
],
 "id": 3,
 "tagName": "BOOK"
 }
],
 "tagName": "BOOKS"
}

			
Note some non-ideal artifacts of this transformation (which are common among
				existing tools)

					Inconsistent typing of the "id" value

	Very verbose and complex JSON representation

	JSON arrays where simple values should be used

	Pairs of 'name/value' members where native JSON member names should be
							used.

	Unnecessary distinctions between how attributes and child elements are
							serialized.

			
Other existing tools attempt to solve this problem various ways, optimizing for
				either XML or JSON and often making simplifying assumptions which are valid for only
				some kinds of documents. The results can be good for some special cases but overall
				there is no existing solution that provides good transformations that work equally
				well in both directions for a wide variety of documents and produce markup close to
				what a human author would want to create or use.
JXON attempts to solve this problem
As an example, the following is an RNG[5] Compact Notation schema which fully describes both the schema and rules
				for the bidirectional lossless transformation for the example above. This is all
				that is needed for JXON to produce both XML to JSON and JSON to XML transformations.default namespace = ""
#<jxon:pattern name="simple"/>
grammar {
start = Books

#<jxon:children wrap="array"/>
Books = element BOOKS { Book+ }

#<jxon:json_name omit="true"/>
Book = element BOOK {
 attribute id { xsd:NMTOKEN },
 Title,
 Price
}
#<jxon:json_name name="title"/>
Title = element TITLE { text }

#<jxon:json_name name="price"/>
Price = element PRICE { xsd:decimal }
}
And the equivalent schema in XSD using Annotations instead of comments.

		<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" xmlns:jxon="http://www.xmlsh.org/jxon">
 <xs:annotation> <xs:appinfo>
 <jxon:pattern name="simple"/>
 </xs:appinfo>
 </xs:annotation>

 <xs:element name="BOOKS">
 <xs:annotation > <xs:appinfo>
 <jxon:children wrap="array"/>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="BOOK"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="BOOK">
 <xs:annotation> <xs:appinfo>
 <jxon:json_name omit="true"/>
 </xs:appinfo></xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="TITLE"/>
 <xs:element ref="PRICE"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:NMTOKEN"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="TITLE" type="xs:string">
 <xs:annotation> <xs:appinfo>
 <jxon:json_name name="title"/>
 </xs:appinfo></xs:annotation>
 </xs:element>

 <xs:element name="PRICE" type="xs:decimal">
 <xs:annotation> <xs:appinfo>
 <jxon:json_name name="price"/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
</xs:schema>

JSON/XML what's the problem?
JSON has become a very popular and useful markup language among some developers and
			use cases, particularly in browser and mobile applications. These developers require
			JSON to be delivered from and to services which often use XML as their back end data
			model. This support requires clean and robust transformations of XML to and from JSON.
			Because of subtle but significant differences in both the data model and the
			serialization format this transformation is either done by hand coding, or by
			sacrificing the clarity of the markup on either the JSON or the XML.
JSON and XML are conceptually similar. They are both text based markup languages designed to
			represent data in a format which is human readable, interchangeable across environments
			and parseable by most programming languages. On the surface they seem quite similar,
			with the major apparent difference being a slightly terser notation for JSON for simple
			things (lack of end tags). There are many mappings between JSON and XML, and programs
			that implement those mappings. This, in theory, allows one to choose the markup and
			tool-set of your choice and transform it to the other at will. Servers that store XML
			data can produce JSON data for clients that need it, and visa-versa.
Reality, unfortunately, is not so simple. JSON and XML are fundamentally (and often
			subtly) incompatible in their abstract data models. They are both sufficiently rich that
			they can describe each other's data model, so creating a mapping from arbitrary XML to
			JSON and visa-versa is possible but the result can be very complex.
			This has led people to design mappings which accommodate only a subset of XML or
			tailored to particular schemas.
Anonymous values
JSON values are anonymous. They only acquire names by being referenced in an object (map).
				For example, the following is a valid JSON
				document.
	"Hello World"	

 The analogous XML
				document would need a root element with child text content or perhaps an
				attribute.	<root>Hello World</root>
or
	<root value="Hello World"/>

 In the degenerate case this means entire JSON documents can be composed of single
				(or arrays of) anonymous values which have no direct mapping to the XML data
				model.
When mapping JSON to XML this additional markup cannot generally be derived from
				the JSON data itself, but rather needs external rules to decide on the approach.
				When mapping XML to JSON the presence of an element with text children or attribute
				value may not necessarily imply creation of an anonymous JSON value, but rather the
				element and attribute names are commonly used to create named members of JSON
				objects such as
				
	{ "root" : "Hello World" }
					or
	{"root" : { "value" : "Hello World" }}

			

Arrays
JSON has a native representation of arrays which does not exist as native types in
				XML. XSD Schema has support for values which can be interpreted as tokenized lists,
				but there is no direct markup for an array of objects. Arrays can be represented in
				XML in several ways ; repeated elements, repeated elements grouped by a common
				parent, usefully named attributes, usefully named elements and tokenized strings.
For example the following JSON array

	[1 , "String"]

 Could be represented in XML as any of
				the following (and many other ways)

				
	<array>1 String</array>
	
	<array><entry>1</entry><entry>String</entry><array>
	
	<array entry1="1" entry2="String"/>
	
	<entry>1</entry><entry>String</entry>

			
Mapping XML to JSON arrays is possible but since there is no single mapping, and since XML
				semantics by itself doesnt indicate array representation, one must know via external
				information to treat specific XML markup as a JSON array. Given any of the above
				examples, its not obvious that they should be mapped to a JSON array as opposed to
				some other JSON structure (such as a simple value or object).

Implicit Types (e.g. "Duck Typing")
JSON values make use of implicit types which can be inferred by the serialization
				format. For example 1 is a Numeric type, while "1" is
				String type. This is common in programming languages, but not as common in markup
				languages. In XML, without a schema, the token 1 is xs:anyType and it's
				up the application to infer a type (possibly using a schema, or up to application
				logic).
This leads to problems mapping XML to JSON. When a plain character string value
				from XML is mapped, what JSON type should be used? It's tempting to use the value
				instance to deduce the type, but this could be very dangerous. An application may be
				expecting string types and if one instance happens to translate 1 to a
				numeric type because it looks like one, and another translates "one" to a string
				this could break the application.
Translating atomic values from JSON to XML is not as problematic as generally
				typing can simply be ignored because the serialization format for string and numbers
				is the same in XML, although other atomic types like boolean, dates etc can be more
				problematic.

Identifiers
JSON allows any string as a identifier (Object member name). XML is much more restrictive
				for identifiers. Translation of XML identifiers (element and attribute names) to
				JSON member names causes few problems, but the reverse can lead to invalid XML. For
				example "a value" is a valid member name in JSON but not a valid attribute or
				element name in XML

Namespaces
XML supports namespaces, while JSON does not. Mapping QNames in XML with
				namespaces to member names in JSON can lead to ambiguous, complex or duplicate
				names. Translating member names in JSON to XML QName may lose namespaces.

Processing Instructions
XML supports Processing Instructions, which are absent from the JSON data
				model.

Attributes
JSON has no concept or representation for Attributes (as distinct from other
				values).
When mapping XML to JSON, attributes are often translated to named object members
				(along with child elements). When mapping JSON to XML it requires external knowledge
				to determine when to map members to attributes.

Character Set
JSON supports a broader set of text characters (Unicode code points) then XML. For
				example JSON supports the NUL character ('\0') whereas NUL is invalid in XML even if
				encoded as an entity (�). This implies that JSON character data cannot be
				mapped to XML character data losslessly without application specific
				encodings.

Comments
XML directly supports comments while JSON does not. Comments were originally
				allowed in JSON but Douglas Crockford removed them [6]
Comments could be encoded in JSON using special object member names (such as
				"_comment") requiring application support to understand these were comments and not
				data.
A common case is to simply strip comments from XML when mapping to JSON, and to
				not insert comments when mapping JSON to XML.

Document Node
JSON does not have a Document Node, where XML does. This is generally not problem in
				practice as the XML Document Node is usually implicitly created in the model, and
				has no textual representation.

Serialization
The text Serialization format for JSON and XML differ significantly. Often the
				serialization format is the main focus of JSON vs. XML mappings. I assert that the
				serialization format is completely irrelevant for purposes of mapping and
				transformations; the formats are well defined and there exist a large number of
				implementations which can parse and serialize XML and JSON. If one focuses instead
				on the abstract data model, the issue of serialization (both parsing and generation)
				becomes a trivial implementation issue.

Encodings
Related to the Serialization format, encodings for JSON and XML can differ. JSON is defined
				to support only the UTF-8 encoding while XML can use many different encodings. Like
				serialization, I assert that encoding is irrelevant. If one works with the JSON and
				XML abstract data Models instead of their serialization and encoding formats these
				issues disappear.

Existing Designs and Implementations
There are many existing models, designs, and implementations for translating XML to
			JSON, JSON to XML or both. The advantages and limitations were considered in the design
			of JXON. These include (but not limited to) the following	The JSON to XML converter from json.org JSONORG

	JSONx [jsonx]

	Badgerfish [badgerfish]

	Rabbitfish [rabbitfish]

	JSON Markup Language (JsonML) JSONML

	XSLTJSON, XML to JSON using XSLT XSLTJSON

	XML to JSON jQuery Plugin JQUERY

	Boomerang - A bidirectional programming language for ad-hoc, textual data.
							BOOMERANG

	XSugar - Dual Syntax for XML Languages XSUGAR

	OGF Standards: Data Format Description Language (DFDL) DFDL
					

	MLJSON - An XML Facade over JSONMLJSON

Limitations of existing implementations
Existing implementations and designs share many common limitations which make them
				less then ideal for many use cases. The existing models tend to fall into these use
				cases.
	Represent arbitrary JSON in an XML format

	Represent arbitrary XML in a JSON format

	Convert XML to JSON in a JSON friendly format

	Convert JSON to XML in a XML friendly format

In cases where round tripping is a goal inevitably either the JSON or the XML end
				up being very "non friendly". Conversely mappings to "friendly" formats tend to lose
				too much information to support round tripping (or only in a small subset of
				documents).
All investigated designs have fixed rules that apply either globally, or if
				configurable, to an entire document. None of the designs can adjust the mapping
				rules localized to portions of a document.
The major limitations which JXON attempts to address include the following.	Single model for all documents and parts of documents
Most implementations impose a single model for transformation for all
							documents and parts of documents. They attempt to fit a single pattern
							for all uses. This "one size fits all" approach ends up being "one size
							fits nothing", as every mapping imposes some compromises, whether its
							information loss, usability or applicability to a particular use. Since
							different use cases may accept different sets of compromises, trying to
							fit a single transformation mapping for a large set of use cases ends up
							with a poor fit for most of them.

	JSON or XML Centric
Some designs focus on producing JSON from arbitrary XML, others on
							producing XML from arbitrary JSON. The result is that one side or the
							other is "stuck" with the artifacts of the mapping and do not end up
							with a document in a format which would be natural for markup developers
							in that language. JXON attempts to produce bidirectional transformations
							to "friendly" formats in each directly equally.

Rationale and Use Cases
JXON is based on the assumption that there are real world needs for a JSON/XML
			transformation. Why is there such a need? Many existing systems work just fine using XML
			or JSON by itself with no need of an alternative representation for data. The problems
			which JXON is intended to address arise when data crosses domains. Due to technical and
			as well social reasons domains have evolved which embrace either XML or JSON almost
			exclusively. XML has largely been adopted by the enterprise and content storage domains,
			as well as enterprise messaging. JSON has evolved into the browser and mobile space
			which started using XML but have changed over the last decade to be almost entirely JSON
			based. The problem is when these domains need to exchange data. One solution is to
			simply produce data in the format required at the point of request. This is a feasible
			solution when the data is dynamically generated (computed data, simple messaging, data
			residing in-memory in native language structures), or exists in an entirely separate
			format to begin with (such as relational data). In many cases, however, data already
			exists in XML or JSON in one domain and needs to be exchanged with another domain. For
			example a document may exist in XML form on a server and needs to be deployed to a
			browser or mobile device in JSON format. One approach to this problem is to try to
			"push" one's domain format into the other's domain. For example, if clients require JSON
			documents then simply store the JSON format on the server. This can work when there is
			really no compelling reason to have XML on the server in the first place, and has
			spawned the growth of JSON databases. Alternatively one can try to force clients to
			accept XML because that is the format on the server.
I argue that it is preferable in many cases to accept that there are compelling
			reasons for each domain to want data in its own format, and to provide for a
			transformation from one format to another closest to the point of the domain boundary.
			This allows the tools already in use in the particular domain to work with their
			'native' format and to minimize the impact of format differences to domain boundary
			layer. This way neither domain needs to make compromises in design and implementation to
			satisfy issues of a different domain.
JXON is designed to make that boundary crossing as easy as possible and with as few
			compromises as possible.
Categories of Transformations
There are several major categories of JSON/XML transformation problems which are
				really subsets of functionality. Not all use cases require all levels of
				functionality but by supporting the most stringent requirements implicitly creates
				support for the rest. In general there is a correlation between information fidelity
				and the category of transformation. For example a unidirectional XML to JSON
				transformation may lose significant amounts of information (and yet still be
				useful). While a full round trippable transformation, by its very nature, must
				maintain a maximum amount of information in either the instance documents or the
				transformation logic. Note that these transformation categories are not specific to
				XML and JSON but apply equally well to any kind of document formats.
Figure 1: Types JSON/XML transformations
[image:]
Types of JSON/XML transformations

Unidirectional Transformations
Some transformations are unidirectional; information goes
					only one way. Unidirectional transformations may have a wide range of
					information fidelity, but are often useful with significant information loss.
					Some unidirectional transformations are generic, that is the rules are static
					and do not depend on the source or target schemas. Other transformations may be
					tailored for specific source and target document schemas.

Bi-directional Transformations
Bi-directional support transforming in both directions (from XML to JSON or
					JSON to XML).

Round trip transformations
Round trip transformations are a special kind of bi-directional
					transformations that attempt to produce semantically equivalent documents after
					transforming from one format to another then back.

Use Cases for XML/JSON transformations
There are several use cases that require or benefit by one of the categories of
				XML/JSON transformations. The more useful cases are where the data in a domain not
				only is desired in a specific format, but also persist or may be manipulated by
				tools specialized for that format and that the data needs to be exchanged with
				another domain using a different format. Examples of good use cases for
				transformations include the following.
Message passing
Many enterprise systems operate on XML based messages. If these are to be sent
					to a domain needing JSON then the messages must be transformed from XML to JSON.
					Responses may come back in JSON and need to be transformed back to XML. In this
					case unidirectional transformations may be sufficient (one for requests and one
					for responses), although if the request and response correspond to the same
					schema then a bidirectional transformation may be better suited.

XML Content Databases
If data is stored in an XML Content database and JSON is required by a JSON
					consumer then transformation from XML to JSON is needed. If JSON producer
					requires data to be stored in an XML Content database then it needs to
					transformed to XML. The transformations may or may not require round trip
					(lossless) transformations depending on the needs of the application.

HTML/XHTML
If data is in HTML format there are tools available to transform it to XHTML
					format. If that data is required in JSON then a XML to JSON transformation is
					required. The reverse is also possible, generating HTML from JSON.

XML Schemas
A schema language for JSON is being developed JSON
						schema but implementations at the time of this writing are sparse and
					the technology is immature. If a high quality JSON to XML transformation is
					available then XML Schema validation could be used to validate JSON documents.
					This would leverage the mature technologies for XML Schemas without having to
					reinvent them specific to JSON.

Using XML technologies with JSON data
Many XML technologies are very mature and powerful. Equivalent JSON
					technologies are only starting to be developed. There is simply no equivalent to
					tools like XSLT, XQuery[7]
					, XProc[8]
					, Schematron[9]
					for JSON.
Use of a high quality XML/JSON transformation could allow use of XML
					technologies on JSON data without having to reinvent the entire XML ecosystem
					for JSON. This may require bidirectional transformations but not necessary round
					trip (lossless) transformations depending on the needs of the application. In
					the case where the source and target data are different schemas, a pair of
					unidirectional transformations is needed instead of a bidirectional
					transformation.

Preexisting data
There exists 'in the wild' a huge amount of preexisting content in XML format.
					This content could be made available to JSON oriented domains by the use of XML
					to JSON transformations instead of having to re-author the content directly in
					JSON. In cases where there is existing JSON content, or processes that produce
					JSON content only, that content can be made available to XML oriented domains by
					the use of a JSON to XML transformation instead of re-authoring the content.
				

XML Standard Schemas
There is a large body of XML standard schemas which have evolved over the last
					decade. They span a huge section of industry, research, academia and publishing.
					These schemas took significant effort to develop. By using a XML to JSON
					transformation this body of knowledge can be leveraged into a new markup
					technology without having to start from scratch.

Developer Familiarity
One of the big reasons for the different domains which have adopted JSON or
					XML is developer familiarity. Web and browser developers, having experience with
					JavaScript are more comfortable with JSON even on platforms where XML support is
					equal or even better. Similarly server and data processing developers are often
					more comfortable with XML even in use cases where JSON is well supported. If
					there is a technology which bridges XML and JSON easily and accurately then
					developers don't need to leave their area of familiarity.

Design
Goals
The goals of this design are to address many of the limitations of existing
				implementations and to provide a simple method for customizing the transformation.
				At the same time it's recognized that not all limitations can be addressed, nor
				necessarily need be addressed, and that this design may not meet the objectives of
				everyone. The use cases See
				section “Use Cases for XML/JSON transformations” were of particular use in focusing the design
				goals.
Primary Objectives
The following are the primary design objectives. Not all objectives can
					necessarily be met with the same transformation.

						Unidirectional and bidirectional transformations from a instance
								of a JSON document to an instance of an XML document.

	The option of lossless round trip transformations.

	The XML and JSON instances should be in a form which is desirable
								by XML and JSON developers respectively.

	A simple method of modifying the transformation rules for parts of
								a document as well as the whole document for a class of
								documents.

	A pattern based rule system to allow specifying common patterns
								for mappings instead of having to code explicit details.

	Implicit mappings of JSON and XSD atomic types and common
								structures by leveraging XML Schema information.

				

Design Overview
Figure 2: JXON Processor
[image:]
Figure 1. JXON Processor data flow

Figure 3: XML to JSON
[image:]
Transforming XML to JSON data flow

Figure 4: JSON to XML
[image:]
Transforming JSON to XML data flow

Transformation of the Object Model
As mentioned previously, the text format of XML vs. JSON tends to get a great deal of
					focus, while I assert it is actually a trivial issue. This design performs all
					transformation logic at the Object Model level not at the text format level. To
					accomplish this a very simple XML schema is used which represents the JSON
					Object Model precisely. This implementation uses the JXML schema (http://xml.calldei.com/JsonXML) to represent the JSON object model
					and the conversion tools supplied by xmlsh (http://www.xmlsh.org). In particular the json2xml (http://www.xmlsh.org/CommandXml2json) and xml2json (http://www.xmlsh.org/CommandJson2xml) commands. Other schemas and
					tools could just as easily be used as long as they provide a precise
					representation of the JSON object model in XML (such as JSONx [jsonx]).
Transformation at the Object Model level provides the following
					benefits:

						Reduces the problem to an XML-to-XML transformation problem
								instead of a Markup-to-Markup problem.

	Decouples transformation logic from serialization logic

	Allows all processing to be implemented with XML tools which are
								mature and feature full.

	Allows focus on the transformation logic instead of serialization
								logic.

	Provides for some schema validation of the generated JSON to check
								for JSON well-formedness prior to serializing as JSON.

				

Patterns and Rule Properties
A major problem with XML/JSON transformation is that there are many ways to do it. These
					can be classified into 'patterns' which define the rules for bidirectional
					transformation of a given set of terms.
Patterns are defined in a global configuration file which defines specific named patterns
					which can be referenced by the annotations, and configuration properties of each
					pattern which can be selectively overwritten in a specific annotation. The
					properties of a pattern define basic building blocks of transformation such as
					element and attribute wrapping, name translations, handling of namespaces and
					typing of atomic values. The code to implement a pattern can be very complex,
					especially if reverse transformation is desired. By having the framework
					predefine patterns, a developer can simply tag an element, attribute, or type
					with a pattern name and the rules will be applied to that element (and
					optionally its derived and contained types).
This is intended to be extensible so that new patterns can be added to the
					code to enrich the range of transformation options, and need only be identified
					by name to be applied. At present there are two patterns supported "full" and
					"simple". These are intended to demonstrate extremes between transformation
					categories. More patterns are in development.
Patterns are applied to items (documents, elements, attributes, types) by using
					the annotation <jxon:pattern name="pattern name"/>
					This applies all the rule properties associated with that pattern as applicable
					to the item type. It also applies the properties to the derived and contained
					types. For example applying a pattern at the schema root applies the pattern
					to all items. Applying to an element affects the element, its attributes, and
					all local element declarations. Applying a pattern to a type affects the type
					and all derived types.
See section “Patterns”

Markup Agnostic but XML Based
While a primary goal of the design is to provide a transformation which is
					markup agnostic (treats XML and JSON as equals). The reality is that the tools
					for processing markup are much more mature and feature full in the XML space
					than the JSON space. This practical issue lead to a design which is "XML Based"
					but also "markup agnostic". The technologies used are primarily XML based, and
					the design itself is based on XML Schema, Annotations in schema, XQuery and XSLT
					processing. This does force a compromise in design which is definitely XML
					oriented, but still providing the end result (input and output of the
					transformations) markup agnostic.

Schema and annotation based transformations
Analysis of the existing implementation limitations and the primary objectives
					lead to the conclusion that a Schema and associated annotations could provide
					much of the external information needed guide the transformations in both
					directions.
 For example on generating JSON, Schema type information can inform the choice
					of which JSON types to generate. On generating XML, Schema can provide the
					missing pieces of structure which may have been omitted in the JSON, for example
					the correct element names, wrapping elements, namespaces etc.
Schema Annotations allow specifying ancillary information which is to apply
					only to a specific element, attribute or type without having to add addressing
					to the rule-set. The addressing is implicit by the location of the annotation.
					Since types can be annotated as well as specific elements and attributes,
					patterns can applied to all elements/attributes of that type in one location.
					Similarly type hierarchies can be annotated by placing the annotations at the
					appropriate location in the type hierarchy.
Individual properties of patterns can be overridden at any location, which
					acts similarly to object derivation. For example the "simple" pattern can be
					used for the document as a whole, while on an individual element its JSON name
					can be modified via annotation while inheriting all other derived properties of
					the pattern.
XSD Schema
The initial implementation directly supports XSD Schema only. This is an
						implementation artifact derived by use of the Apace Schema API, not a design
						restriction. XSD Annotations may inserted into any schema item (document,
						element, type etc) which will override either the current in-effect pattern
						or any of the pattern rules. JXON annotation must occur within the "appinfo"
						XSD annotation element. Only elements within the jxon namespace are
						processed, the rest are ignored.
The following at the beginning of a schema indicates that the entire
						document defaults to the "full" pattern
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:jxon="http://www.xmlsh.org/jxon">
	<xs:annotation>
		<xs:appinfo>
			<jxon:pattern name="full"/>
		</xs:appinfo>
	</xs:annotation>
	...
The following indicates that the ITEM element and all its child elements
						use the "simple" pattern and that the ITEM element itself will be
						represented by the JSON Name "BOOK". Note
Note that the "json_name" element is a sibling, not a child of "pattern". This
								indicates that the name only applies to this element, not to its
								descendant local elements.

					
<xs:element name="ITEM">
		<xs:annotation>
			<xs:appinfo>
				<jxon:pattern name="simple"/>
				<jxon:json_name name="BOOK"/>
			</xs:appinfo>
		</xs:annotation>
...

RNG Schema
The design supports use of any XML schema which can be annotated. However
						the current implementation only directly supports XSD.
RelaxNG (both Compact and XML formats) is indirectly supported by the use of comments in
						RNG and translating the RNG into XSD and the comments into XSD
						annotations.
The following RNG compact syntax uses comments starting with #<jxon:
						to map a different JSON name to an element
#<jxon:json_name name="TITLE"/>
element NAME { xs:string }
This is converted to the following XSD notation.
<xs:element name="NAME">
		<xs:annotation>
			<xs:appinfo>
				<jxon:json_name name="TITLE"/>
			</xs:appinfo>
		</xs:annotation>
...
Similarly comments in the RNG XML syntax are supported in the same
						way.

Rule Generation
A pair of transformation rules (XSLT files) for a class of documents is
					generated.
The XML Schema (for the XML document) is read along with the global configuration. The
					schema is traversed and a XSLT file is produced for each direction (JSON to XML
					and XML to JSON) based on each element, attribute, and type defined in the
					schema. Schema Annotations are used to choose which pattern applies to each
					term, and provides optional customization to the patterns for that item.
					Patterns can be applied recursively, or only to targeted items.
The result is a pair of XSLT files.

Transformation
The XSLT files produced by the rule generation can be used without any
					ancillary information. Reference to the schema or configuration information is
					not needed.
Running a transformation from JSON to XML requires converting the JSON to JXML
					format then running XSLT. Schema validation can be applied after the
					transformation.
Running a transformation from XML to JSON requires running the XSLT then
					converting from the result JXML to JSON. Schema validation can be applied to the
					input prior to running the transformation, and to the JXML after transformation
					to validate JSON well-formedness.

Bidirectional ("Round Tripping")
JXON is intended for bidirectional transformations ("Round Tripping"), although the same
					architecture and implementation could be used for unidirection transformations
					(XML to JSON or JSON to XML). A bidirectional transformation can be either
					Lossless or Lossy (or somewhere in between). This can depend on the patterns
					being used, the schema, and actual instances of documents.
The definition of "Lossless" and "Lossy" depends on what one considers
					"important information", although the terms do convey some meaning. Consider a
					scale measuring the results of a round trip transformation with one side exact
					byte for byte bidirectional transformation for every document instance
					transformed ("Lossless"), and the other side no correlation whatsoever between
					the two documents ("Unidirectional"), with "Lossy" being somewhere in between.
					Even this linear scale is misleading because some document instances
					corresponding to the same schema may have different translation characteristics
					then others. The design goals of JXON are to provide reasonably defined
					translation characteristics. Choosing a particular pattern or configuration
					attributes of a pattern will effect the translation, and it is up to the
					developer to determine the importance of the specific effects.
The JXON architecture does not attempt to implement "Purely Lossless" transformations at
					the text serialization (byte sequence) level.
Acceptable Losses
The JXON architecture does not attempt to preserve some characteristics of XML or JSON at
						all. These are considered "Acceptable Losses" for this project and for the
						purposes of definitions do not contribute to the meaning of "Lossless".
The following XML information is not attempted to be preserved.

							Serialization Format
The Text Serialization format of XML is not considered.
									Transformations are done at the XDM abstraction level so
									characteristics such as encoding, ignorable whitespace,
									character entities, CDATA etc are not considered as a
									significant characteristic.

	External Entities
External entities in XML are expanded as part of the XML parsing and are not
									represented in JSON as entities. They are not converted to
									external entities when generating XML from JSON.

	DTD and Schema
DTD and Schema references in XML are not retained as part of
									the transformation. They may be reconstructed as part of the XML
									generation but no attempt is made at representing DTD or Schema
									information in the JSON output.

	Comments
Comments are removed during XML processing. They exist as part
									of the XDM model but in the current implementation they are
									ignored.

	Processing Instructions
Processing instructions are removed during XML processing.
									They exist as part of the XDM model but in the current
									implementation they are ignored.

	Application level XML markup
XML markup which has meaning by application specific
									processors is not explicitly preserved, or may be partially
									preserved. For example XInclude processing (like External
									Entities) may be merged into the XDM model during parsing so is
									not transfered into the JSON markup explicitly. XLink and
									XPointer markup is not attempted to be processed specially.
XML markup which has specific meaning to an application may
									not have any related meaning in JSON.. For example an XSLT file
									translated to JSON looses its meaning in that the resultant JSON
									document has no supporting processors for XSLT.

					

Optional Losses
Sometimes perfect Lossless bidirectional transformation is not important. JXON provides
						the ability to perform Lossy transformations which can still produce useful
						results. A simple example is value typing. If there is no schema or
						annotation to describe the type of a value then transformations can lose
						that type. A numeric type in JSON round tripped may become a String type.
						This change of type information may or may not matter to the
						application.
Another case is where attributes or elements are requested to be ignored
						(in JSON or XML). This obviously causes problems unidirectional as well as
						bidirectional transformations. Omitted elements and attributes could be
						regenerated on reverse transformation according to the schema (or
						annotations) but the values cannot be extracted from the document
						instance.
A more subtle type of losses can occur when assumptions are made about
						documents which is not explicit in the schema or the JXON annotation. For
						example the "simple" pattern translates XML elements and attributes to JSON
						members. This pattern can round trips losslessly as long as there are no
						repeated element children or duplicate element or attribute names. However
						given an XML document that doesn't conform to the assumptions can produce
						invalid JSON, or the round trip may be produce ambiguous results.
Future enhancements could detect and warn the developers of the sort of
						losses or errors which could be expected.

Implicit Information
The JXON architecture makes significant use of "Implicit Information". Since
					an XSLT file is generated for both directions of mapping, not all information
					needed to build the documents during transformation need to be in the documents
					themselves. This allows many features not available with other JSON/XML designs
					.
A simple example is naming. Suppose a XML document has an element
					<my_element> and we wish to create a JSON document with an object member "The
					Element". This can be specified as a name attribute to the pattern for
					"my_element" (via annotation in the schema) and will be encoded into both XSLT
					files. The resulting JSON document has no explicit reference to the XML element
					name, yet via the XSLT will create the correct element name. The same concept
					solves a large number of issues usually considered deficient in many XML/JSON
					mapping tools such as:

						Namespaces
XML Namespaces can be preserved round-tripped through JSON without
								encoding the namespace itself in the JSON file. JSON objects can
								produce elements and attributes with namespaces without having the
								namespace information in the JSON document itself.

	Element and Attribute distinction
Some patterns map elements and attributes both to named JSON
								members. The distinction between element and attribute is not
								present in the JSON document. On the reverse transformation the
								elements and attributes can be reconstructed.

	JSON Arrays
JSON arrays can be created from various XML structures. The
								resultant JSON may lose the original XML element or attribute names,
								but on the reverse translation these items are reconstructed.
								Starting from JSON, arrays can be wrapped in generated XML elements
								or into a tokenized list value.

	Value type Information
When translating XML to JSON the value type can be lost (e.g. "value" : 1
								vs. <value>1</value>)
When translating back from XML to JSON the type information can be
								restored even though it is not present in the instance
								document.

	Constructed or deleted elements
Some patterns construct or delete markup, yet are reversible. For
								example wrapping elements may be removed when XML is converted to
								JSON. On the reverse transformation they can be reconstructed.
								Anonymous JSON objects (such as the root document) can have elements
								synthesized.

	Composed Values
XSD "list" items in XML are a single atomic value. When translated
								to JSON they can be split into Array notation (separate JSON
								objects). On the reverse transformation they can be reformed back
								into a single atomic value.

				

JXON Transformations
The current JXON design and implementation supports the following types of
			transformations. Since JXON is still in development these will likely change as
			experience is gained and the implementation matures. A primary goal of choosing the
			types of transformations is to find the right level of control of the mapping logic
			which is both implementable and not too difficult for the user to control. The rules use
			information from the schema as well as allow configuration properties externally (via
			the configuration file and inline schema annotations). These transformation rules, and
			their properties, are then grouped into "patterns" which can be applied 'as is' or
			overridden with specific changes.
Atomic Types
JXON uses the schema type declarations for simple types to attempt to determine
				the proper JSON type. The XSD schema type hierarchy is searched until a matching
				known type is found. If a matching type is found then the corresponding JSON type is
				used, otherwise the String type is used.
Any type derived from xs:double, xs:float or xs:decimal are mapped to a JSON
				Number.
Any type derived from xs:boolean is mapped to a JSON Boolean literal.
All other types are mapped to a JSON String.
Empty XML elements are mapped a JSON null.Table I
Example Atomic Type Conversion

	xs:type	XML	JSON
	xs:integer	1	1
	xs:boolean	true	true
	xs:string	John Doe	"John Doe"
	empty	<empty/>	null

value element
In the JXON schema the "value" element controls how atomic values are
					transformed. In the following example, the value element specifies that schema
					information should be used for both the value transformation as well as
					determine JSON array mapping

					
	<value wrap="schema" type="schema" />

				
 The following overrides default behaviour and specifies that the JSON Number type should
					be used with no wrapping
	<value type="number" />

				

Structured Types
JXON maps XSD "list" types (and derived types such as IDTOKENS) to JSON arrays and
				on reverse maps the associated arrays back to a space separated atomic value.

				Table II
Example list type conversions

	xs:type	XML	JSON
	xs:NMTOKENS	Hi There	["Hi","There"]
	xs:IDREFS	id1 id2 id3	["id2" , "id2" , "id3"]
	<xs:list itemType="xs:integer"/>	1 2 3 4	[1 , 2 , 3 , 4]

			
 The value element can be used to force wrapping by a JSON array even if the
				schema does not identify a value as a list type. For example the following overrides
				the schema information and tells the JXON processor to wrap the value with a JSON
				array of strings.
	<value type="string" wrap="array"/>

			

Naming and namespaces
JXON provides a flexible method for configuring name transformations. JSON and XML names
				can differ significantly in possible characters and practical use. The default
				configuration is to ignore namespaces and use the same name for XML elements and
				attributes as JSON members. Although namespaces are not present in the JSON document
				they are reconstructed when translating JSON to XML. Thie naming rule can be
				overridden on a type, element or attribute basis (and child items) by supplying a
				regular expression which translates the full XML name (in Clark notation[10]) to the
				JSON name. This allows the uri and localname portions of a QName to be used in
				generation of a JSON name. Since the document instance is not avaiable during rule
				generation, namespace prefixes are not known so are not accounted for in the naming
				rules. You do not have to supply the reverse regex for reverse mappings, in fact the
				mappings can be lossy while still being fully reversable because the naming
				information is stored in the XSLT files. The JSON member names have to be unique
				within a JSON object, however, in order to be able to match the corresponding XSLT
				rule (and XML name). It is interesting to note that even if namespace information is
				not mapped into the JSON output, that namespaces are not lost on reverse mapping. It
				is only in the case where multiple element or attributes with the same name but in
				different namespaces are used within a single schema and document instance that
				namespaces need be considered at all in the nameing mappings to provide for lossless
				round tripping.
This naming rule can also be used to get around the problem of same-named
				attributes and elements in XML by assigning them unique names in JSON.

				Table III
	Name rule	Clark Name	JSON Name
	<json_name search="\{([^}]*)\}?(.+)$" replace="$2"/>	{http://www.myorg.org}name	name
	<json_name name="Json Name"/>	{http://www.myorg.org}name	Json Name
	<json_name search="\{([^}]*)\}?(.+)$" replace="1_$2"/>	{http://www.myorg.org}name	1_name

			

Elements and Attributes
XML Elements and Attributes are both mapped to JSON Object members. JSON Object
				members must be a direct child of a JSON Object. This implies that all XML Elements
				and Attributes must be placed as direct children of a JSON Object (must not be
				parent-less or a direct child of a JSON Array.). The Element and Attribute rules
				interact with the Wrapping Rules to enforce this constraint as well as provides
				variants on how elements and attributes are placed within the containing object.
children element
The children element in JXON specifies how to encode XML element children in
					JSON. The following declaration in the "full" pattern specifies that child
					elements should be wrapped in a JSON object as the "_children" member

	<children wrap="object" name="_children" />

The following declaration used in the "simple" pattern specifies that child
					elements are transformed into JSON members without wrapping
	<children wrap="none" />

 Of course this will only produce valid JSON if there are no repeated elements
					or are duplicates of unwrapped attributes.

attributes element
The attributes element in JXON specifies how to encode XML attributes in JSON.
					The following declaration in the "full" pattern specifies that attributes are
					wrapped in a JSON object as the "_attributes" member.

	<attributes wrap="object" name="_attributes" />

The following declaration used in the "simple" pattern specifies that
					attributes are transformed into JSON members without wrapping
	<attributes wrap="none" />

				

Text elements
Text elements can be treated as simple values or as objects. They can be wrapped
				along with child elements, or in their own member. The JXON text element determines
				the behaviour.
The following example from the "simple" pattern wraps all text into an object
				member named "_text".

	<text wrap="object" name="_text" />

The following example from the "full" pattern treats text the same as child
				elements (putting each text element as a separate value in the _children
				array)

	<text wrap="none"/>

Implementation
The current JXON implementation is an experimental prototype with the intent of exploring
			the design and usefulness of the architecture. The intent is to become a production
			quality tool, but at the time of this writing it is still in prototype phase; functional
			but not yet feature complete. The code is entirely open source, uses only open source
			libraries and is licensed with the "Simplified BSD License".[11] It is distributed as part of the JSON extension module for xmlsh http://www.xmlsh.org/ModuleJson.
			The code can run within xmlsh itself or as an independant command or embedded in a java
			application.
As described in the Design Overview, JXON produces a pair of XSLT files from a schema
			and a configuration file. These XSLT files can then be used for transformations without
			further reference to the schema or the JXON processor. Input and output to the XSLT
			files are XML. On the JSON side this is XML in JXML format which can be converted to and
			from JSON losslessly, or converted to other lossless formats such as JSONX[jsonx].
Figure 5: JXON Processor implementation
[image:]
JXON Processor implementation internals

The resulting XSLT is produced as XSLT 2.0 for a non-schema-aware processor so that the
			entire process may be executed entirely with open source software.
JXON Processor
The JXON processor (Figure 2) is run once per schema to produce the pair
				of transformation XSLT files. The program (called "jsonxslt" Figure 5.) is written partially in Java and partially in XQuery. The
				Java portion parses command line arguments, reads the Schema (using the Apache
				implementation of the XML Schema API) and generates a much simpler form of the
				schema and annotations in XML form. The intermediary schema format corresponds to
				the same schema as the configuration format as well as the annotation (JXON). This
				allows the configuration data to be cleanly merged with the annotation and the
				resulting document and internal representations all having the same namespace and
				sharing the same meaning for items.
Java is used for this component because parsing, and particularly comprehending
				XSD schema is a challenging task suited well to reusing an existing API. The
				simplified schema and the global configuration file is then passed to the XQuery
				component, once each for conversion to XSLT for the JSON to XML translation and
				again for producing the XML to JSON. XQuery was chosen for this component because it
				is a good fit for XQuery. The process is largely that of querying and producing XML
				(XSLT) output from a complex set of algorithms. The two XQuery programs are tightly
				coupled (and share common modules). This is necessary because the specifics of the
				XSLT rules generated for one direction need to match exactly the rules generated for
				the reverse direction in order to achieve round trip transformations.
The result is 2 XSLT files which have encoded all the rules, augmented by the annotations,
				into a set of XSLT templates. These templates match every element and attribute of
				the input (Either XML or JXML), apply the encoded transformation and output the
				transformed XML. (See section “Example XSLT generation”
Parsing Schema

RNG Support
Ideally native support for RelaxNG will be built into the project but for
						now support is by means of the trang TRANG converter and a transformation which converts XSD comments
						into XSD Annotations. Comments are used instead of RNG annotations because
						trang does not sufficiently support translating RNG annotations to XSD
						annotations.

Converting between JSON and JXML
As described in the design, the JXON processor consumes and produces JSON in JXML
				format. This could in theory be any other full fidelity JSON representation in
				XML.
This JXML format may be useful by itself as it can be converted to other JSON XML
				formats such as JSONX [jsonx]or used as an input to other processors
				that operate purely on the JSON Object Model as apposed to the JSON Serialized Text
				form.
To convert from JSON to JXML and reverse, two tools are used from xmlsh command
				library (json2xml, xml2json). These tools are very simple and can be run standalone
				(outside the xmlsh environment), or could be re-implemented easily. Source code is
				available for these tools as well as all of xmlsh, also licensed using the
				Simplified BSD License. The json2xml tool makes use of the JSON API available from
				json.org, with some minor enhancements, mainly to preserve the order of object
				members while parsing JSON. The xml2json tool does not use the JSON API because of
				severe limits to that library, rather the serialization was written from
				scratch.
Neither of these tools are particularly complicated and could be replaced by user
				written code. The techniques for parsing and serializing JSON are well known and
				many implementations are available. You can see from the sample below that the JXML
				format is extremely verbose, but its advantage is it directly models the JSON data
				model.

XSLT processing
Once the JXON process is complete the 2 resulting XSLT files can be used at any
				time. One file is used to transform JSON as represented in JXML to the target XML
					See
				Figure 4.
The other file is used to transform XML to JXML See
				Figure 3.
The conversion between JXON and JSON is performed using the json2xml and xml2json
				tools See
				section “Converting between JSON and JXML”
The XSLT files are currently created to run with any XSLT 2.0 non-schema aware
				processor. The implementation uses Saxon[12]
			

Retrospective; Limitations and Lessons
JXON began as an experiment to explore the feasibility of intelligent cross markup
			transformations. Key to this experiment is the recognition that Markup Schema contains
			significant information which can be used to aid cross markup transformation.
			Recognizing this I assert that in essence cross markup transformation is fundamentally a
			Schema oriented issue, not a document instance issue. Lack of JSON Schema places a
			severe limit in the amount of automated decision making possible leaving one side only
			with schema information. This limit did make many design decisions easier, although less
			ideal, in particular to focus on the XML schema as the source of transformation logic.
Use of XSD Schema
Recognizing that Schema was a core concept in the design, XSD Schema was chosen for the
				implementation. In concept any schema language should work, but XSD was chosen due
				to its prevalence and the availability of API's which can query the schema (XML
				Schema API). XSD Schema is complex. The fact that an API is needed to query it to
				get meaningful information (instead of say using XQuery directly on the schema), is
				an indication of how complex it is. Even the API itself is complex. This decision
				required the use of a Java component instead of relying entirely on XML tools.
Ideally any XML Schema language should be able to be able to be used. Since the source
				schema is only used early on in the work-flow (to generate a simpler intermediate
				document), supporting alternative schemas such as RNG natively should not be that
				difficult and may be introduced in a later version of the implementation. The
				current support for RNG via translation to XSD is a viable alternative.
Requires an XML Schema
Since the transformation generation is Schema based, this implies you must
					have an XML Schema to define a transformation. If you are starting with XML
					there are many tools to generate a schema based on sample XML. But if you are
					starting with JSON there are no such tools. This is an area which could use
					improvement. For now you are forced to create a schema which matches up with how
					the JSON would be generated using one of the existing patterns. Perhaps a
					schema-less transformation mode would be useful to bootstrap this
					process.

Recursive structures
JXON allows for recursive structures insomuch as XSD does. Since rules are
					associated with a specific element declaration you cannot target different rules
					for different levels of recursion.

Local Elements
JXON allows for local elements in XSD. Local elements of the same name as
					other local or global elements can be targeted individually. This allows
					samed-named XML elements to map to differently named JSON elements. However, as
					in recursion, it is only supported in the same fashion as XSD. If a document
					instance references the same element in different contexts they cannot be
					targeted differently unless it is a local element declaration.

Use of Schema Annotations
The choice of using XML Schema (particularly XSD) then led to the decision to put
				the human augmented information into the XML schema document itself (as
				annotations). This decision is definitely debatable.
The advantage of annotating the schema itself instead of using an external "rules file" is
				that information can be associated directly to the specific item (type, element,
				attribute) without having to target that item externally with perhaps XPath or type
				references. The transformation logic then resides right with the item definitions in
				the schema and contains a minimal amount of extra information. On the other hand,
				this forces editing of the schema in order to modify the transformation logic.
				Different transformations for the same class of documents then requires separate
				schemas. This means that different schemas may need to be maintained that differ
				only in the JXON annotations. While JXON does not require that instance documents
				use the same schema during transformation as was used during the generation process,
				this can be a problem as changes to the authoritative schema require editing the
				schemas used for the JXON configurations.
Another issue of annotating schema directly is that it requires duplication of
				information if the same properties are to be applied to different items. This is
				mitigated by the use of "patterns" which group properties and allow you to specify
				only the pattern name. However if the rules were in an external file they could use
				a single definition for common properties and use instead multiple targets (e.g
				XPaths) to apply the properties to multiple items.

Intermediate file (JXON document) generation in Java
Use of the Apache implementation of the XML Schema API requires use of a Java component for
				part of the generation process. To minimize the reliance on Java coding an
				intermediate XML file is generated with a simplified version of the schema along
				with the annotations. This worked out fairly well as it separated the logic for
				parsing the schema from the rest of the processing. One problem is that the format
				for the intermediate is a moving target. Exactly what constitutes a "minimal
				simplified representation of the schema" depends on the needs of downstream
				processing. Adding new features and making changes to the XSLT generation code often
				requires going back to the Java code to add or change the content of the
				intermediate file.
Once the initial stage is complete then the rest of the XSLT generation can be
				done using pure XML tools. This allowed for easier development and debugging.
Use of an intermediate representation for the schema also benefits from being
				schema language agnostic. A different input schema language (such as RelaxNG) could
				be used while generating the same JXON intermediate format and leaving the rest of
				the processing unchanged.

XQuery for XSLT generation
XQuery is used to generate the XSLT output given the intermediate schema file and a
				configuration file. Choice of XQuery seems a good fit for the problem. The input and
				output is entirely XML and the processing logic is query and data oriented logic
				operations. This fits the XQuery use case quite well. Certainly XSLT or Java could
				have been used for this component, but the choice of XQuery worked well.

XSLT for transformation
The output of the JXON processor is a pair of XSLT files. These XSLT files are
				used for the actual transformations. Choice of XSLT seems an obvious match. The
				transformation is a collection of matching templates along with generation rules.
				This fits the XSLT model very well.
Auto generation of XSLT
In practice the resultant XSLT can be both large and non-ideal. For example
					the XSLT for Docbook is over 10,000 templates. XSLT 2.0 without schema support
					was chosen for the initial implementation. The rationale is to provide an
					implementation which is entirely "open source" and can be run without licensing.
					However since the problem is fundamentally a schema problem, making use of a
					schema-aware XSLT may have significant value. For example when a rule applies to
					a type, templates are generated for every possible occurrence of that type.
					Using a schema aware XSLT processor could optimize this to matching on types
					instead of names (at least for the XML to JSON conversion).
Generation of the XSLT code is also quite tricky and difficult to debug which
					limits ease of adding transformation rules. In particular writing the code that
					generates XSLT which can transform bidirectionally is quite tedious. This is
					definitely an area that could use significantly improvement and
					optimization.

Naming and namespaces
The mechanism for customizing name and namespace mappings is based on regular
				expressions. This is quite powerful but may not be powerful enough. The reason
				regular expressions were chosen is an artifact of the implementation; is that its
				the most flexible string manipulation feature in XQuery which doesn't require an
				"eval". This area could use enhancements.
The naming rules only have access to the localname and URI of the QName. This means that
				prefixes cannot be used as part of the name mappings. When generating XML from JSON
				prefixes are constructed and namespace declarations are added as needed. The
				resulting XML will most likely have a different lexical representation then a source
				XML after round tripping due to the difference in prefixes and locations of
				namespace declarations. Possibly making use of the prefix bindings in the XSD would
				be useful although there is no guarantee these same prefixes would be used in
				instance documents.
Using the default naming rules which ignore the namespace when generating JSON can lead to
				ambiguity problems if two QNames from different namespaces are allowed as attribute
				or child element names in a given element. This is resolved by overriding the naming
				rule for one of the ambiguous names.
Better control over prefix assignment and namespace declaration placement would be
				a useful enhancement.

Character Set
JXON uses JXML's handling of non-XML representable characters such as \0 by
				keeping them in JSON escaped format when mapped to XML. While this is losses, it is
				non-ideal as it takes application logic to parse these values correctly. I know of
				no better solution to this problem as XML simply cannot encode the full Unicode
				code-set which is allowed in JSON.

Appendix A. Appendix
Patterns
The following is the JXON global configuration markup of the "full" and "simple"
				patterns.

<patterns xmlns="http://www.xmlsh.org/jxon" default="full">
	<pattern name="full">
		<element>
			<!-- Wrap all child text and elements in an object -->
			<children wrap="object" name="_children" />
			
			<!-- Wrap all attributes in an object -->
			<attributes wrap="object" name="_attributes" />

			<!-- Do not wrap text by itself, it is in the _children -->
			<text wrap="none"/>

			<!-- Values are typed and wrapped according to schema -->
			<value wrap="schema" type="schema" />
			<json_name	search="\{([^}]*)\}?(.+)$" replace="$2"/>
		</element>

		<attribute>
			<value wrap="schema" type="schema" />
			<json_name	search="\{([^}]*)\}?(.+)$" replace="$2"/>
		</attribute>

	</pattern>

	<pattern name="simple">
		<element>
			<children wrap="none" />
			<attributes wrap="none" />
			<text wrap="object" name="_text" />
			<value wrap="schema" type="schema" />
			<json_name	search="\{([^}]*)\}?(.+)$" replace="$2"/>
			<override/>
		</element>
		<attribute>
			<value wrap="schema" type="schema" />
			<json_name	search="\{([^}]*)\}?(.+)$" replace="$2"/>
		</attribute>
	</pattern>

</patterns>

Example of JSON file converted into JXML
JSON Sample
{
	"id": "0001",
	"type": "donut",
	"name": "Cake",
	"ppu": 0.55,

	"topping":
		[
			{ "id": "5001", "type": "None" },
			{ "id": "5002", "type": "Glazed" },
			{ "id": "5005", "type": "Sugar" },
]
}
JXML Sample
<object xmlns="http://www.xmlsh.org/jxml">
 <member name="id">
 <string>0001</string>
 </member>
 <member name="type">
 <string>donut</string>
 </member>
 <member name="name">
 <string>Cake</string>
 </member>
 <member name="ppu">
 <number>0.55</number>
 </member>
 <member name="topping">
 <array>
 <object>
 <member name="id">
 <string>5001</string>
 </member>
 <member name="type">
 <string>None</string>
 </member>
 </object>
 <object>
 <member name="id">
 <string>5002</string>
 </member>
 <member name="type">
 <string>Glazed</string>
 </member>
 </object>
 <object>
 <member name="id">
 <string>5005</string>
 </member>
 <member name="type">
 <string>Sugar</string>
 </member>
 </object>
 </array>
 </member>
</object>

Full example
The following is a full example of a bidirectional round trip JSON/XML
				transformation using a variant of the "BOOKS" schema
XSD Schema
The XSD schema marked up with JXON annotations
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:jxon="http://www.xmlsh.org/jxon">
	<!-- Default document pattern is "full" -->
	<xs:element name="BOOKLIST">
	<xs:annotation>
		<!--BOOKLIST and decendants follow "simple" pattern -->
		<xs:appinfo>
			<jxon:pattern name="simple" />
		</xs:appinfo>
	</xs:annotation>
		<xs:complexType>
			<xs:sequence>
				<xs:element ref="BOOKS"/>
				<xs:element ref="CATEGORIES"/>
			</xs:sequence>
		</xs:complexType>
	</xs:element>

	<xs:element name="BOOKS">
		<xs:annotation>
		<xs:appinfo>
			<!-- Wrap all child elements in a JSON Array -->
			<jxon:children wrap="array" />
		</xs:appinfo>
	</xs:annotation>
		<xs:complexType>
			<xs:sequence>
				<xs:element ref="ITEM" maxOccurs="unbounded"/>
			</xs:sequence>
		</xs:complexType>
	</xs:element>

	<xs:element name="CATEGORIES">

		
		<xs:complexType mixed="true">
			<xs:sequence minOccurs="0" maxOccurs="unbounded">
				<xs:element ref="CATEGORY"/>
			</xs:sequence>
			<xs:attribute name="DESC" type="xs:string" use="required"/>
		</xs:complexType>
	</xs:element>
	<xs:element name="CATEGORY">
		<xs:annotation>
			<!-- CATEGORY and children use the simple pattern -->
			<xs:appinfo>
				<jxon:pattern name="simple"/>
			</xs:appinfo>
		</xs:annotation>
		<xs:complexType>
			<xs:attribute name="CODE" type="xs:ID" use="required"/>
			<xs:attribute name="DESC" type="xs:string" use="required">

			</xs:attribute>
			<xs:attribute name="NOTE" type="xs:string" use="optional"/>
		</xs:complexType>
	</xs:element>

	<xs:element name="ITEM">
	<xs:annotation>
		<xs:appinfo>
			<!-- ITEM and children use the simple pattern -->
			<jxon:pattern name="simple" />
			<!-- Rename the XML ITEM element to BOOK in JSON -->
			<jxon:json_name name="BOOK"/>

		</xs:appinfo>
	</xs:annotation>
		<xs:complexType>
			<xs:sequence>
				<xs:element name="TITLE" type="xs:string" minOccurs="1">
				</xs:element>
				<xs:element name="AUTHOR" type="xs:string"/>
				<xs:element name="PUBLISHER" type="xs:string"/>
				<xs:element name="PUB-DATE" type="xs:date"/>
				<xs:element name="LANGUAGE" type="languageType"/>
				<xs:element name="PRICE" type="moneyType">
				</xs:element>
				<xs:element name="QUANTITY" type="xs:integer"/>
				<xs:element name="ISBN" type="ISBNType"/>
				<xs:element name="PAGES" type="xs:integer">
				<xs:annotation>
						<xs:appinfo>
							<!-- Demonstrate we can override the default JSON type with string -->
							<jxon:value type="string"/>
						</xs:appinfo>
				</xs:annotation>
				</xs:element>
				<xs:element name="DIMENSIONS" type="dimensionsType">
					<xs:annotation>
						<xs:appinfo>
							<!-- Wrap dimension children in an object member named "value" -->
							<jxon:text wrap="object" name="value" />
						</xs:appinfo>
					</xs:annotation>
					
				</xs:element>
				<xs:element name="WEIGHT" type="weightType">
					<xs:annotation>
					<xs:appinfo>
						<!-- wrap WEIGHT text in an object member named "amount" -->
						<jxon:text wrap="object" name="amount"/>
					</xs:appinfo>
				</xs:annotation>
				</xs:element>
			</xs:sequence>
			<xs:attribute name="CAT" type="xs:IDREF" use="required"/>
			<xs:attribute name="TAX" type="xs:NMTOKEN" use="optional" default="V"/>
		</xs:complexType>
	</xs:element>

	<xs:simpleType name="languageType">
		<xs:restriction base="xs:string">
			<xs:enumeration value="English"/>
			<xs:enumeration value="French"/>
			<xs:enumeration value="German"/>
			<xs:enumeration value="Spanish"/>
		</xs:restriction>
	</xs:simpleType>

	<xs:complexType name="moneyType">
		<xs:simpleContent>
			<xs:extension base="xs:decimal">
				<xs:attribute name="currency" type="currencyType"/>
			</xs:extension>
		</xs:simpleContent>
	</xs:complexType>

	<xs:simpleType name="currencyType">
		<xs:restriction base="xs:string">
			<xs:enumeration value="USD"/>
			<xs:enumeration value="GBP"/>
			<xs:enumeration value="EUR"/>
			<xs:enumeration value="CAD"/>
		</xs:restriction>
	</xs:simpleType>

	<xs:simpleType name="ISBNType">
		<xs:restriction base="xs:string">
			<xs:pattern value="[0-9]{9}[0-9X]"/>
		</xs:restriction>
	</xs:simpleType>

	<xs:complexType name="dimensionsType">
		<xs:simpleContent>
			<xs:extension base="dimensionsContentType">
				<xs:attribute name="UNIT" type="lengthUnitType">
				</xs:attribute>
			</xs:extension>
		</xs:simpleContent>
	</xs:complexType>

	<xs:simpleType name="dimensionsContentType">
		<xs:restriction>
			<xs:simpleType>
				<xs:list itemType="dimensionType"/>
			</xs:simpleType>
			<xs:length value="3"/>
		</xs:restriction>
	</xs:simpleType>

	<xs:simpleType name="lengthUnitType">
		<xs:restriction base="xs:string">
			<xs:enumeration value="in"/>
			<xs:enumeration value="cm"/>
		</xs:restriction>
	</xs:simpleType>

	<xs:simpleType name="dimensionType">
		<xs:restriction base="xs:decimal">
			<xs:minExclusive value="0.00"/>
		</xs:restriction>
	</xs:simpleType>

	<xs:complexType name="weightType">
		<xs:simpleContent>
					
			<xs:extension base="xs:decimal">
				<xs:attribute name="UNIT" type="weightUnitType"/>

			</xs:extension>
		</xs:simpleContent>
	</xs:complexType>

	<xs:simpleType name="weightUnitType">
		<xs:restriction base="xs:string">
			<xs:enumeration value="oz"/>
			<xs:enumeration value="g"/>
		</xs:restriction>
	</xs:simpleType>
</xs:schema>

BOOKS XML
The BOOKS xml file
<BOOKLIST>
<BOOKS>
	<ITEM CAT="MMP">
 	<TITLE>Pride and Prejudice</TITLE>
 	<AUTHOR>Jane Austen</AUTHOR>
 	<PUBLISHER>Modern Library</PUBLISHER>
 	<PUB-DATE>2002-12-31</PUB-DATE>
 	<LANGUAGE>English</LANGUAGE>
 	<PRICE>4.95</PRICE>
 	<QUANTITY>187</QUANTITY>
 	<ISBN>0679601686</ISBN>
 	<PAGES>352</PAGES>
 	<DIMENSIONS UNIT="in">8.3 5.7 1.1</DIMENSIONS>
 	<WEIGHT UNIT="oz">6.1</WEIGHT>
	</ITEM>
	<ITEM CAT="P">
		<TITLE>Wuthering Heights</TITLE>
		<AUTHOR>Charlotte Brontë</AUTHOR>
		<PUBLISHER>Penguin Classics</PUBLISHER>
		<PUB-DATE>2002-12-31</PUB-DATE>
		<LANGUAGE>English</LANGUAGE>
		<PRICE>6.58</PRICE>
		<QUANTITY>113</QUANTITY>		
		<ISBN>0141439556</ISBN>
		<PAGES>430</PAGES>
 <DIMENSIONS UNIT="in">1 5.2 7.8</DIMENSIONS>
		<WEIGHT UNIT="oz">11.2</WEIGHT>
	</ITEM>
	<ITEM CAT="P">
		<TITLE>Tess of the d'Urbervilles</TITLE>
		<AUTHOR>Thomas Hardy</AUTHOR>
		<PUBLISHER>Bantam Classics</PUBLISHER>
		<PUB-DATE>1984-05-01</PUB-DATE>
		<LANGUAGE>English</LANGUAGE>
		<PRICE>4.95</PRICE>
		<QUANTITY>85</QUANTITY>		
		<ISBN>0553211684</ISBN>
		<PAGES>480</PAGES>
 <DIMENSIONS UNIT="in">6.8 4.2 0.8</DIMENSIONS>
		<WEIGHT UNIT="oz">7.7</WEIGHT>
	</ITEM>
	<ITEM CAT="P">
		<TITLE>Jude the Obscure</TITLE>
		<AUTHOR>Thomas Hardy</AUTHOR>
		<PUBLISHER>Penguin Classics</PUBLISHER>
		<PUB-DATE>1998-09-01</PUB-DATE>
		<LANGUAGE>English</LANGUAGE>
		<PRICE>4.95</PRICE>
		<QUANTITY>129</QUANTITY>		
		<ISBN>0140435387</ISBN>
		<PAGES>528</PAGES>
 <DIMENSIONS UNIT="in">7.8 5.2 0.9</DIMENSIONS>
		<WEIGHT UNIT="oz">10.9</WEIGHT>
	</ITEM>
	<ITEM CAT="H">
		<TITLE>The Big Over Easy</TITLE>
		<AUTHOR>Jasper Fforde</AUTHOR>
		<PUBLISHER>Hodder & Stoughton</PUBLISHER>
		<PUB-DATE>2005-07-11</PUB-DATE>
		<LANGUAGE>English</LANGUAGE>
		<PRICE>16.47</PRICE>
		<QUANTITY>129</QUANTITY>		
		<ISBN>0340835672</ISBN>
		<PAGES>346</PAGES>
 <DIMENSIONS UNIT="cm">22.5 18 3.5</DIMENSIONS>
		<WEIGHT UNIT="g">390</WEIGHT>
	</ITEM>
	<ITEM CAT="P">
		<TITLE>The Eyre Affair</TITLE>
		<AUTHOR>Jasper Fforde</AUTHOR>
		<PUBLISHER>Penguin</PUBLISHER>
		<PUB-DATE>2003-02-25</PUB-DATE>
		<LANGUAGE>English</LANGUAGE>
		<PRICE>16.47</PRICE>
		<QUANTITY>129</QUANTITY>		
		<ISBN>0142001805</ISBN>
		<PAGES>384</PAGES>
 <DIMENSIONS UNIT="in">7.8 5 0.9</DIMENSIONS>
		<WEIGHT UNIT="oz">9</WEIGHT>
	</ITEM>

</BOOKS>
<CATEGORIES DESC="Miscellaneous categories">
 <CATEGORY CODE="P" DESC="Paperback"/>
 <CATEGORY CODE="MMP" DESC="Mass-market Paperback"/>
 <CATEGORY CODE="H" DESC="Hard Cover"/>
</CATEGORIES>
</BOOKLIST>
		

BOOKS JSON
The BOOKS JSON document
{
 "BOOKLIST":
 {
 "BOOKS":
 [
 {
 "BOOK":
 {
 "CAT":"MMP",
 "TITLE":"Pride and Prejudice",
 "AUTHOR":"Jane Austen",
 "PUBLISHER":"Modern Library",
 "PUB-DATE":"2002-12-31",
 "LANGUAGE":"English",
 "PRICE":4.95,
 "QUANTITY":187,
 "ISBN":"0679601686",
 "PAGES":"352",
 "DIMENSIONS":
 {
 "UNIT":"in",
 "value":
 [8.3,5.7,1.1]
 },
 "WEIGHT":
 {
 "UNIT":"oz",
 "amount":6.1
 }
 }
 },
 {
 "BOOK":
 {
 "CAT":"P",
 "TITLE":"Wuthering Heights",
 "AUTHOR":"Charlotte BrontÃ«",
 "PUBLISHER":"Penguin Classics",
 "PUB-DATE":"2002-12-31",
 "LANGUAGE":"English",
 "PRICE":6.58,
 "QUANTITY":113,
 "ISBN":"0141439556",
 "PAGES":"430",
 "DIMENSIONS":
 {
 "UNIT":"in",
 "value":
 [1,5.2,7.8]
 },
 "WEIGHT":
 {
 "UNIT":"oz",
 "amount":11.2
 }
 }
 },
 {
 "BOOK":
 {
 "CAT":"P",
 "TITLE":"Tess of the d'Urbervilles",
 "AUTHOR":"Thomas Hardy",
 "PUBLISHER":"Bantam Classics",
 "PUB-DATE":"1984-05-01",
 "LANGUAGE":"English",
 "PRICE":4.95,
 "QUANTITY":85,
 "ISBN":"0553211684",
 "PAGES":"480",
 "DIMENSIONS":
 {
 "UNIT":"in",
 "value":
 [6.8,4.2,0.8]
 },
 "WEIGHT":
 {
 "UNIT":"oz",
 "amount":7.7
 }
 }
 },
 {
 "BOOK":
 {
 "CAT":"P",
 "TITLE":"Jude the Obscure",
 "AUTHOR":"Thomas Hardy",
 "PUBLISHER":"Penguin Classics",
 "PUB-DATE":"1998-09-01",
 "LANGUAGE":"English",
 "PRICE":4.95,
 "QUANTITY":129,
 "ISBN":"0140435387",
 "PAGES":"528",
 "DIMENSIONS":
 {
 "UNIT":"in",
 "value":
 [7.8,5.2,0.9]
 },
 "WEIGHT":
 {
 "UNIT":"oz",
 "amount":10.9
 }
 }
 },
 {
 "BOOK":
 {
 "CAT":"H",
 "TITLE":"The Big Over Easy",
 "AUTHOR":"Jasper Fforde",
 "PUBLISHER":"Hodder & Stoughton",
 "PUB-DATE":"2005-07-11",
 "LANGUAGE":"English",
 "PRICE":16.47,
 "QUANTITY":129,
 "ISBN":"0340835672",
 "PAGES":"346",
 "DIMENSIONS":
 {
 "UNIT":"cm",
 "value":
 [22.5,18,3.5]
 },
 "WEIGHT":
 {
 "UNIT":"g",
 "amount":390
 }
 }
 },
 {
 "BOOK":
 {
 "CAT":"P",
 "TITLE":"The Eyre Affair",
 "AUTHOR":"Jasper Fforde",
 "PUBLISHER":"Penguin",
 "PUB-DATE":"2003-02-25",
 "LANGUAGE":"English",
 "PRICE":16.47,
 "QUANTITY":129,
 "ISBN":"0142001805",
 "PAGES":"384",
 "DIMENSIONS":
 {
 "UNIT":"in",
 "value":
 [7.8,5,0.9]
 },
 "WEIGHT":
 {
 "UNIT":"oz",
 "amount":9
 }
 }
 }],
 "CATEGORIES":
 {
 "_attributes":
 {
 "DESC":"Miscellaneous categories"
 },
 "_children":
 ["\n ",
 {
 "CATEGORY":
 {
 "CODE":"P",
 "DESC":"Paperback"
 }
 },"\n ",
 {
 "CATEGORY":
 {
 "CODE":"MMP",
 "DESC":"Mass-market Paperback"
 }
 },"\n ",
 {
 "CATEGORY":
 {
 "CODE":"H",
 "DESC":"Hard Cover"
 }
 },"\n"]
 }
 }
 }

Example XSLT generation
The markup for ITEM/DIMENSIONS in the above XSD produces these sets of XSLT patterns.
				Note that this code generation is in progress and is a prime target for change and
				optimization.
XSLT to convert XML to JSON

<xsl:template priority="1" match="ITEM/DIMENSIONS">
 <member name="DIMENSIONS">
 <xsl:choose>
 <!-- No attributes or child elements - jump to text -->
 <xsl:when test="empty(@*|*)">
 <array>
 <xsl:for-each select="tokenize(.,' ')">
 <number>
 <xsl:value-of select="."/>
 </number>
 </xsl:for-each>
 </array>
 </xsl:when>
 <!-- Otherwise need to make an object out of this -->
 <xsl:otherwise>
 <object>
					<!-- For each element and attribute make a member -->
				 <xsl:for-each select="@*|*">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 <!-- Wrap text in a _text node only for simple types -->
				 <xsl:if test="string(.)">
 <member name="value">
 <array>
 <xsl:for-each select="tokenize(.,' ')">
 <number>
 <xsl:value-of select="."/>
 </number>
 </xsl:for-each>
 </array>
 </member>
 </xsl:if>
 </object>
 </xsl:otherwise>
 </xsl:choose>
 </member>
 </xsl:template>
<xsl:template priority="1" match="ITEM/DIMENSIONS" mode="wrap">
 <object>
 <xsl:apply-templates select="."/>
 </object>
</xsl:template>
<xsl:template priority="1" match="ITEM/DIMENSIONS/text()" mode="#all">
 <array>
 <xsl:for-each select="tokenize(.,' ')">
 <number>
 <xsl:value-of select="."/>
 </number>
 </xsl:for-each>
 </array>
 </xsl:template>
<xsl:template priority="2" match="ITEM/DIMENSIONS/@UNIT" mode="#all">
 <member name="UNIT">
 <string>
 <xsl:value-of select="."/>
 </string>
 </member>
 </xsl:template>

XSLT to convert JSON to XML

<xsl:template priority="1"
 match="member[@name='BOOK']/object/member[@name='DIMENSIONS']/object">
 <xsl:apply-templates select="*"/>
 </xsl:template>
 <xsl:template priority="1"
 match="member[@name='BOOK']/object/member[@name='DIMENSIONS']/string |
 member[@name='BOOK']/object/member[@name='DIMENSIONS']/number">
 <xsl:value-of select="string()"/>
</xsl:template>
 <xsl:template priority="1" match="member[@name='BOOK']/object/member[@name='DIMENSIONS']">
 <xsl:element name="DIMENSIONS" namespace="">
 <xsl:apply-templates select="*"/>
 </xsl:element>
 </xsl:template>
 <xsl:template priority="1"
 match="member[@name='BOOK']/object/member[@name='DIMENSIONS']/object/member[@name='value']">
 <xsl:copy-of select="string-join(array/(number|string) , ' ')"/>
 </xsl:template>

<xsl:template priority="2"
 match="member[@name='BOOK']/object/member[@name='DIMENSIONS']/object/member[@name='UNIT']/string |
 member[@name='BOOK']/object/member[@name='DIMENSIONS']/object/member[@name='UNIT']/number">
 <xsl:value-of select="string()"/>
</xsl:template>
<xsl:template priority="2"
 match="member[@name='BOOK']/object/member[@name='DIMENSIONS']/object/member[@name='UNIT']">
 <xsl:attribute name="UNIT" namespace="">
 <xsl:apply-templates select="*"/>
 </xsl:attribute>
 </xsl:template>

References
[JSONORG] The JSON to XML converter from json.org
				http://www.json.org/javadoc/org/json/XML.html
		
[jsonx] JSONx is an IBM® standard format to represent JSON as XML http://publib.boulder.ibm.com/infocenter/wsdatap/v3r8m1/index.jsp?topic=/xs40/convertingbetweenjsonandjsonx05.htm
		
[badgerfish] The Badgerfish notation for XML in JSON. The normative site
				http://badgerfish.ning.com/ has
			vanished off the web but many references still remain including XSLTJSON
[rabbitfish] The Rabbitfish notation for XML in JSON. References are
			made to rabbitfish notation in XSLTJSON
[XSLTJSON] XSLTJSON, XML to JSON using XSLT http://www.bramstein.com/projects/xsltjson/
[JSONML] JSON Markup Language (JsonML)http://jsonml.org/
		
[JQUERY] jQuery XML to JSON Plugin http://www.fyneworks.com/jquery/xml-to-json/
		
[BOOMERANG] Boomerang - A bidirectional
			programming language for ad-hoc, textual data. http://www.seas.upenn.edu/~harmony/
		
[XSUGAR] XSugar - Dual Syntax for XML Languages
				http://www.brics.dk/xsugar/
		
[JSONSCHEMA] JSON Schema http://json-schema.org//
		
[DFDL] OGF Standards: Data Format Description Language
			(DFDL) http://www.ogf.org/dfdl/
		
[APACHESCHEMA] Apace Schema API implementation
			of the XML Schema API http://www.w3.org/Submission/2004/SUBM-xmlschema-api-20040309/
[TRANG] Trang - Multi-format schema converter based
			on RELAX NG http://www.thaiopensource.com/relaxng/trang.html
[MLJSON] MLJSON provides a facade on top of MarkLogic for treating MarkLogic as a store for JSON documents and data. http://developer.marklogic.com/code/mljson

[1] JSON JavaScript Object Notation http://www.json.org
				
[2] XML - Extensible Markup Language (XML) http://www.w3.org/XML/
				
[3] XSLT - XSL Transformations (XSLT) Version 2.0 http://www.w3.org/TR/xslt20/
[4] JAVA http://www.java.com
[5] Relax NG - http://relaxng.org
[6]
						http://developer.yahoo.com/yui/theater/video.php?v=crockford-jsonThe main reason I took comments out was that I saw people who were trying
						to control what the parser would do based on what was in the comments, and
						that totally broke interoperability. There's no way I could control the way
						they were using comments, so the most effective fix was to take the comments
						out.

[7] XQuery 1.0: An XML Query Language http://www.w3.org/TR/xquery/
[8] XProc: An XML Pipeline Language http://www.w3.org/TR/xproc/
						
[9] Schematron http://www.schematron.com/
[10] "Clark Notation" is an informal name given to the proposal by James Clark for a simple represtntation of QNames http://www.jclark.com/xml/xmlns.htm
[11] http://www.freebsd.org/copyright/freebsd-license.html "Simplified BSD License" also known as the "2 clause BSD License" and
					the "FreeBSD License"
[12] SAXON - The XSLT and XQuery Processorhttp://saxon.sourceforge.net/

Balisage: The Markup Conference

JXON: an Architecture for Schema and Annotation Driven JSON/XML Bidirectional
		Transformations
David Lee
Senior Principal Software Engineer
Epocrates, Inc.

<dlee@epocrates.com>
David Lee has over 25 years experience in the software industry responsible
					for many major projects in small and large companies including Sun Microsystems,
					IBM, Centura Software (formerly Gupta.), Premenos, Epiphany (formerly
					RightPoint), WebGain, Nexstra, Epocrates. As senior principal software engineer
					at Epocrates, Inc., Mr Lee is responsible for managing data integration,
					storage, retrieval, and processing of clinical knowledge databases for the
					leading clinical information provider.
Key career contributions include Real-time AIX OS extensions for optimizing transmission
					of real-time streaming video (IBM), secure encrypted EDI over internet email
					(Premenos), porting the Centura Team Desktop system to Solaris (Gupta, Centura),
					optimizations of large Enterprise CRM systems (Epiphany), author of xmlsh (http://www.xmlsh.org) an open
					source scripting language for XML.

Balisage: The Markup Conference

content/images/Lee01-005.jpg
Schema &
Annotations

jxon

Exract asic types
and XON.

Xavery
Create JSON 2 XML

IXON
document

Configuration

ey
CreateXML2 50N

XSLT (IXML to XML)

XSLT (XML to JXML)

content/images/Lee01-004.jpg
o > A5t
Processor
JSON file XML XML

XSLT (JXML to XML)

content/images/Lee01-003.jpg
XSLT
:> Processor Y
ﬁ XML JSON file

XML

XSLT (XML to JXML)

content/images/Lee01-002.jpg
Schema & Annotations

Configuration

JXON Processor

XSLT (XML to XML)

XSLT (XML to JXML)

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Lee01-001.jpg
Assoq _ $S9|SS07

Information
Fidelity

