[image: Balisage logo]Balisage: The Markup Conference

Abstract generic microformats for coverage, comprehensiveness, and adaptability
Wendell Piez
Senior Consultant
Mulberry Technologies, Inc.

<wapiez@mulberrytech.com>

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 by Wendell Piez

How to cite this paper
Piez, Wendell. "Abstract generic microformats for coverage, comprehensiveness, and adaptability." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Piez01.

Abstract
Markup languages that attempt not only to support particular applications, but to
 provide encoding standards for decentralized communities, face a particular problem: how do
 they adapt to new requirements for data description? The most usual approach is a schema
 extensibility mechanism, but many projects avoid them, since they fork the local application
 from the core tag set, complicating implementation, maintenance, and document interchange
 and thus undermining many of the advantages of using a standard. Yet the easy alternative,
 creatively reusing and abusing available elements and attributes, is even worse: it
 introduces signal disguised as noise, degrades the semantics of repurposed elements and
 hides the interchange problem without solving it.
This dilemma follows from the way we have conceived of our models for text. If designing
 an encoding format for one work must compromise its fitness for any other – because
 the clean and powerful descriptive markup for one kind of text is inevitably unsuitable for
 another – we will always be our own worst enemies. Yet texts in the
 wild are purposefully divergent in the structures, features and affordances of
 their design at both micro and macro levels. This suggests that at least in tag sets
 intended for wide use across decentralized communities, we must support design innovation
 not only in the schema, but in the instance – in particular documents and sets of
 documents. By defining, in the schema, a set of abstract generic elements for microformats,
 we can appropriate tag abuse (at one time making it unnecessary and capturing the initiative
 it represents), expose significant and useful semantic variation, and support bottom-up
 development of new semantic types.

Balisage: The Markup Conference

 Abstract generic microformats for coverage, comprehensiveness, and adaptability

 Table of Contents

 	Title Page

 	XML document types and their discontents
 	When descriptive schemas work

 	The limits of description: the case of the book

 	The problem with schema extensibility

 	Extension in the instance with abstract generic microformats
 	A proposal

 	An example: an approach to drama

 	Issues and ideas
 	Merging with a host language: tight or loose?

 	Validation and validibility

 	Interchange and interoperability

 	Addressing production workflow concerns

 	Microformats as a driver for evolutionary change

 	About the Author

 Abstract generic microformats for coverage, comprehensiveness, and adaptability

XML document types and their discontents
The power and utility of descriptive markup has been well understood and widely
 demonstrated for years and now decades; so it doesn't need to be defended here. However, for
 all the demonstrable usefulness of descriptive formats, and of standards that propose
 particular descriptions for documents (in the form of XML element and attribute sets) such as
 Docbook, TEI, NISO/NLM and DITA, a number of problems continue to inhibit their adoption for
 the widest applications of text encoding, including (significantly) that large and open-ended
 set of documents we loosely designate as books. One of the most vexing of these
 is in how we define and manage the boundaries of application of a particular markup language
 – what does it seek to do, for what sorts of documents. We can identify this problem
 with the terms coverage, comprehensiveness and adaptability:	Coverage
	What are the limits of description? What sorts of documents can be described using
 the tag set? Is the set bounded in advance (as for example when converting a defined
 set of extant historical documents), or unbounded?
For example, the coverage of NISO/NLM JATS (the Journal Article Tag Set) is
 defined as journal articles, especially (though not exclusively) for STM
 (scientific/technical/medical) journals. It does not seek to encode musical
 scores.
Document types and tag sets (families of related document types such as NLM/NISO
 or TEI) vary in how much coverage they attempt and in how open-ended that coverage
 is.

	Comprehensiveness
	This is the complement to coverage: not how broadly a tag set seeks to describe
 texts, but how deeply. Given a set of documents to be encoded, what are the purposes
 of their description? Are there processing requirements to be addressed, either
 directly or indirectly? To what extent must variations among the texts be registered;
 how detailed, exact and complete must the description be? What is the scope of
 description? For example, can two blocks of text separated by vertical whitespace in
 rendition both be called paragraph, or are there cases and conditions
 in which this is not sufficient, and further distinctions to be made?
The comprehensiveness problem might come up for NISO/NLM JATS if a journal article
 were to turn up that contained a segment of musical notation. Without a requirement to
 treat the notation in any particular way, owners or publishers of this information
 might choose to encode it as something they do recognize, such as an ordinary
 graphic.
It is natural to consider coverage and comprehensiveness together as a problem of
 scoping. If a document type, formalized by a schema, does not explicitly define its
 scope of application (what the documents are, and how and for what purposes elements
 within them are to be distinguished), it will do so implicitly, in its
 application.

	Adaptability
	If an encoding format is adequate to the description of a well-defined (bounded)
 document set for the purposes of a known and well-understood set of applications, it
 does not have to be adaptable: we will never have to introduce new elements,
 attributes or tag semantics, as these can all be distinguished and defined up front.
 But most schemas in actual use need to be able to stretch, either to describe new
 documents, or to identify new structures and features of documents already considered
 in scope. That is, they need to adapt, in both their coverage and their
 comprehensiveness.
Adaptability will be a problem to the extent that it is needed (that is, coverage
 and comprehensiveness are problems) and available mechanisms are not adequate to meet
 the need.

We now have enough experience with XML encoding to have a good sense of how well our
 mechanisms work in the face of these issues. Whether they work well enough for you depends on
 who you are; more generally, it depends on the scope of control exerted by schema designers
 (either directly or by proxy) over documents.[1]
When descriptive schemas work
The short answer is that how well a descriptive schema works in operation depends not
 only on its fitness for the data and task (i.e., whether its coverage is appropriate and it
 is adequately comprehensive), but also to the extent that document encoders have editorial
 control over the information, both in its content and organization. This should not come as
 a surprise, since indeed the roots of XML technologies are in publishing systems in which it
 is more or less imperative to exercise such control, and the promise of externalizing,
 rationalizing and simplifying these control mechanisms is much of the point of descriptive
 markup. The classic application of this principle, of course, is in the publishing of a
 manual, technical series or periodical, in which authors or contributors (on the one hand)
 and production staff and designers (on the other) assent to creative decisions of editors,
 and document markup can serve transparently to represent editorial intent.
 When control is centralized in this way, the circle is complete: once an encoding format is
 defined, content can be selected, composed and modified to conform to its capabilities.
 Requirements for change and adaptability are managed in balance against other needs for
 consistency and stability. System operators resort, when necessary, to editorial
 policy-making to forestall, prioritize, and schedule any innovations likely to have a
 destabilizing effect.

The limits of description: the case of the book
The inverse is also true. Descriptive schemas work well to the extent that control over
 the data is centralized and consistency in the application of markup can be enforced. But
 when it is not so centralized, they do not work so well. This can happen anywhere, but it
 happens most notably and inescapably in a community of use which shares a common schema or
 tag set (using that term to identify a family of related schemas) without sharing local
 goals and objectives. Maybe they have an interest in a common encoding standard for purposes
 ostensibly of document interchange; similarly, they may wish to take advantage of common
 knowledge and a shared tool base. Of course, this is exactly the case with the
 big general-purpose document encoding standards and community initiatives,
 such as TEI, Docbook, and NLM/NISO.
The limits of a descriptive encoding can be readily illustrated by considering
 information artifacts in the wild – that is, as actually found, and apart from any
 considerations of how they may be encoded electronically (or not) by the authors, editors,
 designers and publishers who have composed and produced them. Texts in the wild – even
 if we limit consideration to those texts we are content to designate as books
 – are not perfectly regular, but only mostly so. Indeed this semi-regularity is an
 important (perhaps the most important) general feature of books, inasmuch as significant variation within pattern might serve as a definition of
 information itself: the structures of books cannot be entirely regularized
 without sometimes destroying the book. Sometimes this works at a very granular level.
Figure 1: Specialized structures across a series of books
[image:]
Michael Kay's XSLT 2.0 and XPath 2.0 Programmer's
 Reference is a convenient example of a book whose internal structures are
 more elaborate than may be typical of a generic book. Yet unless we wish
 to say this book is not a book, but something else, a viable book model has to support
 such structures either natively or by means of extensions to be introduced by the author
 or publisher. It is possible that the markup needed here could be useful across all the
 books of the series to which this book belongs; in any case, it might be useful to the
 publisher and to application designers who wished to design interfaces to this content
 if it were.

Figure 2: Specialized structures across a single book
[image:]
[image:]
[image:]
Stafford Beer's Platform for Change (1975), like
 many other literary or quasi-literary productions, is a fascinating example of a book
 whose structure is peculiar to itself. Beer's volume is not unusual in having figures
 and diagrams, although one appears on the inside of the dust jacket; but it does have
 structured prose (it is not verse, or so the author asserts), and its chapters are
 differentiated by type, as indicated by page colors.
Does a generic book model need to be able to accommodate works of this kind? We can
 agree to say no, this book is out of scope: the coverage problem again. Or say that
 although it is a book, we will force-fit it within available semantics (risking tag
 abuse to deal with inadequate comprehensiveness). Or we have to find a way of dealing
 with its special requirements: the adaptability problem.
For what it's worth, even unextended TEI does not provide elements directly capable
 of marking up this text, as it has no elements for lineated (structured) prose, only
 verse.

Figure 3: Specialized structures within a single book
[image:]
[image:]
Thomas Carlyle's Sartor Resartus (1833) should be
 required reading for all students of semiology. It is mostly conventional in structure;
 or at least, much of its point is in how it observes some of the more elaborate
 conventions of nineteenth-century scholarship. But an epitaph pops up in the middle.
 Students of literature know that such things are less uncommon than you might think,
 even leaving aside Tristram Shandy. (Illustration from
 Google Books.)
Again, we have either to extend our coverage of what's a book (or what's in a book),
 or provide a way for a markup language to be adapted to purposes like this.

Three examples appear in Figures 1-3, showing this phenomenon at the level of the series
 (the Wrox Programmer to Programmer series, shown here by
 Michael Kay's XSLT 2.0 and XPath 2.0: Programmer's
 Reference[2]); the level of the book (Stafford Beer's Platform for
 Change); and within the book (the epitaph appearing in Sartor Resartus). Of course, many more examples could be shown to demonstrate
 how every book – and every structure within a book – is potentially a one-off, a
 thing unique unto itself. In part, this reflects the fact that books as functioning
 information objects can and must be designed to serve sometimes very distinct and peculiar
 purposes, which may even be intended specifically to differentiate them from other books.
 One of the core requirements addressed by book design, that is, is that a particular design
 may be distinctive, at least in part, not only in its features but even in the requirements
 it addresses, which will be different from the requirements addressed by any generalized
 design. This reflects a different balance of power in book publishing from journal
 publishing: the center of gravity for design decisions shifts from publisher to author
 – which is why, as a class, books are less tractable for descriptive
 markup than journals that maintain a consistent structure (expressed in their design, layout
 and page formatting) across articles.
Of course, the irony here is that this will be true of books as a
 class even while individual books or certain genres, types or formal series of
 books might well be suitable and profitable objects for description. (And so we generally
 deal with this problem by limiting our coverage to particular books, leaving
 books in the abstract out of scope.) Because coverage – what,
 exactly, constitutes a book, and what sorts of documents are not books
 – is not well defined, the comprehensiveness of any markup applied to nominal books
 will also be at issue. In practice this means that descriptive encoding hits a wall, since
 to whatever extent we try and provide appropriate handling of every structure we see, our
 markup language grows into a Tower of Babel: a single megalo-description supporting this
 differentiation ultimately fragments under its own weight, since any instance may have
 structures peculiar to it, while no instance includes all (or even many of) the structures
 necessary for the others. While this may be a fascinating state of affairs to a media critic
 or markup language designer, it is no basis for a common information standard that needs to
 normalize description at some level, if only to enable and regulate processing.
This paradox results from the foundational insight of descriptive encoding. The
 operative dogma is that we can and should clearly distinguish presentation from content,
 where the organization of content is regular and in some way normative, even while the
 presentation and indeed application of that content may vary. (In effect, this is a
 model/view/controller paradigm applied to documents, in which the document itself is a model
 that can be subjected to multiple views in one or more applications as controllers.) As
 noted earlier, this tends to be the case within collections of documents that can have such
 regularity imposed on them – consistently designed works such as journal articles or
 technical manuals, that is, where control of both content and composition is top-down and centralized.[3] So the design of markup languages is focused on defining that regularity and
 normativity, in a sense leveling the differentiation into those classes of things (we try to
 identify these with element types) that can be adequately, if not always
 comprehensively, distinguished with an encoding system.
Yet in order to do this, we have to pretend that some distinctions between things which
 we choose to identify as the same type are not, and cannot be, significant. And we never
 know which one or another of the distinctions to which a particular markup system has a
 blind spot will turn out to be important as soon as we turn the page of a book or of any
 work outside our controlled set. In other words, depending on the type of work, anomalous
 structures may be more or less unusual, and regarded as more or less anomalous; but when
 they occur, they can be very anomalous. The structures of actual books, that is, have a
 fractal quality, inasmuch as what constitutes an anomaly (as opposed to merely another
 regular if unusual feature) depends on the level of scale – and yet there is no level
 at which anomalies disappear.[4]
Different markup languages deal with this problem differently, depending on the extent
 to which their design targets a distinct genre or application domain. But in
 every markup language, we can see this stress between coverage and comprehensiveness on the
 one hand, and adaptability on the other. To whatever extent coverage is well defined and
 comprehensiveness is achieved within it – by virtue of the meaningful distinctions
 being made and the incidental ones elided – adaptability also becomes important
 – because a distinction never made in one context, or made only incidentally, becomes
 meaningful in another. (In contrast, precisely because it is relatively uncomprehensive
 across a very wide coverage, a markup language such as HTML needs to adapt less; the price
 for this, of course, is that its semantics are weak.) But adaptability by its nature
 threatens the integrity of the boundaries (the coverage) that make the semantic labeling
 function of a markup language useful.
The root of the problem here is in a question not often asked about descriptive markup
 (except, possibly, at Balisage), namely what is it that markup should be intended to
 describe. Sometimes, naïve proponets of descriptive markup have been content to argue that
 what is being described is the thing itself, but this of course begs the
 question. A successful markup application works precisely because it does not seek to
 capture every distinguishable feature or detail of anything it describes, but instead
 represents and abstracts from it. The model it offers is an optimization: more accessible,
 tractable and useful, at least for certain purposes (including automation), than the thing
 itself. This reduction of differences to (supposed) essentials reflects the way, in
 information processing systems, everything we do is on the basis of the differences and differentiations (and similarities) we can register
 and retain within and between different data objects, as is well established in information
 theory from Saussure [Saussure 1916] to Shannon [Shannon 1948].[5] And this means that we necessarily make assertions (by our names and labels)
 that erase some distinctions between things, precisely so that we can assert others. It is
 in recognition of this that in SGML terminology, an element name is called a generic
 identifier.[6]
This erasure of distinctions by calling different things by the same names, as long as
 they are alike in certain crucial aspects – crucial being defined in
 the relation between an information type and its application domains – is the
 balancing factor that prevents descriptive markup from going out of control and failing in
 its mission sine qua non, namely the automatability that
 follows on our ability to know in advance the limits we will work within. For a markup
 application to be viable, in other words, it must have a fairly limited set of elements,
 whose semantics are known and respected and whose structural arrangements are predictable
 (indeed this is the entire point of a schema).[7] To the extent this set grows and changes (either because new elements and
 attributes are added or because the semantics of old ones are elaborated), viability is
 endangered, to the point where (if the rate of change outstrips the capability of the rest
 of the system to change with it) applications of the language become unsustainable and the
 language itself becomes, at best, a literary artifact.
Of course, this limitation inhibits adaptability, insofar as an element set defined in
 advance will (ipso facto) fail to account for any semantic
 features of the information type that are newly defined or recognized, whether accounting
 for new phenomena to be described, addressing new applications, or for any other reason. And
 this is the crux of the paradox, the precise dilemma on whose horns the problem of
 descriptive markup is stuck.

The problem with schema extensibility
The usual way of providing an encoding format with adaptability is to allow that a schema
 may be extended and customized for local use. If you need new element types, this is
 how to add them etc., sometimes with elaborations in the form of class systems,
 metalanguages (TEI ODD), architectural forms, and so forth. Such mechanisms can be ingenious;
 they can also be useful – especially for publishers who can exert top-down control. Yet
 this solution often works less well in the real world than it should, as it has problems of
 its own. Extensions to a tag set, even as they successfully address new requirements, raise
 interoperability issues with systems that do not know about them. When we address this problem
 in turn by allowing extensions to make it back into the development trunk of the markup
 language, we end up making the entire system more complex, more unwieldy, and more expensive
 to develop with, use and maintain. In effect, we have a devil's choice: fork, or bloat. In the
 one case, having extended the schema I find my documents will no longer be interchangeable,
 even nominally, with yours. In the other, we will reconcile and merge my extensions back into
 the main schema, where you and everyone else who works with it will have to live with them
 (even if you will never need them), and all our common tools must be larger and more complex
 to accommodate them.
Schema extensibility also gets it wrong in another way: it assumes that adapting a tag set
 to meet new requirements for data description is properly the task of a schema designer, and
 not of the content creator, editor or owner who is actually responsible for the document.
 Again, this differentiation in roles is less of a problem for organizations with strong
 top-down control, where coordination between the different parties can be expected, and a
 schema designer is available either to give or to take orders. But many tag sets aim to
 support wide deployment across a user community with a greater variation in needs, goals and
 available resources, where project principals may have neither expertise, nor resources, nor
 the inclination to take on the task of schema modification, especially as it distracts from
 the immediate and more important task of producing the document itself.[8] In other words, to customize a community standard for local uses works best, as a
 solution, for those organizations who need it least – who are best able to exert
 top-down centralized control, who have schema developers on call, and who are probably able
 (if they do not see other benefits to using a standard) to manage completely on their
 own.
And finally, there is a simple cost issue whenever we consider cases that are,
 effectively, one-offs. Even in an organization with the resources to do so, it may be too much
 of an effort to introduce customizations to accommodate a single book, or a single interesting
 textual artifact appearing on a single page in a single book.
We commonly assume that this means the game is over, since how can a content creator
 introduce new descriptions to the data without schema extension, at least not without
 resorting to tag abuse, forcibly attempting to carry new semantics on elements provided for
 other purposes? In effect, what is needed is an extension mechanism that happens in the
 instance, not in the schema – and yet in a way that enables authors, editors and
 production (not markup) designers without compromising the integrity of the markup language as
 a whole (which is what happens when tag abuse becomes rampant). This implies not that we have
 more elements or more easy ways to add new elements, but rather a smaller set of elements that
 are nevertheless, paradoxically, capable of more expressiveness and wider application.

Extension in the instance with abstract generic microformats
The mechanism we need to do this is already in front of us. We routinely permit content
 creators to introduce exactly such ad hoc semantic extensions
 to the language, whenever we invite them to qualify their element types with attributes. TEI
 @type, HTML @class, Docbook @role, the various
 NLM/NISO subtyping attributes: these are there specifically so that we can identify particular
 instances of elements such as div, p, figure,
 table, seg, sec, span and so forth with
 particular semantics over and above the generic semantics of the parent element. The practice
 has come to be an essential feature in HTML, inasmuch as @class attributes as
 much as element types provide the semantic hooks for display and behavior in the browser, in
 the preferred fashion (as supported by CSS). It is the recommended solution also in TEI for
 handing chapters, parts, books, sections, cantos or what have you as arbitrary text-segmenting
 elements, which are all unified as div (or lg or what have you) with
 a @type attribute available for the subtyping.
Indeed, successful documentary markup languages commonly have elements whose native
 semantics are especially loose, as if specifically to allow escape-hatch markup
 for ad-hoc inclusion of structures not naturally described otherwise.[9] TEI: div, floatingText, ab,
 seg. NLM/NISO JATS: sec, app,
 named-content, custom-meta. Docbook: blockquote,
 informalTable, note, phrase. HTML: div
 and span. While using such elements in this way is not always officially
 encouraged, in any widely used markup system it soon enough becomes a widespread practice, if
 only informally. Sometimes an element that supposedly has a strong semantic comes to serve
 this way simply by having been widely abused: no one actually assumes that an HTML
 blockquote must always be a quotation, or that dl, dt
 and dd must always be terms and definitions. Such a two-tier description is a way
 of evading the problem of constraining the markup too stringently in the schema, by allowing
 the balance between generic and specific to be struck in the instance, where the
 same things (p or div elements, for example) can be
 differentiated by different class assignments. Descriptive semantics are provided to tabular
 data by this mechanism probably more often than by providing content-oriented elements in a
 schema, if only because tables are so often peculiar or one-of-a-kind that it is the only
 practical way to do it.[10]
Nor does this have to mean any loss of control or normalization, since we have learned to
 validate constraints on attribute assignments, using means such as Schematron. On the
 contrary, it means that we can assert levels of validity: a basic level of schema validation
 can be supplemented by a profile validation that is defined locally and peculiarly for only a
 subset of all documents valid to the schema. This exact strategy is in fact happening more and
 more commonly, as a way of balancing a requirement for standards conformance (to TEI or
 NLM/NISO JATS, for example) with more particular local requirements being addressed by local
 schema subsetting and profiling.
Another way of putting it is that we should look not to schema extensibility but to
 microformats defined locally as the primary means of providing specialized semantics for local
 processing. (There is a more or less coherent movement to codify HTML microformats at
 http://www.microformats.org; but as the TEI among others demonstrates, the
 basic idea of carrying primary semantics in attributes predates the web and is more general
 than HTML.[11]) The only thing remaining to complete this picture is to provide scaffolding for
 such a mechanism, in the form of a set of elements defined neutrally enough (that is, with
 generic enough semantics of their own) that they can readily be devoted to such a use, without
 compromising the stronger semantics of more properly descriptive elements. Such a built-in
 adaptability mechanism would implicitly address issues of both coverage and comprehensiveness.[12]
It is also feasible, since even across hypermedia, the basic display and functional
 elements of text media are fairly well known and stable: they are inline objects (the very
 fact that I don't have to explain to the Balisage audience what I mean by this term makes my
 point here); blocks; conceptual containers (wrappers) for blocks allowing them
 to be grouped and for common features to be inherited together; tabular layout objects;
 perhaps lists (which might be considered a special kind of table); and links and images
 (allowing that an image element can be thought of as a transcluding link). Along these lines,
 a comprehensive taxonomy can be derived by identifying basic common formatting properties of
 elements in relation to other elements.
This fact suggests that a set of abstract structural elements be defined that map directly
 straightforwardly to the semantics of known result formats of transformation, including CSS
 and XSL-FO. Elements as generic as div, block, and
 inline allowing @class or @type attributes to specify
 semantics for applications further downstream, would provide strong enough semantics at a base
 line, supporting presentation, to be useful, while nevertheless alerting developers, by their
 use, that more particular kinds of handling might also be called for. In effect, the implicit
 contract offered by element typing mechanisms (that all elements will be handled downstream in
 ways appropriate to them) would be suspended for these abstract generics in
 favor of another, allowing and encouraging local developers to take advantage of them for
 local purposes. Even without specialized functionalities (including very strong validation)
 for these elements by default, they could nonetheless be differentiated enough from one
 another and from the main set of elements to do something reasonable in display and in other
 applications – up to and including useful generic functionalities, such as simply
 exposing the values of their @type or @class assignments in the HTML
 results of a transformation, where they would be available for mapping to display semantics in
 CSS.
A proposal
So here is a straw-man proposal for a set of such elements and attributes:	div (division)
	Named after div in HTML and TEI. Permitted to appear anywhere a
 block may appear (like HTML div, more like TEI
 floatingText than TEI div). Unlike NLM/NISO
 sec, Docbook section or TEI div, a title is
 not required, although generic metadata may be permitted. div is
 permitted to contain any block-level object, such as paragraphs, figures or tables,
 display quotes, div or ab elements.
In general, div may be expected to map to HTML div or
 XSL-FO fo:block for display. For conversion, given sufficient
 constraints imposed on div or on attribute-qualifed families of
 div, they may become TEI div or
 floatingText, NLM/NISO sec, display-quote,
 or boxed-text, Docbook section, blockquote or
 informalTable, or the like.

	ab (abstract block)
	Named after TEI ab, an abstract block. This element
 is an analogue for a paragraph or a list item. It is permitted to contain any mixed
 content or any block-level item (and not only the other abstract generics, but any
 inline content permitted in the host language), but it will not have its own
 metadata.
For display, ab will become HTML div or
 p, or XSL-FO fo:block. For conversion, ab
 will often become a paragraph or paragraph-like object.

	ap, pair (abstract pairing, pair)
	ap or abstract pairing, along with
 pair, can serve to represent all kinds of labeled lists, paired lists
 such as glossaries, definition lists and indexes. Such a generic element does not
 carry the semantic baggage of any particular kind of list or associated array, all
 of which are especially liable to tag abuse in the wild.
pair could be validated as ((ab | line | span), (ab | line |
 span)) in order to enforce the pairings. (Additionally, RelaxNG or
 Schematron could validate ap to see that every enclosed
 pair has the same content model.) Of course, any of these constituent
 elements could be qualified with @class or @type of their
 own (which might similarly be validated across pairs within an
 ap).
Both ap and pair will also become div or
 p in HTML and fo:block in FO, when they do not map
 directly to especially formatted lists (ul, ol,
 dl with li, fo:list-block with
 fo:list-item), or even to tables.
And pair might additionally be allowed to appear anywhere
 ab, line, or any block-level element appears – or
 even (at any rate when it contains only span elements) in line, as a
 proxy for structures such as TEI choice.

	line
	A line element is a block that may contain inline elements, but not
 other block elements. This is much like TEI l, except that
 l is restricted in TEI usage to lines of verse or poetry, and this
 element should be available for any use, any time a new line is required. (It should
 not preclude an element for a line break in tag sets that need it.)
Like ab, line will usually become div or
 p in HTML, although not necessarily with vertical white space; and
 its indenting may vary. Occasionally, sequences of line elements within
 a div (and without other siblings) may map to dl/dt or
 ul/li, as a simple (unmarked) list item. In XSL-FO, line
 will become fo:block.
For modeling purposes, we could use ab everywhere we might want
 this element; but line may feel more appropriate than ab
 for isolable units of text such as headings or titles; and because it cannot contain
 block structures (such as ab), it also comes with a useful constraint
 for conversion and formatting.

	span
	Of course, this is the inline object, analogous to HTML span, TEI
 seg, Docbook phrase and NLM/NISO
 named-content. For display, span would generally become
 fo:inline or HTML span, when not a more specific inline
 element. Similarly, in conversion, given suitable qualification, a span
 might map to any inline element in the target language. Given sufficient control, a
 sequence of span elements within a line or ab
 enclosed in a div may sometimes become table cells in a table.

	link
	Analogous to general-purpose inline linking elements. We might simply allow the
 full panoply of XLink attributes on this element to make it a general-purpose
 element suitable for arbitrary linking.
As noted above, images and other media objects are really special-purpose links
 (which may imply transclusion of their targets on rendering), so they can be
 accommodated by link.

	@type
	Let @type assert (implicitly and when possible explicitly, by means
 of documentation) a class or type assignment whose value is controlled across a
 document collection.
Multiple values of @type can be provided as space-delimited values of this
 attribute. Explicit mappings to known tag sets, such as docbook:para,
 tei:p, html:p and so forth might be provided by using
 the namespace-qualified type names of appropriate elements.

	@class
	Let @class identify subtypes of elements within a single document
 instance, in a more ad hoc way than does @type. The expectation would
 be that when @type is also present, @class offers a
 subtype. Like @type, and like @class in HTML (where it
 provides bindings for CSS selectors), multiple values can be provided with space
 delimiters.
Of course, the distinction offered here between @type and
 @class is not absolute nor even enforceable in the general case. It
 is up to particular systems and implementations of abstract generic elements to
 enforce the constraints over these attributes they need. Offering both allows a
 local system to constrain @type, for example, while leaving
 @class free for use.

	@which
	@which is intended to serve as a general-purpose pointer, either to
 another element or to an implicit or explicit taxonomy, local or general. Its
 lexical form is unconstrained, and it may have as many values as a local application
 may need.
For example, in an abstract rendition of information intended to be represented in
 tabular form, a single value given to two or more places (to be rendered as spanning
 cells) might show its multiple placement using @which.

	@xml:id
	For generalized purposes of cross-reference, we will potentially need a unique
 identifier for any element.

	@style
	Finally, I suggest we allow any of the abstract generic elements to include
 explicit styling information, in the form of a widely recognized syntax such as CSS3.
 Of course, this clearly breaches the content/format divide, but it does so in a
 strategic way. By allowing this attribute on the abstract generics, we relieve the
 design stress on other elements in the markup language to provide their own styling
 overrides – the fact that a name, say, needs specialized styling by itself
 suggests it is a special kind of name and might be described with an abstract
 generic.
It should be noted that a number of industry-standard schemas for documents
 allow this kind of thing already, either as an escape hatch on a few elements, or on
 a wider basis. Indeed, TEI P5 has two attributes
 with the sole purpose of specifying rendition, namely @rend and
 @rendition. (@rendition is supposed to carry CSS while
 @rend is more free-form.) And at least one of the NLM/NISO tag sets
 similarly permits an inline element called styled-content.
Some purist systems might choose to ignore this attribute, to deprecate its use
 and validate against it, and/or to recognize patterns of usage and promote the
 elements that show them into other representations of the information they
 carry.

It is important to stress that this element set would be intended to supplement, not
 replace, the basic core elements of a capable document-oriented tag set – although it
 is also conceivable that a valid (and useful) document might contain nothing but these
 element types.
One limitation of abstract generic elements is if they cannot be provided with arbitrary
 attributes. How severe an encumbrance this would on the general use of abstract generics for
 ordinary purposes can only be known by trying it.
But at least two possible workarounds can be imagined: (1) where attributes are needed
 to provide subclassing, either or both the @class or @type
 assignment of the abstract generic can be overloaded. (2) In general, child elements or
 element structures can be recruited for use to carry values that might otherwise be given in
 attributes.

An example: an approach to drama
An example in TEI markup:
<stage>Enter EGEUS, HERMIA, LYSANDER, and DEMETRIUS</stage>
<sp>
 <speaker>EGEUS</speaker>
 <l>Happy be Theseus, our renowned duke!</l>
</sp>
<sp>
 <speaker>THESEUS</speaker>
 <l>Thanks, good Egeus: what's the news with thee?</l>
</sp>
<sp>
 <speaker>EGEUS</speaker>
 <l>Full of vexation come I, with complaint</l>
 <l>Against my child, my daughter Hermia....</l>
</sp>
The same example could be tagged as follows in a schema that supported abstract generic
 elements:
<div type="drama">
<line type="stage">Enter EGEUS, HERMIA, LYSANDER, and DEMETRIUS</line>
<pair type="sp">
 <line type="speaker">EGEUS</line>
 <ab type="speech">
 <line>Happy be Theseus, our renowned duke!</line>
 </ab>
</pair>
<pair type="sp">
 <line type="speaker">THESEUS</line>
 <ab type="speech">
 <line>Thanks, good Egeus: what's the news with thee?</line>
 </ab>
</pair>
<pair type="sp">
 <line type="speaker">EGEUS</line>
 <ab type="speech">
 <line>Full of vexation come I, with complaint</line>
 <line>Against my child, my daughter Hermia....</line>
 </ab>
</pair>
</div>
It is important to note here that stylesheets or display engines that don't know what to
 do with these attributes could nevertheless do something reasonable with the elements. For
 processes that need the more specific semantics, they are available – as they are
 available to be validated using Schematron or by way of a transformation into a more tightly
 defined schema.
Note
A more fully worked example, with stylesheets for display, is provided as a
 demonstration with the Slides and Materials attached to this paper.

Issues and ideas
Let's say we proceed to implement a small tag set of this sort and integrate it into a
 known schema (or perhaps better, a relatively lightweight subset of one). What issues and
 objections might be raised against this design idea? What questions remain as to how to
 engineer and deploy such a system, and what do we have to know before we can answer them? What
 problems can we expect if it should be widely used, and what opportunities might it
 present?
Merging with a host language: tight or loose?
At least two different ways of integrating a set of abstract generics with a host
 language can be considered:
	Tight
	Since most host languages already have families of elements in their architecture
 corresponding to the different abstract generics – section-level, block-level,
 and inline – it should in most cases be relatively straightforward to integrate
 the abstract generics into them.
In this design, an abstract generic div element, say, could contain
 the host language's own block-level elements along with the generic div,
 ab, ap and line. The advantage here is that
 the stronger semantics of elements from the host language will be available to the
 contents of the abstract generics.
Of course, a system that does this would need abstract generic elements and
 attributes consistent with the semantics of other element and attribute types in the
 host language.

	Loose
	It is also tempting to consider deploying abstract generics as a relatively
 discrete set of tags, whose use would provide a clean escape hatch from
 a host language, in a way more or less entirely divorced from it.
The way to do this would be to restrict the content of the abstract generics to
 other abstract generics. The abstract span, for example, would contain
 only text and/or the abstract span, without permitting any inline
 elements from the host language.
The advantages of doing this would be that it would simplify deployment, and that
 subtrees of abstract generics would be readily portable without modification.
A family of abstract generics designed to work like this could be given its own
 namespace, allowing it to be integrated into more than one host language.

It seems reasonable to suppose that both these approaches could be useful for different
 reasons and in different contexts.

Validation and validibility
Introducing custom semantics in a secondary layer using attribute values raises the
 problem of how to validate them. Obvious alternatives for validation of microformats include
 RelaxNG and Schematron. Additionally, transformation pipelines can be used to formalize the
 relation between a microformat defined using abstract generic elements, and more tightly
 defined elements in target markup languages.
	RelaxNG
	As demonstrated in Clark, Cowan and Murata 2003 (section 15: Non-restrictions),
 RelaxNG can be used to specify microformats by asserting attribute bindings along with
 element types.

	Schematron
	As it is based on XPath, which can freely interrogate and test attribute values,
 Schematron is well-suited for testing the kinds of complex co-occurrences to be
 expected between attribute values in the semantic layer, as a supplement to or
 replacement for RelaxNG.

	Pipelines
	Another strategy for validation will be to map microformats into more highly
 controlled target formats for validation. XProc pipelines provide a capable framework
 for this: an XSLT transformation can convert an instance containing microformats into
 one in which they are expressed more formally, and validated by traditional means.
 While this approach will not, ordinarily, provide much in the way of useful feedback
 when data in a microformat is invalid (since it will not found to be invalid until
 after conversion into something different), this could nonetheless be a useful way of
 validating the design of a microformat intended as a mirror of a target
 format whose semantics are expressed in element types.

Of possibly greater importance, however, than the means of validation, might be the
 shift in emphasis on stages of validation necessitated by the presence of abstract generics
 in the model – since the very idea is to relax both the demand and the expectation for
 uniformity and consistency of element usage across system boundaries. Validation will no
 longer, in other words, be as simple as thumbs-up vs thumbs-down against a common schema,
 but will also entail more nuanced specifications and tests.

Interchange and interoperability
Isn't this an invitation to chaos, as users are encouraged to introduce their own
 idiosyncratic usages of the abstract generic elements?
Whether allowing microformats based on abstract generic elements would in fact make it
 harder than it presently is to achieve interoperability or even interchange across
 organizational boundaries depends on what we take that baseline to be. To the extent that
 stronger typing of schema-validated element types now supports interchange, obviously to
 rely on labeling abstract generics to assert the same semantics in the instance would be a
 step backwards. However, it should be considered whether experience has not shown that
 beyond a very basic level (hardly beyond the level of XML well-formedness), interchange
 cannot be guaranteed by schema validation alone in any case, at least for properly descriptive markup languages, not markup applications that are
 essentially serializations of object models bound to applications (such as XSL-FO or SVG).[13]
There is, in other words, a difference between the mythic ideal of interchange, and the
 actual fact of it; and in fact, when it is achieved at all, data interchange at scale
 happens as a deliberate outcome of a negotiated process, in which a shared tag set may be a
 useful starting point, but will not by itself be a guarantor of success. It might be better
 if we considered transparent or blind interchange to be a functional
 requirement to be considered among others – and considered in its particulars as they
 apply to specific parties to interchange rather than simply asserted as an abstract
 principle that remains unrealized. Doing so would mean that we would be free not only to
 consider the actual costs and benefits of achieving interchange, but also to balance this
 requirement against others, such as the need for expressiveness and adaptability simply so a
 tag set can address local goals that are, after all, sometimes more pressing.
In view of this, allowing document creators and editors the means to extend the
 semantics of their markup openly would be better than the status quo, in which they do this
 anyway, but hide their practices behind the premises of interchange offered by standard
 semantic tagging. When standard semantic tagging is used in non-standard ways, in other
 words, it is not standard any more. This is why we call it tag abuse, because
 such practice not only mislabels the contents with elements designed for other purposes; it
 also degrades the semantics of the misused element type even where it is used
 properly.
Since abstract generic elements are designed to accommodate the very behaviors that
 constitute abuse when used on properly descriptive elements, they would (at least to the
 extent they are used) should relieve the pressure to do so. And to the extent problems with
 interchange and interoperability will exist across systems that use the abstract generics
 differently, it is reasonable to wonder whether it does not actually reflect the
 requirements for description itself, which would otherwise have been hidden behind
 creative tag use and misuse. That is, to the extent a system uses abstract
 elements instead of abusing other elements, its tag usage will be more open and transparent
 – while the abstract generics provide a base level of interoperability even without
 any implementation of their local semantics.
Thus, when parties to interchange find that they don't know how to handle the semantics
 of one another's abstract generics, they will have a basis for identifying, isolating and
 analyzing the issues. Already, markup systems engineers who are not deploying their own
 schemas or schema customizations are doing this all the time, and successfully, with HTML.
 (The success does not come without effort; the point is that it is possible at all.) To
 introduce abstract generic elements and encourage the development of microformats on that
 basis would not be to license bad behavior so much as it is to adopt and appropriate the
 good motivations that might, under too strict a regiment, lead to it.

Addressing production workflow concerns
One of the virtues of abstract generic elements with microformatting is that it fits
 well within a production model in which XML encoding happens later, after authors and
 designers have made commitments to structures in their content that serve expressive and
 rhetorical purposes rather than the goals of any technology as such. In other words, if a
 tag set is to be a suitable target format for upconversion of arbitrary content (such as is
 produced in word processors or derived by OCR from page images), it needs to be arbitrarily
 flexible, if only to capture structures at the edges of normal. Then too (and
 for the same reason), most authors who have worked in XML have also had to confront limits
 in the expressiveness of the tag set in use, and would welcome an opportunity to use more
 abstract tagging, with attributes to signal semantics for possible application downstream,
 when the situation warrants it.
Yet both these scenarios raise the question of what should happen in a production system
 when these elements are encountered: clearly, these capabilities are somewhat at odds with
 processing requirements, since to hide semantics in attributes is in no way
 the same as extending an application framework to support them. Yet (as noted above) there
 is a great advantage in having a set of elements designated especially for this purpose, as
 opposed to the present state of affairs, in which this already happens, but in a way much
 less amenable to improvement, because the elements being appropriated are already designated
 for other purposes.
Again, layered validation, where only the basic structures are validated in the core
 schema, and supplementary validation logic is provided elsewhere (in schemas, Schematron,
 XSLT or custom logic), provides a way to negotiate the challenges here. The abstract generic
 elements are already provided with a baseline of functionality by virtue of their mappings
 to common display types. Provide for alerts in the system when unknown labels or
 combinations are used, and developers can then address them more specifically, whether by
 extending processing, retagging, or pushing the questions they raise back for editorial
 consideration.

Microformats as a driver for evolutionary change
A set of abstract generic elements can offer a way for users to mark up structures of
 arbitrary description and complexity as they are encountered. But if this concept works in
 the field, it will be due to the willingness of users and application developers to work to
 support it. Is half a loaf really better than none?
Experience with HTML shows that local users are able, and eager, to take good advantage
 of such capabilities, given the right level of support by generic tools. Furthermore, this
 reservation has its counter-argument built into it: anything that rewards users for taking
 such responsibility – confronting practical issues of schema design and document
 modeling and getting hands-on experience with transformations – will be a good
 thing.
While good design is accomplished by design, markup technologies do not develop in a
 technological or cultural vacuum, and no design can foresee exactly the ways in which it can
 be put to use. In this kind of world, we can rely also on evolutionary mechanisms –
 selecting and promulgating the most successful from among those attempted – to help us
 distinguish the best available solutions to any set of problems. But this requires
 alternatives from which we can select.
In a widely deployed tag set, variations in tagging practices are certain to occur; and
 in an environment in which many different approaches can be tried, some will persist and
 spread. While including a set of abstract generic elements will make any tag set better
 fitted for use across a disparate community, the argument for fitness does not end with
 this. Abstract generic elements may also serve as useful laboratories for tagging practice;
 and on this basis, common microformats for common kinds of data and common markup problems
 may emerge, and even micro-standards, perhaps, maintained much like the core standards
 although across more localized application domains within and across organizations.
It should be stressed that the aim here is to serve bottom-up as well as top-down design
 for XML applications in use – not because XML schemas don't work, but because they do.
 Precisely because, and insofar as, communities are able to
 take advantage of shared practices and tools, the needs of authors, editors and publishers
 to design their own models will continue to be felt. Giving them the means to do this will
 enable and empower them, while maintaining the integrity of the community standards they
 share.

References
Beer, Stafford. Platform for change: A message from Stafford
 Beer. New York: John Wiley and Sons, 1975.
[Bauman 2011] Bauman, Syd. “Interchange vs.
 Interoperability.” Presented at Balisage: The Markup Conference 2011, Montréal, Canada, August
 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference
 2011. Balisage Series on Markup Technologies, vol. 7 (2011). doi:https://doi.org/10.4242/BalisageVol7.Bauman01. At
 http://balisage.net/Proceedings/vol7/html/Bauman01/BalisageVol7-Bauman01.html.
[Birnbaum 2007] Birnbaum, David J. Sometimes
 a table is only a table: And sometimes a row is a column. Proceedings of Extreme Markup Languages 2007. See
 http://conferences.idealliance.org/extreme/html/2007/Birnbaum01/EML2007Birnbaum01.html.
Carlyle, Thomas. Sartor Resartus. Second edition.
 Boston: James Munroe and co., 1834.
[Clark, Cowan and Murata 2003] Clark, James, John
 Cowan and Murata Makoto. 2003. RELAX NG Compact Syntax
 Tutorial
 http://relaxng.org/compact-tutorial-20030326.html
Docbook. http://www.docbook.org/
Hillesund, Terje.Many Outputs — Many Inputs: XML for Publishers and E-book
 Designers. Journal of Digital Information, Vol 3, No 1 (2002).
 http://journals.tdl.org/jodi/article/view/76.
Journal Article Tag Suite (JATS). National Center for Biotechnology Information,
 National Library of Medicine (NCBI/NLM).
 http://jats.nlm.nih.gov/index.html
Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's
 Reference. New York: John Wiley and Sons, 2008.
[Kimber 2011] Kimber, Eliot. “DITA Document Types:
 Enabling Blind Interchange Through Modular Vocabularies and Controlled Extension.” Presented
 at Balisage: The Markup Conference 2011, Montréal, Canada, August 2-5, 2011. In Proceedings of Balisage: The Markup Conference 2011. Balisage Series
 on Markup Technologies, vol. 7 (2011). doi:https://doi.org/10.4242/BalisageVol7.Kimber01. At
 http://balisage.net/Proceedings/vol7/html/Kimber01/BalisageVol7-Kimber01.html.
OASIS Darwin Information Typing Architecture (DITA).
 http://www.oasis-open.org/committees/dita/
[Piez 2001] Piez, Wendell. Beyond the
 ‘Descriptive vs Procedural’ Distinction
 Markup Languages: Theory and Practice, Vol. 3 no. 2 (Spring
 2001). Also at http://www.piez.org/wendell/papers/beyonddistinction.pdf. doi:https://doi.org/10.1162/109966201317356380.
[Piez 2009] Piez, Wendell. How to Play XML:
 Markup Technologies as Nomic Game. Presented at Balisage: The Markup Conference
 2009, Montréal, Canada, August 11-14, 2009. In Proceedings of Balisage:
 The Markup Conference 2009. Balisage Series on Markup Technologies, vol. 3
 (2009). doi:https://doi.org/10.4242/BalisageVol3.Piez01.
[Saussure 1916] Saussure, Ferdinand de. Course in General Linguistics. 1916. Trans. Wade Baskin. The
 Philosophical Library, 1955. Reprint New York: McGraw-Hill, 1966.
[Shannon 1948] Shannon, Claude F. A
 Mathematical Theory of Communication. Bell System Technical
 Journal, July and October, 1948. Reprint available on line at http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.
[Shipman 1999] Shipman, Frank M. and Catherine C.
 Marshall. Formality Considered Harmful: Experiences, Emerging Themes, and
 Directions. Computer Supported Cooperative Work,
 Vol 8 no 4 (October 1999). On line at
 http://www.csdl.tamu.edu/~shipman/formality-paper/harmful.html. doi:https://doi.org/10.1023/A:1008716330212.
[Spencer-Brown 1969] Spencer-Brown, G.
 Laws of Form. 1969. Reprint Portland, OR: Cognizer,
 1994.
Text Encoding Initiative (TEI).
 http://www.tei-c.org/index.xml

[1] In passing, it is worth noting that none of these problems arise in XML document types
 or formats that are designed to face applications (such as, say, XSL formatting objects or
 SVG), rather than describe information directly without regard to how it may be processed.
 This is because an application format, as opposed to a descriptive format, defines its
 coverage and comprehensiveness in the design of the application. From this, we can reason
 backwards and see that the problems discussed here are inherent in the very idea of
 descriptive markup, since to posit a description of a text that is not bound to a
 particular application is to raise the question of how we define that description's
 coverage and comprehensiveness.
[2] I offer this example without being able to confirm that the design of Kay's book
 actually shares its structures exactly with other books in the series. But even if it
 does not, we all know of cases like this.
[3] I know a publisher that forbids formatted lists, either numbered or bulleted. Markup
 designers like this sort of thing: no lists to worry about. The onus is on the authors
 to do without them.
[4] Take epitaphs in prose fiction as an example. Among Menippean satires, the genre to
 which Sartor Resartus belongs, they are perhaps not
 uncommon. But shift the scope to nineteenth-century fictional monographs, in a corpus of
 one or a dozen or a hundred instances including Sartor
 Resartus, we may find just the one epitaph, an anomaly. Yet in a thousand,
 maybe there are three or four epitaphs, in ten thousand, thirty or forty – still
 unusual, but no longer quite anomalies. But now we discover a dinner menu. If we had
 randomly picked the single work with the dinner menu earlier, we would have seen this
 anomaly earlier – but in smaller samples, it is more likely not to find dinner
 menus at all.
[5] Shannon puts this mathematically as our ability to select which of a possible set of
 messages we have in front of us. To select correctly from among possibilities is to
 differentiate. See also Spencer-Brown 1969.
[6] This is not to argue that we do not rely frequently or even always on information
 whose transmission is not perfectly reliable, such as the expectation that the term
 para will be taken to assert something particular to a recipient. It is
 only to point out that from the machine's point of view, all we have said by labeling
 something a para is that it is like other things with the markup
 para, and unlike things marked div or span or
 anything else not para. Whether this likeness or unlikeness will have any
 consequences in processing is again a different matter.
[7] See my 2001 paper on this topic, Beyond the ‘Descriptive vs
 Procedural’ Distinction
 [Piez 2001].
[8] To provide for an optimized method for schema extension as Docbook and NLM/NISO do
 through modular design, and TEI and DITA through their more specialized mechanisms, does
 not actually alleviate this problem, inasmuch as it demands familiarity with a whole new
 set of technical arcana in order to make things easier. This is not to say
 that such measures are without advantage or value, just that their value is not in making
 schema modification more accessible to non-experts.
[9] I described this sort of mechanism in my 2009 Balisage paper, How to Play XML:
 Markup technologies as nomic game
 [Piez 2009].
[10] That is, the issue is not that more properly descriptive markup is not possible or
 useful for tables (see Birnbaum 2007), but that to design, deploy and
 support correct, descriptive markup ad hoc
 for every table (or even most sets of tables) is simply impractical. The related workflow
 problem – that insofar as it separates description from presentation, markup tends
 to take the design of a table's presentation out of the hands of people who are properly
 responsible for it (that is, authors or editors who understand the information's
 intellectual structure, which that presentation must reflect not just generically but in
 the particular instance) – is related to this.It should be added, however, that information that is presented in tabular form might
 well be marked up using more abstract structures, leaving presentational issues to a
 processing step, without having particular elements devoted to the particular semantics of
 every particular table.

[11] To be sure, the application of microformats I suggest here, and its rationale, is
 somewhat different from microformats (at least as usually promoted) in HTML, where they
 are all about implicit application binding by way of semantic labels, as opposed to
 description in the stricter sense. Yet there is a wide spectrum between these two
 extremes, which can and should be filled as much by users addressing their local problems
 as by engineers building a system out: in both cases, the promise is that applications can
 be built on top of the standard without having to modify and extend the standard
 itself.
[12] In paraphrasing this talk at Balisage 2011, Michael Sperberg-McQueen helpfully
 described this mechanism as control points for extensibility in the
 instance. This is a nice way of indicating that far from being an allowance for
 less control over content, the essence of the proposal is to make it possible for both
 schema designers and document creators to assert more
 control, by asserting it gently when it cannot be asserted strongly.
[13] See in particular Bauman 2011 and Kimber 2011 on
 this topic. Also see Piez 2001 for more on the distinction between
 descriptive tagging and applications of markup to application-centric data
 modeling.

Balisage: The Markup Conference

Abstract generic microformats for coverage, comprehensiveness, and adaptability
Wendell Piez
Senior Consultant
Mulberry Technologies, Inc.

<wapiez@mulberrytech.com>
Lead developer of the Proceedings of Balisage: The Markup Conference, Wendell Piez has
 worked at Mulberry Technologies, Inc., since 1998, where he provides advice, assistance
 and training in XML, XSLT, and related technologies.

Balisage: The Markup Conference

content/images/Piez01-002.jpg

content/images/Piez01-003.jpg

content/images/Piez01-001.jpg
sehappyenpiaes

pal souce do
A amormatie

seror. There will
e of the gobal vz
S eadarity. pod? e e e e

usingModes.

s ol RS

amples
ect

T mndnr\ol he onten
xamle

§ s o

e ine mma%
sl

et 2 st S

xt 109 S emplate 10 thevalieh

adked up1n

g

. clements it e docmen,
“order of theriata

e Firs, s
7 1) el how o

s s ot may ((\n\a\l\d\nﬁl“ﬁ‘
0 m w\» P‘“

J-template 1 -
e ¥ “‘ nm\m\ Thun\g-\;
i " e should \wpm sl S %
B 1o evolve pver tin i
mv “ 4, ,m\ A\v.m‘,,m;, the 108"

be hm\\m\'\ you ud‘“

H‘”‘ \\“\Y\l g
; Py e unf anliar 1€ Y€ ou

 be SmpeE toneY gt

" g <
u is st

” “ a mm\

content/images/Piez01-006.jpg
138 SARTOR RESARTUS.

An ironic man, with his sly stillness, and ambuscading
ways, more especially an ironic young man, from
whom it is least expected, may be viewed as a pest to
society. Have we not seen persons of weight and
name, coming forward, with gentlest indifference, to
tread such a one out of sight, as an insignificancy and.
worm, start eeiling-high (balkenhock), and thence falk
shattered and supine, 10~ be borne home on shutters,
not without indignation, when he proved electric and a
torpedo !

Alas, how can a man with this, devilishness of tem-
per make way for himself in life; where the first
problem, as Teufelsdrickh, too, admils, is *to unite
yourself with some one and with somewhat (sich
anzuschliessen) 2" Division, not union, is written on
most part of his procedure. Let us add, too, that, in
no great length of time, the only important connexion
he had ever succeeded in forming, his connexion with
the Zihdarm family, seems to have been paralyzed,
for all practical uses, by the death of the ¢not unchol-
eric” old Count. This fact stands recorded, quite
incidentally, in a certain Discourse on Epitaphs, hud~
dled into the present bag, among so much else; of which
essay the learning and curious penetration are more to
be approved of than the spirit. His grand principle
is, that lapidary inseriptions, of what sort soever,
should be historical rather than lyrical. By request
of that worthy nobleman’s survivors,” says he, I un-
dertook to compose his epitaph; and, not unmindful
of my own rules, produced the following; which,
however, for an alleged defect of Latinity, a defect
never yet fully visible to myself, still remains unen-

OETTING UNDER WAY. . 139

graven;” —wherein, we may predict, there is more
than the Latinity thaf will surprise an English reader.

e acr
PHILIPPUS ZAEHDARM, COGNOMINE MAGNUS,
Zusnvanxz Coxss,

X DOERIT coNerLIo,

VELLERIS AURSI, PERISCELIDIS, XEOSON TULTORIS NIGRI

EQUES. :
vt DUX 5UB LURA AeEBAT,
QUINQUIES MILLE PERDICES
rLvamo coxererT:
VARII CIBI
CENTUMPOKDIA XILLIES CENTENA MILIfA,
PER 5%, PERQUE SERYOS QUADRUTEDES DIPEDESYE,
HAUD SINE TOMULTU DEVOLVESS,
IN STERCUS

PALAM CONVERTIT,

NUNC A LABORE BEQUIBSCENTEM

OPERA SEQUUNTUR.

ST MONUMENTUN QUERIS

FINETUM ADSPICE.

eantvx 1x omsz prssert [sub date];

rosTRENON [oub dao).

content/images/Piez01-004.jpg
i

THIRD

he et
e IEUIES.

recomstruct

i
i o e
i stion \ ﬁy

el of the world
situation

experiment

psitution”

ol
sl socie
T eats
ot
o thereis 0 Jkaly 0
aough time 114

ety

@ the maiot saviities oF socis
avise benvee!

e onus o 3

1 s mforunately P
and TR

4 to the creation

fems.
e this new 598

Py
cybernetics

content/images/Piez01-005.jpg

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

