[image: Balisage logo]Balisage: The Markup Conference

Leveraging XML Technology for Web Applications
Anne Brüggemann-Klein
Fakultät für Informatik, Technische Universität München

Jose Tomas Robles Hahn
Fakultät für Informatik, Technische Universität München

Marouane Sayih
Fakultät für Informatik, Technische Universität München

Balisage: The Markup Conference 2012
August 7 - 10, 2012

Copyright © 2012 by the authors. Used with permission.

How to cite this paper
Brüggemann-Klein, Anne, Jose Tomas Robles Hahn and Marouane Sayih. "Leveraging XML Technology for Web Applications." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012.
 Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Bruggemann-Klein01.

Abstract
As eBooks evolve into interactive applications, our vision at Electronic Publishing
 Group (EPT) is to empower authors to write and deploy not only documents and eBooks but
 whole Web applications using widely available tools without system lock-in. We envision
 XML technology as open, accessible, well supported technology to be leveraged for Web
 applications: Information is represented and manipulated with XML technology. Data and
 programs are deployed on a Web server, stored in an XML database, run by XML processors
 (XSLT, XQuery, XProc) and accessed from XML-aware Web clients (XForms) via the HTTP
 protocol.
We document a calendar system, CalendarX, as a case study. We illustrate our use of
 XML technology and the methodology we employed, drawing on ideas from Domain-Driven
 Design and Abstract State Machines.

Balisage: The Markup Conference

 Leveraging XML Technology for Web Applications

 Table of Contents

 	Title Page

 	Introduction

 	CalendarX: Motivation and Description

 	Methodology and Technology
 	Domain-Driven Design and Domain-Specific Languages

 	Abstract State Machines

 	Implementation Technology

 	The CalendarX Domain Model
 	Modeling the calendar data

 	Modeling CalendarX Functionality and User Interface
 	Views

 	Interaction

 	Interim summary

 	Formalizing the CalendarX domain model as an ASM
 	Interim Summary

 	The CalendarX Implementation

 	Conclusions and further work

 	Appendix A. Supporting materials

 	About the Authors

 Leveraging XML Technology for Web Applications

Introduction
As eBooks evolve into interactive applications, our vision at Electronic Publishing
 Group (EPT) is to empower authors to write and deploy not only documents and eBooks but
 whole Web applications using widely available tools without system lock-in. Our work brings
 ideas of end-user development [F88] [FGSM04] to the area of Web applications.
XML technology is our technology of choice. Historically, the nature of the entities
 that are encoded with XML and related standards (XML Namespaces, XLink, XML Schema, RDF,
 Docbook, MathML, ePUB, XML syntaxes of HTML including HTML5) has evolved over time.
 Originally, XML encoding was applied to textual documents to support single-source,
 cross-media publishing. Then textual documents expanded their scope, to act as databases
 that can be semantically processed, and data collections were represented as (collections
 of) documents, to be queried or data mined. Finally, we also have snippets of data encoded
 with XML technology, to configure applications or to exchange messages between
 systems
Together with the nature of the entities to be encoded in XML and related languages,
 further XML technologies evolved that support these entities and their use cases: CSS, XSL
 with XSLT and XSL-FO, XQuery, XForms, XProc.
We intend to leverage XML technology for Web applications, looking for a methodology
 that lets domain experts be involved into the software development process from start to
 finish, even empowers them to do their own software development. We envision XML technology
 as open, accessible, well supported technology to be leveraged for Web applications:
 Information is represented and manipulated with XML technology. Data and programs are
 deployed on a Web server, stored in an XML database, run by XML processors (XSLT, XQuery,
 XProc) and accessed from XML-aware Web clients (XForms) via the HTTP protocol.
The required XML technology, such as XML processors and systems to support the various
 XML languages, is in place and accessible to end users. The XRX architecture provides a
 point of reference, how to make use of standard Web servers, Web browsers and the HTTP
 protocol as the plattform on which to run components of XML-based Web applications without
 system locck-in.
It has been argued by Baumann [B09], among others,
 that XML technology is implementation technology. Hence, the missing pieces, as far as we
 can see, are methodology, reference architectures, proven practices, case studies. That is
 the topic of this paper.
By way of methodology, we draw on the principles of Domain-Driven Design [E04] and Domain-Specific Languages [F11]
 to empower domain experts to develop Web applications. For requirement specification and
 design, we adapt Abstract State Machines (ASMs) [BS03] that are
 refined into XML code.
We illustrate our methodology with a case study, a calendar system that we call
 CalendarX. Robles Hahn [RH11] designed and implemented a
 calendar system with XML technology using principles of Domain-Driven Design and employing
 Domain-Specific Languages. In this paper, we propose an extended methodology that is based
 on Abstract State Machines (ASMs): We formally describe requirement specification and
 design by a so-called ASM ground model. We envision use the ASM concept of refinement to
 derive an implementation in terms of XML technology.
This paper is organized into six further sections. First, we briefly discuss the
 application CalendarX with which we demonstrate our methodology. Then we introduce the main
 building blocks of our methodology, namely Domain-Driven Design, Abstract State Machines
 and XML technology. Finally, we discuss the CalendarX domain model, its formal
 specification as an ASM ground model and the CalendarX implementation. We finish with
 conclusions and discussion of further work.

CalendarX: Motivation and Description
We illustrate our approach with a small case study or feasibility study, the calendar
 system CalendarX. We demonstrate how to leverage XML technology for Web applications while
 working towards a methodology that lets domain experts be involved into the software
 development process from start to finish, even empowers them to do their own software
 development.
One may well question our choice of domain, arguing that anybody is a domain expert in
 calendars. That is precisely our reason for choosing this domain: Since this study started
 out as students' work in a lab course and a thesis, there were no independent, external
 domain experts. Students and supervisors had to be able to fill in the roles of domain
 experts and software developers. We feel that we can demonstrate the value of Domain-Driven
 Design nevertheless.
Furthermore, we have found from personal experience that migrating from one calendar
 system to another is troublesome when access to the calendar data is mitigated by software.
 Hence, we have found it worth our while to design and implement a calendar system that
 exposes its data in XML format, applying lessons learnt in the field of document
 processing.
As to the specific data model, the first author has always found the limitations of
 existing calendar systems irritating. Hence, we have taken the chance to add a few special
 requirements for CalendarX [RH11]. Foremost, we require
 CalendarX to support a rich domain model, going beyond state-of-the-art calendar systems
 such as Microsoft Outlook or Google Calendar and calendar languages such as
 iCalendar [D09] and xCal [DDL09].
Rich event model CalendarX is capable of expressing a
 relationship between events that do not follow a single repetition pattern. For example, an
 event that takes place on a Monday from 10 to 11 am and on a Wednesday from 2 to 4 pm can
 be represented as a single event, that holds information common to both instances, such as
 event description, category and location.
Rich recurrence pattern model CalendarX supports the
 usual recurrence patterns, but also combinations of patterns, including exception patterns.
 For example, we can specify that an event recurs every first Monday and every third Tuesday
 of the month, but not during school holidays.
To summarize, we consider CalendarX a good case study and we have taken the chance to
 design and implement a calendar system with extended functionality that we personally wish
 to use.

Methodology and Technology
Domain-Driven Design and Domain-Specific Languages
Domain-Driven Design (DDD) [E04] is a design philosophy
 originally aimed at dealing with complex software projects. Primary focus is on the
 concepts and the functionality of the domain of the software; that is, the subject area
 to which the user applies the program. Concepts and functionality are captured in a
 model; that is, a rigorously organized and selective abstraction of the subset of domain
 knowledge that is relevant to the software.
One of the key points of DDD is ubiquitious language: Domain experts and software
 engineers use a common core subset of the domain language for communication, model
 and implementation, thus intimately connecting these
 two concerns.
DDD extends a design methodology that was propagated in the 1980s: Participatory
 Design [F88] [SchN93]. It does not only involve domain experts in
 requirement elicitation and system design but lets the domain model drive the whole
 software development process, up to the point that the implementation
 “becomes” the model. DDD enables domain experts to become more deeply
 involved into the software development process and eventually to develop their own
 software.
Domain-Specific Languages (DSLs) are programming or descriptional languages of
 limited expressiveness that target a specific domain. In the context of XML technology,
 schema-constrained sets of documents form DSLs that work particularly well within a DDD
 design philosophy, since their semantics are embodied in the domain model and their
 syntax can be derived from the domain model [BST07].

Abstract State Machines
The DDD design philosophy is open with respect to mechanisms with which to express
 the domain model and the connections to system articfacts. We wish for a more formal,
 precise specification of the domain model and the linking between the domain model and
 the implementation that is able to let the domain model shine through, in the spirit of
 DDD. Our methodology for these issues is inspired by Abstract State Machines
 (ASMs) [BS03]. ASMs are suited because of their notational
 flexibility, formal semantics, low protocol overhead and concept of step-wise refinement
 for linking levels of abstraction from high-level specification to low-level
 implementation.
ASMs are best described as abstract software systems (machines) written in pseudo
 code that operate on abstract data (state). ASMs are homogeneously used to formally
 represent artifacts on all levels of software development, from requirements (ground
 model) to implementation. The ASMs of the different levels are linked by so-called
 refinement steps.
The notion of abstract data and a pseudo code operational model make ASMs a natural
 tool for domain experts. Their precise semantics and notion of refinement make ASMs a
 great tool for formal specification of software systems and their development process
 that works well within the DDD design philosophy.

Implementation Technology
We employ a basic set of XML technologies to implement CalendarX: XML for
 representing data, XML Schema for constraining data, XQuery for querying and processing
 data, and XForms embedded into XHTML with CSS for the user interface.
We build Web applications from these technologies using the XRX architectural style,
 based on XForms on the client, RESTful communication and XQuery on the
 server. [McC07] [Mc08]. The
 greatest advantage of XRX lies in the use of a single data model (XML) on the server and
 on the client, eliminating the translation complexity of other architectures (zero translation). Other benefits of the XRX architecture
 include:
	XML technology everywhere: The zero-translation architecture enables the use of
 XML technologies throughout the application. XML technologies suffice for all
 programming tasks on the client and on the server.

	Declarative language on the client: The effort required to implement the client
 user interface is greatly reduced thanks to the declarative nature of XForms. The
 developer does not have to spend time programming complex scripts for user
 interface widgets and input validation. XForms just needs to be told what
 functionality is desired and the XForms engine will deal with buttons, text boxes,
 getting data to and from the server, and so on.

	Separation of concers: The XRX architecture encourages separation of concerns
 in multiple ways. On the client, XForms keeps the user interface code separate
 from the data model. The REST interface keeps the server separate from the client,
 as both communicate with each other only through the interface.

The use of XML in all layers of a Web application makes use of the full potential of
 the XML family of technologies.
We deploy CalendarX on a software platform that consists of the following
 components:
	Orbeon XForms processor: It runs within an Apache Tomcat Server and compiles
 XForms documents into XHTML and Javascript code that can be handled by any modern
 browser. We have tested it with Firefox and Chrome.

	eXist XML database with XQuery support, running also within Tomcat.

	Communication between these components and the browser via a REST
 protocol.

All CalendarX code is XML technology (XML, XML Schema, XForms, XHTML, and XQuery)
 that is linked to the domain model with ASM methods. No Web application frameworks,
 other object representations or programming languages are used. The CalendarX code
 truely expresses the domain model.

The CalendarX Domain Model
Modeling the calendar data
We start modeling CalendarX with concepts in the calendar domain that need to be
 represented as data in the system, and their relations.
Our first stab at a conceptual model is a UML class diagram that captures calendar
 concepts, as pictured in Figure 1.
Figure 1: Modeling calendar concepts
[image:]

CalendarX has a top-level concept, CalendarX. A CalendarX
 object contains collections of Calendar, User,
 Pattern, Location and Contact objects that
 participate in relationships as indicated in the conceptual model.
In order to satisfy the richness requirements, the CalendarX conceptual model
 features a novel kind of concept that is not present in other calendar models:
 SuperEvent. A SuperEvent object defines a potentially
 infinite series of Event objects via recurrence patterns. More precisely,
 the series of Event objects is generated on demand from
 EventRule objects, with each EventRule object being related
 to a Pattern object. The Pattern object defines a set of dates
 for Event objects, while the associated EventRule object
 defines common attribute settings that are shared by the Event objects
 generated by the EventRule object, such as startTime,
 endTime or location. A SuperEvent object may
 contain several EventRule objects, one for each combination of attribute
 settings that need to be represented.
The UML class diagram leaves room for interpretation regarding relationships between
 concepts. Hence, a few words to clarify our intentions: Associations (simple line
 symbols) carry explicit navigational arrows, specifying which objects in a relationship
 should be accessible from other objects. Further types of relationships are composition
 (“owns-a”, closed diamond symbol) and aggregation (“has-a”,
 open-diamond symbol). We require that composition relationships can be navigated in both
 directions, aggregation relationships just in one. The star occurrence operator always
 indicates unordered collections in our diagram.
In earlier work [BST07][PB09] we have discussed how to translate the constraints of
 a UML class diagram into XML Schema so that related objects that instantiate the class
 diagram correspond exactly to instances of the schema, as illustrated in Figure 2:
Figure 2: Correspondence between UML class diagram and XML Schema
[image:]

We have extended this method of translation by ensuring referential integrity of
 relationships with XML Schema key constraints. More importantly, following ideas
 presented in earlier work [BDPT10], we are developing
 a meta model for the subset of XML Schema that we need, including a formal ASM
 specification of its validation rules and a DSL for representing the instances as XML
 documents [BS12]. The resulting XML Schema for
 CalendarX and an instance document are referenced in the supporting-materials
 section.
The XML Schema incorporates the principles of DDD. It is a direct representation of
 the calendar data model, as part of the CalendarX domain model.
This finalizes the modeling of calendar data as part of the CalendarX domain
 model.

Modeling CalendarX Functionality and User Interface
Our starting point for modeling the dynamics of CalendarX is the user interface. We
 model the views and activities that are available from the views. We continue to use
 class diagrams, now including methods, as a first modeling language.
Views
CalendarX is accessed via a number of pages or screens that offer information and
 choices of interaction.
The four main pages are DayView, WeekView,
 MonthView and RangeView. These four view pages display a
 calendar's event data for a specific date, for the seven consecutive dates starting
 from a specific date, for a specific month in a specific year and for an arbitrary
 range of dates, respectively. Note that we leave open the start date for a week
 (often Monday or Sunday) at this point; we leave details such as these for further
 refinement of the domain model. Pages DayView, WeekView and
 MonthView are specific cases of RangeView. Page
 RangeView references the (finitely many) Event objects
 that are to be displayed by a specific view.
Note that we describe the information that is needed to build the page and the
 information that is displayed on a page in a purely logical form for now. Questions
 of layout and methods of interaction are left to further stages of refinement.
In addition to the view pages, the full version of CalendarX has Edit
 pages that are capable of displaying calendar data and their relations for editing
 purposes. We leave modeling of Edit pages to future refinements.
 Questions of data representation will be addressed below.
We abstract page RangeView and indirectly the other view pages to an
 abstract page View that holds information and offers choices of
 interaction that are common to all view pages of CalendarX: A View
 object provides a status message and holds information about the current calendar,
 date info and further filter info. The date info is a combination
 dateInfo of day, month and year information that may be partial but
 must be consistent; it is used as potentially partial information to compute specific
 date info for specific types of view. The filter info filterInfo
 constrains the events that are to be displayed, for example according to category or
 venue.
Questions of authentification and authorization are left to further refinements of
 the domain model.
Hence, we need to extend our conceptual model with page types, as demonstrated in
 Figure 3.
Figure 3: Modeling pages
[image:]

Interaction
The state of the system CalendarX comprises an object currentPage of
 type View, carrying page-specific information as indicated above. A
 Page object offers user selections: the next page type to be visited
 and which calendar, dateInfo and filterInfo
 values to use for the next page. These choices are stored in global attributes that
 we name nextPage, nextCalendar, nextDateInfo
 and nextFilterInfo.
Hence, we envision CalendarX to move, under user control, between control states
 that we label dayView, weekView, monthView,
 rangeView and view, according to the page types; we also
 have states start and quit. The choice of state is stored
 in nextPage.
When CalendarX enters the control state that is indicated by the current value of
 nextPage, information items nextCalendar,
 nextDateInfo and nextFilterInfo are also available.
 CalendarX uses this information to create a new View object of
 appropriate type, setting view attributes, computing specific date information from
 nextDateInfo, and computing specific Event objects from
 date information, nextCalendar and nextFilterInfo. It also
 computes a status message.
The system assigns the newly constructed page to currentPage,
 displays that page and awaits user input for user selections, which are initialized
 with their current values.
The user enters data and signals completion of selection, and the system responds
 with a new iteration. Alternatively, the user may signal the intention to exit the
 system by setting nextPage to quit, prompting CalendarX to
 quit operation.
Creating view pages involves computing the associated events. For example, the
 method events() for DayView uses the date
 attribute of type Date, the calendar attribute of type
 Calendar and the filterInfo of type
 FilterInfo of the object that it operates on. It calls a method
 getEventsForDay(date: Date): Event* on Calendar object
 calendar, filters them according to filterInfo and
 returns the result. The methods events() for WeekView,
 MonthView and RangeView delegate to
 events() for DayView, calling it repeatedly for each
 Date that is returned by general methods
 datesForWeek(startDate:Date): Date* and
 datesForMonth(monthYear:MonthYear): Date*, gathering the filtered
 return values of these calls into the result sequence of Event
 objects.
Getting the events for the week that starts at firstDay for
 Calendar object c filtered by filterInfo of
 type FilterInfo entails the following steps:
	Look for all SuperEvent objects se that are part
 of c.

	Compute all days d in the week that starts at
 firstDay.

	For each of these se objects apply
 getEventsForWeek(d).

	Filter the union of all the resulting sets of events according to
 filterInfo.

	Return the result.

If we complete this specification, we notice that we need a method
 matches(date:Date) for Pattern that tests if a
 Pattern object covers date.
We list below the methods that we have mentioned above, grouped by types:
	DayView
	Constructor DayView(c: Calendar, dI: DateInfo, fI:
 FilterInfo)

	setDate()

	events(): Event*

	WeekView
	Constructor WeekView(c: Calendar, dI: DateInfo, fI:
 FilterInfo)

	setFirstDate()

	events(): Event*

	MonthView
	Constructor MonthView(c: Calendar, dI: DateInfo, fI:
 FilterInfo)

	setMonthYear()

	events(): Event*

	RangeView
	Constructor RangeView(c: Calendar, dI: DateInfo, fI:
 FilterInfo)

	setFirstDate()

	setLastDate()

	events(): Event*

	View
	Constructor View(c: Calendar, dI: DateInfo, fI:
 FilterInfo)

	setStatusMessage()

	Calendar, SuperEvent,
 EventRule
	getEventsForDay(date: Date): Event*

	Pattern
	matches(date: Date): Boolean

	Event
	filter(filterInfo: FilterInfo): P(Event), where the
 returned set of Event objects P(Event) has at
 most one element

	Global
	datesForWeek(startDate: Date): Date*

	datesForMonth(month: Month, year: Year): Date*

Interim summary
What have we achieved so far? We have created a domain model for CalendarX that
 captures data and functionality, including abstract user interface, navigation and
 data access. We are now going to formalize the domain model with the goal of deriving
 an implementation for CalendarX based on XML technology.

Formalizing the CalendarX domain model as an ASM
We are looking for a methodology that embodies the DDD design philosophy in the target
 area of Web applications that are solely built with XML technology. We wish to formalize
 the domain model while keeping to the ubiquitious language that the domain model
 establishes.
We have recently become acquainted with the method of Abstract State Machines
 (ASMs) [BS03] that seems to be highly suitable, as explained
 above. So we have decided to explore this method for this project.
ASMs are virtual machines that capture state in the form of algebras. This means that an
 ASM defines a vocabulary of set and function symbols and that it specifies functions and
 constraints with the help of algebraic expressions over this vocabulary.
It is straightforward to translate our conceptual and page models into an algebraic
 vocabulary with type and identity constraints. For example, we will have set symbols
 Calendar, SuperEvent and String that denote
 pairwise disjoint sets. There is a function named Calendar.description with
 domain Calendar and range String. We use the standard
 object-oriented notation c.description() for
 Calendar.description(c). Setting the value for description at
 argument c in Calendar as “Anne's private calendar”
 is achieved by setting c.description()="Anne's private calendar", using
 standard object-oriented notation. This is called an update expression in ASM terminology.
 Updates are used to redefine functions at runtime and so change system state. Of course, we
 can reuse the function name description for other domains, including
 SuperEvent, since the sets that represent concepts are considered to be
 pairwise disjoint as long as they are not related by inheritance. In case of inheritance we
 employ the object-oriented semantics of overwriting methods and polymorphy.
The composition relationship between Calendar and SuperEvent
 is modeled by a function superEvents with domain Calendar and
 range P(SuperEvent), the power set of SuperEvent, that is
 reversible in the following sense: For any SuperEvent object se
 there is exactly one Calendar object c so that se is
 in superEvents(c). With this constraint, superEvents models
 precisely the composition relation that can be navigated in both directions.
The full translation of the conceptual and page models into an ASM vocabulary with
 constraints is referenced in the supporting-materials section. This section also specifies
 the constructor functions, methods and auxilliary functions that are listed above. These
 functions are static; that is, they are independent of system state. The ASM methodology
 considers static functions as part of the initial state and leaves open how and at what
 level of abstraction they are specified.
We note already, even before we have specified any changes of state, that the ASM
 notation is more precise than the UML class diagram notation, which required us to define
 constraints outside of the diagram that can be covered explicitly by the ASM notation. We
 will reap the full benefits of ASMs when specifying CalendarX functionality and user
 interface.
An ASM program is designated as an initial state. It is a collection of statements of
 the form
if
 condition
 then
 updates

The semantics of such a statement are straightforward: If the Boolean condition
 condition is met, then state updates updates are performed.
Updates are changes in the ASMs algebra; that is, additions or deletions of elements to
 or from a set or changes in the definition of a function. For example, if we wish to add a
 new SuperEvent object se to a Calendar object c, we
 would redefine c.superEvents() as c.superEvents() ∪ {se},
 writing this as an update statement
c.superEvents()=c.superEvents() ∪ {se}

In ASMs, all updates of all statements whose condition is true are performed
 simultaneously (or not at all if the update instructions are inconsistens).
Before the next round of computations is performed, the ASM accepts user input: that is,
 specifically designated input variables are set from the outside.
Hence, the modus operandi of an ASM is in repeating phases. The machine starts in the
 initial state, with input variables set.
During each phase, it first executes the updates specified that apply in the current
 state and moves into a new state. Then, second, it accepts changes of the input variables
 from outside.
In the CalendarX ASM, we have input states nextPage with potential values
 start, dayView, weekView, monthView,
 monthView, view and quit as well as
 nextCalendar of type Calendar, which must be a calendar in the
 CalendarX database, nextDateInfo of type PartialDate, and
 nextFilterInfo of type FilterInfo.
Each phase of the ASM CalendarX program corresponds to one navigation step from one page
 to another. The input variable nextPage determines which type of page is to be
 built. The input variables nextDateInfo, nextCalendar and
 nextFilterInfo determine from what information it is built.
This is the CalendarX ASM:
if
 nextState==start
 then

 currentPage=new View(nextCalendar,nextDateInfo, nextFilterInfo)

if
 nextState==dayView
 then

 currentPage=new DayView(nextCalendar,nextDateInfo, nextFilterInfo)

if
 nextState==weekView
 then

 currentPage=new WeekView(nextCalendar,nextDateInfo, nextFilterInfo)

if
 nextState==monthView
 then

 currentPage=new MonthView(nextCalendar,nextDateInfo, nextFilterInfo)

if
 nextState==rangeView
 then

 currentPage=new RangeView(nextCalendar,nextDateInfo, nextFilterInfo)

if
 nextState==quit
 then
 stop operation

The CalendarX ASM makes use of static constructor functions new DayView(),
 new WeekView(), new MonthView(), new RangeView()
 and new View() that we have already specified.
Interim Summary
What have we achieved so far? We have created a domain model for CalendarX that
 captures data and functionality. And we have fully formalized the CalendarX domain model
 as an Abstract State Machine (ASM) while staying within the realm of the domain
 language. The result is what in the ASM world is called a ground model, an ASM that
 formally captures the requirements of a system.

The CalendarX Implementation
Robles Hahn as part of his Bachelor Thesis [RH11] and a
 number of groups of students as work in the lab courses “XML Technology” in the
 academic year 2011/2012 have implemented CalendarX as a Web application, on the basis of a
 domain model, using only XML technology as indicated above.
Currently, we are exploring the ASM concept of refinement that derives the
 implementation in a more systematic way from the specification, in accord with the DDD
 philosophy. This involves mapping objects to XML represenations, methods to XQuery
 functions, and function calls and return values to HTTP request and response
 entities.
We are going to relate our experiences with this approach in an expanded version of this
 paper.

Conclusions and further work
	The principle of Domain-Driven Design has been fully validated for this
 project.

	Formal specification and systematic derivation of implementation make building
 CalendarX straightforward.

	The implementations of CalendarX are largely platform independent, as far as XML
 technology is used. For example, Orbeon Forms and XSLTForms can be used
 interchangably as XForms processors. However, there are some areas where platform
 dependencies still exist, particularly in access to HTTP data via eXist extension
 modules to XQuery. We plan to address these issues with another standardized XML
 technology, namely XProc. With XProc, we can then also derive in a declarative way
 the orchestration of server-side functions from the ASM model, replacing some clumsy
 XQuery functions or Orbeon flowscripts.

	ASMs have been useful for clarification but so far not mission-critical. We need
 to explore them further for step-wise refinement from ground model to implementation.

	There is some functionality we want to add: First of all, editing of calendar
 data, which we expect to be mostly an XForms challenge. Next, printing of calendar
 data; student solutions use SVG, generated with XSLT; our idea is to make this
 technology accessible to domain experts via a higher-level graphics DSL. Finally,
 access control, concurrent access, safety and liveness requirements; the quickest
 route seems to recur to Web application frameworks as suggested by Davis [D11].

	Our methodology might be best suited to smaller projects that are amenable to
 end-user computing. This is OK. After all, large publishing projects such as
 producing an electronic Oxford English Dictionary have not been exercises in personal
 publishing, either. Boundaries might be pushed a bit further with other case studies,
 though.

Appendix A. Supporting materials
Please visit http://www11.in.tum.de/lehrstuhl/personen/sayih/2012BalisageVol8-Bruggemann-Klein01-documents for supporting materials,
 particularly	XML Schema document for CalendarX plus an instance.

	ASM model for CalendarX.

Literature
[B09] B.T. Bauman: Prying Apart
 Semantics and Implementation: Generating XML Schemata directly from ontologically sound
 conceptual models. Balisage 2009. Available from
 http://www.balisage.net/Proceedings/. doi:https://doi.org/10.4242/BalisageVol3.Bauman01.
[BD04] B. Brügge and A.H. Dutoit. Object-Oriented Software Engineering: Using UML, Patterns and
 Java. Second Edition, Prentice Hall 2004.
[BDPT10] Brüggemann-Klein A, Demirel T,
 Pagano D und Tai A: Reverse Modeling for Domain-Driven Engineering of
 Publishing Technology. Balisage Series on Markup Technologies 2010. Available
 from http://www.balisage.net/Proceedings/. doi:https://doi.org/10.4242/BalisageVol5.Bruggemann-Klein01.
[BS03] E. Börger and R. Stärk: Abstract
 State Machines. A Method for High-Level System Design and Analysis.
 Springer-Verlag 2003.
[BS08] A. Brüggemann-Klein, L. Singer:
 Hypertext Links and Relationships in XML Databases.
 Presented at Balisage: The Markup Conference 2008, Montréal, Canada, 2008,
 http://www.balisage.net/. Available from
 http://hyquery.ls-softworks.de/HyperDataSystemsBalisage2008.pdf. doi:https://doi.org/10.4242/BalisageVol1.Bruggemann-Klein01.
[BS12] A. Brüggemann-Klein and M. Sayih:
 Metamodels for XML Schema. Work in Progress 2012.
[BST07] A. Brüggemann-Klein, Th. Schöpf, K. Toni:
 Principles, Patterns and Procedures of XML Schema Design —
 Reporting from the XBlog Project. Extreme Markup Languages 2007. Available
 from http://conferences.idealliance.org/extreme/.
[C08] K. Cagle.
 REST-Oriented Architectures.. Balisage 2008. Available from
 http://www.balisage.net/Proceedings/. doi:https://doi.org/10.4242/BalisageVol1.Cagle01.
[DDL09] C. Daboo, M. Douglass, and St. Lees.
 xCal: The XML format for iCalendar. May 2011. Available from
 http://tools.ietf.org/pdf/draft-daboo-et-al-icalendar-in-xml-09.pdf.
[D11] C. Davis.
 Programming Application Logic for RESTful Services Using XML
 Technologies.. Balisage 2011. Available from
 http://www.balisage.net/Proceedings/. doi:https://doi.org/10.4242/BalisageVol7.Davis01.
[D09] B. Desruisseaux, ed. Internet
 Calendaring and Scheduling Core Object Specification (iCalendar). September
 2009. Available from http://tools.ietf.org/pdf/rfc5545.pdf.
[E04] E. Evans: Domain-Driven
 Design. Tackling Complexity in the Heart of Software. Addison-Wesley
 2004.
[FGSM04] G. Fischer, E. Giaccardi,
 Y. Ye, A.G. Sutcliffe, N. Mehandijev: Meta-Design: A Manifesto for
 End-User Development. CACM Vol 47 No 9, 2004.
[F88] Ch. Floyd: Outline of a Paradigm Change in Software Engineering. ACM SIGSOFT Vol 13 NO
 2, 1988.
[F11] M. Fowler: Domain-Specific Languages. Addison-Wesley 2011.
[McC07] D. McCreary: Introducing the XRX Architecture: XForms/REST/XQuery. Available from
 http://datadictionary.blogspot.de/2007/12/introducing-xrx-architecture.html
 2007.
[Mc08] D. McCreary: XRX:
 Simple, Elegant, Disruptive. Available from
 http://www.oreillynet.com/xml/blog/2008/05/xrx_a_simple_elegant_disruptiv_1.html
 2008.
[PB09] D. Pagano and A. Brüggemann-Klein.
 Engineering Document Applications — From UML Models to XML Schemas.
 Balisage 2009. Available from http://www.balisage.net/Proceedings/. doi:https://doi.org/10.4242/BalisageVol3.Bruggemann-Klein01.
[RH11] J.T. Robles Hahn: An XML Application for a Calendar System using Domain-Driven Design.
 Bachelor Thesis. Technische Universität München 2011.
[SchN93] D. Schuler, A. Namioka (Eds):
 Participatory Design: Principles and Practices.
 Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

Balisage: The Markup Conference

Leveraging XML Technology for Web Applications
Anne Brüggemann-Klein
Fakultät für Informatik, Technische Universität München

Jose Tomas Robles Hahn
Fakultät für Informatik, Technische Universität München

Marouane Sayih
Fakultät für Informatik, Technische Universität München

Balisage: The Markup Conference

content/images/Bruggemann-Klein01-003.png
Dayview Tieekview MonthView
§1 oseDate §1 siateDate &1 monttiontn
@1 yearvear
RangeView
Fartadate 81 events EventssiCaendarbatal] [>T EveRTaSACaIOaTOA
1 frsiDateDate s
&1 dayDayOiontn i -
&1 montntiontn eise
@1 yearvear
Fiterinta
View
§1 stausitessage:strng
@1 cslendarCaiendar
1 datentopariaDate
1 Mernositernto

‘Generated by UModel www.altova.com

content/images/Bruggemann-Klein01-002.png
translated into

UL ciassdiagiam 20RO gy gengma

instantiates instantiates

cormespondsto

systemofrefated objzcts — P20 s gocument

content/images/Bruggemann-Klein01-001.png
EEEEEE]

CalendarX

description:Str

ocations Locat

tonl?] e

usersUsert]

contacts:Contact]

calendars:Calencarl] g)

patterns Patternl] -users.

1 descriptonString

—L%’

~calendars

01

Calendar

1 descripton:String
{1 categories Categories.
1 eventRules EventRulel]

1 descripton:String
1 superEvents Supervent(]

&1 ownerUseo.1]

EventRule

&1 starTime:Time.
&1 endTmeTime

-eventRues | 63 note:sting

&1 recurrencePattern:Pattern0..1]
1 focation Location[0.1]

1 stendeesContact]

DayOfWeek Ordinal
Categories

= -
Tuesday second H
e [l [ttt Ly
— =
T B s
T e
S

o
| [y e

e -
day March T
e & [e 1y

ri

e

s

.

S

EEVEEEEEE]

denedBy EventRul0. 1
descrption Strng
categoris:Categories
dateDate &1 startDateDate
stertTime Time §1 endDateDate
endTme Time §1 requencyumber=t
note:Strng
ocation-Locaten(0. 1]
attendees Contact]

SimplePattern

WeekiyPatiern

1 dayOneek DayOMWesk

CardinalionthiyPattern

&1 dayDayomontn

OrdinaiMonthiyPattern

&1 ordnatOrdinal
51 dayType DayType

VearlyPatiern

&1 dayDayottonth
&1 monthtontn

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

