[image: Balisage logo]Balisage: The Markup Conference

XQuery, XSLT and JSON
Adapting the XML stack for a world of XML, HTML, JSON and JavaScript
Jonathan Robie
<jonathan.robie@emc.com>

Balisage: The Markup Conference 2012
August 7 - 10, 2012

Creative Commons attribution 3.0 unported (http://creativecommons.org/licenses/by/3.0/)

How to cite this paper
Robie, Jonathan. "XQuery, XSLT and JSON." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012.
 Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Robie01.

Abstract
XML and JSON have become the dominant formats for
 exchanging data on the Internet, and applications frequently
 need to send and receive data in many different JSON-based or
 XML-based formats, consuming or producing data in JSON, XML, or
 HTML. JSON has not yet developed an application stack as mature
 as the XML application stack; for instance, there is still no
 standard query language, transformation language, or schema
 language.

 And the XML application stack has not yet evolved to
 easily process JSON.
There are several areas where the XML stack should evolve
 to better support developers who work with JSON together with
 XML, and the features needed to support JSON in XQuery and XSLT
 also provide data structures that simplify writing queries and
 transformations, and allow more efficient processing of
 intermediate results when processing XML. As JSON becomes
 increasingly common in databases, and is exchanged among
 servers, these same kinds of tools may even become important in
 environments that use only JSON.
This paper focuses on queries and transformations, looking
 at JSON support in several NoSQL databases, the JSONiq proposal
 (which adds JSON objects and arrays to XQuery), and the XSLT
 maps proposal (which adds maps that can represent JSON objects
 and arrays).

 At the time of writing, the W3C XML Query Working Group and the
 W3C XSL Working Group are considering several proposals for
 supporting JSON.

 The Working Groups expect to agree on a common solution that can
 be used in both XSLT and XQuery.

Balisage: The Markup Conference

 XQuery, XSLT and JSON

 Adapting the XML stack for a world of XML, HTML, JSON and JavaScript

 Table of Contents

 	Title Page

 	Introduction

 	The Web in 2012: HTML5, JavaScript, and JSON

 	Maps and Arrays, a missing piece in XQuery and XSLT

 	The XSLT 3.0 Maps Proposal

 	JSONiq: Extending XQuery with Maps and Arrays

 	Comparing the XSLT 3.0 Maps Proposal to JSONiq

 	Arrays and Sequences

 	Moving Forward

 	About the Author

 XQuery, XSLT and JSON
Adapting the XML stack for a world of XML, HTML, JSON and JavaScript

Introduction
In the early days of XML, many in the XML community saw it
 as a universal format that would be used to represent most kinds
 of data exchanged among programs, allowing many different kinds of
 information to be processed in the same way.
XML provides a way to label information from diverse
 data sources including structured and semi-structured
 documents, relational databases, and object
 repositories.
The Extensible Markup Language, XML, is having a
 profoundly unifying effect on diverse forms of
 information. For the first time, XML provides an information
 interchange format that is editable, easily parsed, and
 capable of representing nearly any kind of structured or
 semi-structured information.
— "Quilt: An XML Query Language for Heterogeneous Data Sources", 2000.

But less than a decade after XML 1.0 became a W3C
 Recommendation, some people were concluding that XML was not the
 best way to exchange traditional program data on the
 Internet.
Unfortunately, XML is not well suited to
 data-interchange, much as a wrench is not well-suited to
 driving nails. It carries a lot of baggage, and it doesn't
 match the data model of most programming languages. When
 most programmers saw XML for the first time, they were
 shocked at how ugly and inefficient it was. It turns out
 that that first reaction was the correct one. There is
 another text notation that has all of the advantages of XML,
 but is much better suited to data-interchange. That notation
 is JavaScript Object Notation (JSON).
JSON is a better data exchange format. XML is a better
 document exchange format. Use the right tool for the right
 job.
— "JSON: The Fat-Free Alternative to XML", 2006.

In many environments, XML and HTML are used to represent
 documents, and JSON is used for traditional data exchange. As more
 and more data is exchanged, stored, and queried as JSON, XML tools
 need to evolve to allow JSON and XML to be processed together.

 And adding support for JSON is useful even for XML data, because
 JSON's data structures are sorely missing in both XSLT and XQuery,
 and can simplify many transformations and queries.
This paper explores how an XML stack can be adapted to support
 a world of HTML5, JavaScript, and JSON, then explores two existing
 proposals that provide support for JSON: (1) the XSLT 3.0 maps
 proposal, which adds maps to XSLT and provides functions to convert
 JSON to and from these maps, and (2) JSONiq, which extends XQuery to
 add JSON objects and arrays. After that, a comparison of the two
 proposals is given, along with some thoughts about the issues that
 should be resolved as the W3C XSL Working Group and the W3C XML
 Query Working Group seek to develop a common proposal.
This talk represents the views of the author, not those of
 EMC Corporation, the W3C, or the XML Working Group. Most of these
 views were formed in conversation with Dana Florescu, Michael Kay,
 Ghislain Fourney, John Snelson, Mary Holstege, Matthias Brantner,
 Till Westmann, Andrew Eisenberg, and others whose views continue
 to inform me.

The Web in 2012: HTML5, JavaScript, and JSON
The XML community has long argued that programs should
 exchange both documents and program data using text-based data
 formats that are readable, platform-neutral, based on open
 standards, separate presentation from content, and are
 optimized for data reuse and long-term storage of data. This
 argument has largely been won. However, XML is only one of
 several formats that are being used for this purpose.
In the early days of XML, many spoke of it as a
 universal data format, or a universal
 hub format, and some hoped that XHTML would finally
 unify the Web, with XML as the foundation. But XHTML was not
 well supported by some browsers, and was never widely accepted
 as a replacement for HTML 4. Instead, the HTML community has
 moved strongly in the direction of HTML5.

 Even for data exchange, many JavaScript programmers decided
 that XML was too difficult to use in JavaScript programs,
 opting for JSON instead. While XML won the argument that data
 should be exchanged using text-based formats with the
 characteristics listed above, we now have three dominant
 formats: HTML, XML, and JSON. They are frequently used
 together. Few tools are designed to work equally well with all
 three formats, but many developers are expected to.
In recent years, the Web has been moving strongly in the
 direction of HTML5, JavaScript, and JSON
 and a new generation of databases, designed for distributed
 processing of massive amounts of data, uses JSON as the native
 data model. Ironically, JSON is now widely used for the
 very use cases highlighted in Jon Bosak's 1997 paper,
 XML, Java, and the future of the Web, which was
 written to promote XML. JSON was designed as a programming
 language-independent representation of typical programming
 language data structures, and in many languages, a simple
 library call can convert JSON to programming language
 structures, or programming language structures to JSON. For
 this kind of data, JSON programming is dramatically simpler
 than XML programming, except when you need queries,
 transformations, or schema validation.
But JSON does not exist in a vacuum, and it frequently
 needs to be used together with mixed content, typically
 represented as HTML or XML. A single application may often use
 several Web interfaces, some XML-based, others JSON-based, and
 combine data from the two, creating results in various
 formats. And even as XML becomes less common in Web
 interfaces, it continues to be important for documents and for
 managing and generating content on the server, to be combined
 with other data and exchanged in other formats. XML tools are
 particularly powerful for complex data integration tasks
 involving heterogeneous data, and they can handle HTML well,
 but they need to be extended to better support JSON. This will
 benefit both the JSON and XML communities.
XML has a mature tool stack that does not yet exist for
 JSON, including schema languages, XSLT, and XQuery. Many XML
 developers find these tools sorely missing when they work with
 JSON, but it's not clear that the JSON community feels a strong
 need for most of these tools. Many query languages have been
 developed for JSON, a few schema languages and transformation
 languages have also been developed, but have not been widely
 used.
Using schemas to enforce contracts is just as relevant for JSON as
 it is for XML, but there is little enthusiasm in the JSON
 community for schema languages, especially complex schema
 languages. JSON Schema, perhaps the most widely used JSON schema
 language, provided validation, and also added "formats", which
 allow for validation of simple types such as
 date-time, date, time,
 etc. JSON Schema is supported by several tools, and was written up
 as an IETF draft, but the draft expired in 2011.

 As a result, there is no standard way to support schema validation
 or validation of these data types in JSON. That makes it difficult
 for JSON interfaces to support declarative contracts via schemas.
The JSON community generally believes that JSON frequently
 needs to be transformed to and from other formats, especially HTML
 and XML, but JSONT, a lightweight XSLT-like transformation
 language designed in 2006, does not seem to have gained much
 traction, nor have any of the alternatives that have emerged. This
 may be partly because JavaScript and many scripting languages are
 fairly powerful for many common simple transformations. A number
 of libraries and other approaches have emerged for using XSLT to
 transform JSON, and are popular in the XML community among those
 who also work with JSON; it is too early to tell how widely they
 will be adopted in the JSON community.
Because NoSQL databases that use JSON as their native data
 model have gained significant traction in recent years, JSON query
 languages have gained much more traction, but no standard JSON
 query language has emerged. Standards are not as deeply embedded
 in JSON culture as they are in XML culture, and it is more
 difficult to gain agreement on a standard across the industry.

 A variety of approaches to querying JSON are used, including
 template-based queries (e.g. Mongo Query Language), SQL-like query
 languages (e.g. UnQL, HiveQL, YQL), procedural data flow languages
 (e.g. Pig Latin), functional data flow languages (e.g. Jaql), and
 simply using MapReduce libraries from conventional programming
 languages (e.g. Google BigTable).

To support queries, these languages often extend JSON with
 additional data types, such as date, object id, binary data,
 regular expression, or more specific numeric types such as int32,
 int64, or double.

The following queries illustrate the range of query
 languages that are used for querying JSON.[1]
Queries in JSON Query Languages
	Mongo Query Language: a template-based language for search/retrieval[2]

// select * from things where x=3 and y="foo"
db.things.find({ x : 3, y : "foo" });

// select * where j<> 3 and k>10
db.things.find({j: {$ne: 3}, k: {$gt: 10} });

// select * where a=1 or b=2
db.foo.find({ $or : [{ a : 1 } , { b : 2 }] })

	UNQL: a SQL-based language[3]

// An UPSERT: Incrementing a counter on a webpage.
UPDATE abc SET abc.n=abc.n+1 WHERE abc.page=="/page/one"
 ELSE INSERT {page:"/page/one", n: 1, create_time: 1234567};
SELECT FROM abc;

	Pig Latin: a data flow language[4]

 VISITS = load '/visits' as (user, url, time);
USER_VISITS = group VISITS by user;
USER_COUNTS = foreach USER_VISITS generate group as user, COUNT(VISITS) as numvisits;
 ALL_COUNTS = group USER_COUNTS all;
 AVG_COUNT = foreach ALL_COUNTS generate AVG(USER_COUNTS.numvisits);

dump AVG_COUNT;

	HiveQL: a SQL-based data flow language[5]

INSERT OVERWRITE TABLE pv_gender_sum
SELECT pv_users.gender, count (DISTINCT pv_users.userid)
FROM pv_users
GROUP BY pv_users.gender;

	Jaql: a functional data flow language[6].

import myrecord;
countFields = fn(records) (
 records
 -> transform myrecord::names($)
 -> expand
 -> group by fName = $ as occurrences
 into { name: fName, num: count(occurrences) }
);
read(hdfs("docs.dat"))
 -> countFields()
 -> write(hdfs("fields.dat"));

Maps and Arrays, a missing piece in XQuery and XSLT
Maps and arrays, under various names, are available in most
 modern programming languages, but until recently, they were
 absent from both XQuery and XSLT. This came from a basic design
 decision: XML is the complex data structure in these languages,
 and we felt that no other complex data structure was
 needed. While this worked well for most things, it made some
 kinds of queries and transformations needlessly complex for users
 to write, and complicated the design of the languages.
Maps and arrays are simple data structures, much simpler
 than XML, and adding them to XQuery and XSLT does not greatly
 change the complexity of the two languages. And maps and arrays
 add significant new features to both languages:
	Lightweight data structures that do not have
 the overhead associated with namespace processing, element
 construction, order preservation, or whitespace processing
 rules.

	Data structures that can associate additional
 data with an node, without losing the original identity of the
 node. This is particularly helpful in function parameters and
 returns. (Element construction in XQuery and XSLT loses the
 original identity of the items used to construct the
 element.)

	Nested arrays that can represent multiple
 sequences returned from a function, mathematical matrices,
 sparse matrices, etc.

	Data structures that can be used to describe
 intermediate results of XQuery expressions, such as the tuple
 stream in FLWOR expressions. (The notation used to describe the
 tuple stream in the current XQuery specification could easily
 be changed to maps.)

All of these things can be simulated with XML, but doing so
 introduces conceptual overhead for those who write queries or
 transformations, and system overhead that can affect the
 efficiency of queries.
If producing modified copies of a map is easy and
 efficient, maps add another useful feature: complex data
 structures that can track information encountered during a query
 or transformation. For instance, a reporting application can keep
 running totals and summaries by creating new map instances to
 reflect changing information.

The XSLT 3.0 Maps Proposal
The XSLT 3.0 maps proposal, which is new in the July 2012
 Working Draft of XSLT, was motivated by streaming use cases,
 which require complex data structures that can be used to
 remember what has been seen in the document, and also provides
 support for JSON. It extends the type system, data model, and
 syntax of XPath 3.0 to support maps, which are represented as
 function items in the data model.[7]

 It does not provide explicit support for arrays, but supports
 similar functionality using maps with integer-valued keys.
The XSLT proposal extends the syntax of XPath's
 ItemType to allow support map types.
MapType ::= 'map' '(' ('*' | (AtomicOrUnionType ',' SequenceType) ')'
For instance, MapType can be used to specify the type of a function parameter. Here is the signature of a function that uses a map to specify parsing options.
parse-json($json-text as xs:string,
 $options as map(*)) as item()?
There is no way to declare the type of a map, and the type
 of a map depends on its current contents. For instance,
 map(xs:integer, element(employee)) matches a map if
 all the keys in the map are integers and all the values are
 employee elements. If a new entry with a different key type or
 value type is added, the type of the map changes.
The maps proposal adds a new kind of primary expression to
 XPath in order to construct a map.
MapExpr := "map" "{" (KeyExpr ":=" ValueExpr ("," KeyExpr ":=" ValueExpr)*)? "}"
KeyExpr := ExprSingle
ValueExpr := ExprSingle
Here is an example of a map expression: [8]

map {
 "Su" := "Sunday",
 "Mo" := "Monday",
 "Tu" := "Tuesday",
 "We" := "Wednesday",
 "Th" := "Thursday",
 "Fr" := "Friday",
 "Sa" := "Saturday
}
The following map uses integer-valued keys, and is analogous to an array.

map {
 0 := "Sonntag",
 1 := "Montag",
 2 := "Dienstag",
 3 := "Mittwoch",
 4 := "Donnerstag",
 5 := "Freitag",
 6 := "Samstag"
}

In the XSLT 3.0 maps proposal, a map is a function from
 keys to associated values, and is represented as a function
 item. The function map:get($map, $key) returns the
 value associated with a given key.

 The function signature for a map is function($key as
 xs:anyAtomicValue) as item()*, and calling a map function
 returns the value for that key (thus, $map($key) is
 a synonym for map:get($map, $key). If
 $map is bound to the map shown above, the following
 expressions are equivalent, they each evaluate to "Tuesday".
map:get($map,"Tu")
$map("Tu")
Maps have no identity; the contents of two maps can be
 compared, but there is no way to distinguish two maps with the
 same content.
All values in XSLT are immutable, but functions are
 provided to create new maps that differ from an existing map by
 removing an entry, adding an entry, or changing the value of an
 entry.
The following table provides a brief synopsis of the
 functions provided for maps.

Table I
Map functions in the XSLT 3.0 maps
 proposal

	map:new	Creates a new map: either an empty
	 map, or a map that combines entries from a number of existing
	 maps. Allows a collation to be specified.
	map:entry	Creates a map that contains a
	 single key/value pair. Useful for creating maps with
	 map:new
	map:get	Returns the value associated with a key.
	map:keys	Returns the keys found in a map.
	map:contains	Tests whether a supplied map contains an entry for a given key.
	map:remove	Constructs a new map by removing an entry from an existing map.
	map:collation	Returns the URI of a given map's collation.
	fn:deep-equal2	Determines whether two
	 sequences are deep-equal to each other; this function extends
	 fn:deep-equal to support sequences that contain
	 maps.

The map:new function is used to create new
 maps from existing ones by specifying a sequence of maps. The
 newly created map contains every key/value pair that occurs in
 one of these maps; if a given key occurs in more than one map,
 its value in the newly created map is taken from the last map
 that contains a value for this key. The following examples show how map:new and map:remove are used to create modified versions of maps.
	map:new() returns map{ }

	map:new((map:entry(0, "Sunntig"), map:entry(1, "Määntig"))) returns map{0:="Sunntig",1:="Määntig"}

	map:new((map{0:="Sunntig"},map{1:="Määntig",2:="Ziischtig"})) returns map{0:="Sunntig",1:="Määntig",2:="Ziischtig"}

	map:new(map{0:="Sunntig",1:="Määntig",2:="Ziischtig"},map{0:="Sunday",2:="Dienstag")) returns map{0:="Sunday",1:="Määntig",2:="Dienstag"

	let $m:=map{"count":=1} return map:new("count":$m("count")+1) returns map{"count":2}

	map:remove(map{0:="Sunntig",1:="Määntig",2:="Ziischtig"}, 1) returns map{0:="Sunntig",2:="Ziischtig"}

The following example, taken from the XSLT 3.0 Working Draft, uses maps and xsl:iterate to find the highest earning employee in each department, in a single streaming pass of a document containing employee records.

<xsl:stream href="employees.xml">
 <xsl:iterate select="*/employee">
 <xsl:param name="highest-earners"
 as="map(xs:string, element(employee))"
 select="map:new()"/>
 <xsl:variable name="this" select="copy-of(.)" as="element(employee)"/>
 <xsl:next-iteration>
 <xsl:with-param name="highest-earners"
 select="let $existing := $highest-earners($this/department)
 return if ($existing/salary gt $this/salary)
 then $highest-earners
 else map:new($highest-earners,
 map:entry($this/department, $this))"/>
 </xsl:next-iteration>
 <xsl:on-completion>
 <xsl:for-each select="map:keys($highest-earners)">
 <department name="{.}">
 <xsl:copy-of select="$highest-earners(.)"/>
 </department>
 </xsl:for-each>
 </xsl:on-completion>
 </xsl:iterate>
</xsl:stream>
The XSLT maps proposal also adds two functions,
 parse-JSON and serialize-JSON, that
 convert between serialized JSON and XSLT
 maps. parse-JSON converts JSON arrays are converted
 to maps with integer-valued keys.

	parse-json('{"x":1, "y":[3,4,5]}') returns map{"x":=1e0,"y":=map{1:=3e0,2:=4e0,3:=5e0}}.

	let $m := parse-json('{"x":1, "y":[3,4,5]}') return $m("y")(2) returns 4e0.

JSONiq: Extending XQuery with Maps and Arrays
The JSONiq proposal extends XQuery to add support for
 JSON. It was primarily motivated by the need for a JSON query
 language, and the need for a single language that can query JSON,
 XML, and HTML. JSONiq extends the type system, data model, and
 syntax of XQuery to support JSON objects[9] and
 arrays. JSONiq defines two profiles: one is a strict superset of
 XQuery that adds support for JSON, the other is a pure JSON query
 language with no XML constructs.
The following diagram shows JSONiq extensions to the data
 model in green.
Figure 1: JSONiq Data Model
[image:]
object represents a JSON object, array represents a JSON array. Both are derived from json-item. structured-item is an abstract base class for both node and json-item.
json:null is an atomic data type that represents JSON nulls.

Like XDM 3.0 nodes, a JSON item has identity, and it can
 be serialized. However, the identity of a JSON item is used only
 to support updates. Like XSLT maps, the contents of JSON items
 can be compared, but there is no way to distinguish two items
 with the same content.
JSONiq extends the syntax of XPath's ItemType
 to support the types of JSON items.

StructuredItemTest ::= "structured-item" "(" ")"
JSONItemTest ::= "json-item" "(" ")"
JSONObjectTest ::= "object" "(" ")"
JSONArrayTest ::= "array" "(" ")"

For instance, a JSONItemTest can be used to declare the type of a function parameter or return.
declare function local:summary($o as object()) as array()
{
};
JSONiq adds primary expressions to construct objects and arrays.

ObjectConstructor ::= "{" PairConstructor ("," PairConstructor)* "}"
PairConstructor ::= ExprSingle ":" ExprSingle
ArrayConstructor ::= "[" Expr? "]"

Here is an example of a JSON object that contains an array.
{
 "name" : "Sarah",
 "age" : 13,
 "gender" : "female",
 "friends" : ["Jim", "Mary", "Jennifer"]
}
Arrays can nest.

[
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

Both objects and arrays compose with existing XQuery expressions; for instance, the following example uses an XQuery range expression to construct an array containing five integers:
[1 to 5]
Here is the result of the above query:
[1, 2, 3, 4, 5]
The following example constructs an object from the values in a sequence:

{
 for $d at $i in ("Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday")
 return $d : $i
}

Here is the result of the above query:

{
 "Sunday" : 1,
 "Monday" : 2,
 "Tuesday" : 3,
 "Wednesday" : 4,
 "Thursday" : 5,
 "Friday" : 6,
 "Saturday" : 7
}

In JSONiq, an array contains a sequence of items, and an
 array is itself an item. JSONiq also supports JSON nulls. In the
 following array constructor, jn:null() creates a
 null value.
[1, "string", jn:null(), <four/>, ["nested", "array"]
Navigation in objects and arrays is done using "selectors",
 which use function call syntax as in the XSLT 3.0 maps proposal.
 An object selector has the function type function($key as
 xs:string) as item()?. An object selector returns the
 value associated with a given key, as in the following
 example.

let $map := { "eyes" : "blue", "hair" : "fuchsia" }
return $map("eyes")

The result of the above query is "blue".
An array selector matches the function type
 function(xs:integer) as item()?. An array selector
 returns the value found at a given position, as in the following
 example:

let $wd := ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]
return $wd(1)

The result of the above query is "Sunday".
JSONiq also supports member selectors on sequences. If $s is a sequence, then $s($param) is translated to:
for $item in $s return $item($param)
The following example, taken from the JSONiq Use Cases,
 queries sales data, then groups it to show sales by category
 within each state.
collection("sales") contains the following data:

{ "product" : "broiler", "store number" : 1, "quantity" : 20 },
{ "product" : "toaster", "store number" : 2, "quantity" : 100 },
{ "product" : "toaster", "store number" : 2, "quantity" : 50 },
{ "product" : "toaster", "store number" : 3, "quantity" : 50 },
{ "product" : "blender", "store number" : 3, "quantity" : 100 },
{ "product" : "blender", "store number" : 3, "quantity" : 150 },
{ "product" : "socks", "store number" : 1, "quantity" : 500 },
{ "product" : "socks", "store number" : 2, "quantity" : 10 },
{ "product" : "shirt", "store number" : 3, "quantity" : 10 }

collection("products") contains the following data:

{ "name" : "broiler", "category" : "kitchen", "price" : 100, "cost" : 70 },
{ "name" : "toaster", "category" : "kitchen", "price" : 30, "cost" : 10 },
{ "name" : "blender", "category" : "kitchen", "price" : 50, "cost" : 25 },
{ "name" : "socks", "category" : "clothes", "price" : 5, "cost" : 2 },
{ "name" : "shirt", "category" : "clothes", "price" : 10, "cost" : 3 }

collection("stores") contains the following data:

{ "store number" : 1, "state" : CA },
{ "store number" : 2, "state" : CA },
{ "store number" : 3, "state" : MA },
{ "store number" : 4, "state" : MA }

The following query groups by state, then by category, then lists individual products and the sales associated with each.

{
 for $store in collection("stores")
 let $state := $store("state")
 group by $state
 return {
 $state : {
 for $product in collection("products")
 let $category := $product("category")
 group by $category
 return {
 $category : {
 for $sales in collection("sales")
 where $sales("store number") = $store("store number")
 and $sales("product") = $product("name")
 let $pname := $sales("product")
 group by $pname
 return $pname : sum($sales("quantity"))
 }
 }
 }
 }
}

Here is the result of the above query.

{
 "CA" : {
 "clothes" : {
 "socks" : 510
 },
 "kitchen" : {
 "broiler" : 20,
 "toaster" : 150
 }
 },
 "MA" : {
 "clothes" : {
 "shirt" : 10
 },
 "kitchen" : {
 "blender" : 250,
 "toaster" : 50
 }
 }
}

Beyond what has been discussed in this section, JSONiq adds functions for parsing and serializing JSON, a syntax for JSON updates, a function library for managing objects and arrays, and rules for combining XML and JSON. See JSONiq for further information.

Comparing the XSLT 3.0 Maps Proposal to JSONiq
The XSLT 3.0 Maps proposal and JSONiq have similar
 functionality. They each extend the XPath 3.0 type system, data
 model, and syntax, but they do it in incompatible ways. The XSL
 Working Group and XML Query Working Group expect to agree on a
 common solution that can be used in both XSLT and XQuery. This
 section explores some of the similarities and differences between
 the two proposals.
XSLT maps are extremely similar to JSONiq objects, but they
 do differ in a variety of ways. The following list summarizes
 these differences.
Maps
	In the XSLT 3.0 maps proposal, maps are
 functions. In JSONiq, they are structured items, similar to XML
 nodes, with accessors defined in the data model. Both proposals
 use function notation to find the value associated with a key;
 in JSONiq this is done by overloading the function call syntax
 for objects and arrays.
If maps are modeled as functions, the properties of maps
 still need to be clearly described in the data model, much as
 they are for elements and attributes, for the sake of
 implementations. If maps are modeled as data, the language
 description needs to explain the use of function call syntax,
 or a different approach must be used to find the value
 associated with a key.

	In the XSLT 3.0 maps proposal, a map can be
 passed as a parameter where a function is expected. In JSONiq,
 a map must first be wrapped in an inline function, which can be
 passed as a parameter where a function is
 expected.

	The XSLT 3.0 maps proposal makes it easy to
 create a new copy of a map that is modified by adding an entry,
 changing the value of an entry, or removing an entry. This is
 not as easy in JSONiq. JSONiq provides operations to update the
 contents of a map in place. This is not possible in XSLT (which
 does not have updates).
Maps should support both models. Updates are needed for
 conventional database operations, modified copies are needed
 for XSLT and for XQuery implementatinos that do not provide
 updates.

	In the XSLT 3.0 maps proposal, maps have no
 identity. In JSONiq, maps have identity, but it is used only to
 support updates. (XSLT does not have updates, and does not need
 this functionality). To reduce complexity and simplify query
 optimization, neither proposal allows XPath operations that
 expose the identity of maps, such as is,
 <<=, >>,
 union, intersect, and
 except operators.

	In the XSLT 3.0 maps proposal, the value of a
 map entry is an arbitrary sequence. In JSONiq, the value of a
 map entry is a single item; if the value is a sequence, it is
 placed in an array, as it would be in JSON.

	In the XSLT 3.0 maps proposal, a key can have
 any atomic type, and the keys in a given map may have different
 types, which need not be mutually comparable (e.g. one map may
 have keys of type integer, string,
 and boolean). The type of a map depends on the
 types of its keys and values at any given time. In JSONiq, a
 key is always a string, as it is in JSON.

	In the XSLT 3.0 maps proposal, keys are
 compared using the default collation, and a map can be given a
 collation, so that keys considered equivalent in a given
 language can be made equivalent. In JSONiq, all maps use the
 Unicode codepoint collation to ensure that they are compared
 the same way in all environments.

	JSONiq maps use a constructor syntax that
 closely resembles the syntax of JSON maps in the same way that
 XQuery direct element constructors resemble XML elements. The
 XSLT 3.0 maps proposal uses a syntax more like computed element
 constructors, introducing a constructor with a keyword, and
 uses := as a delimiter between name/value pairs,
 instead of the : delimiter used by
 JSON.

JSONiq has arrays, the XSLT 3.0 proposal does not. This is
 perhaps the most significant difference between the two
 proposals. The XSLT 3.0 proposal uses maps to represent JSON
 arrays; for instance, the parse-json() function
 converts the JSON text ["a", "b", null] to the map
 map{1:="a", 2:="b", 3:=()}, and does not support
 arrays in XPath per se. If a transformation creates a new copy of
 the map, removing one of the entries, the positions of the other
 entries are not adjusted; for example, consider the following
 expression:

let $j := parse-json('["a", "b", null]')
return map:remove($j, 2)

This expression evaluates to a map with entries in position
 1 and 3, but not in 2:
map{1:="a", 3:=()}
JSONiq does not have this problem; deleting an item from an
 array moves all subsequent items one position to the left.
Beyond the differences mentioned above, the main
 differences involve the functions associated with maps and arrays
 in the two proposals.

Arrays and Sequences
In JSONiq, an array is a single item, which allows an array
 to be a member of an array. In the XSLT 3.0 maps proposal, a map
 is used to simulate an array. In either case, an array is an item
 that can occur in a sequence, and items are retrieved using
 function call syntax (e.g. $a(1)), not the subscript
 operator (e.g. $a[1]). Functions, operators, and
 expressions that operate on sequences all treat an array as a
 single item. For instance, the following expression returns a
 single item:
for $i in [1, 2, 3]
return $i
The result of the above query is the array [1, 2,
 3], not the sequence 1, 2, 3. JSONiq provides
 the members() function to convert an array to a
 sequence:
for $i in members([1, 2, 3])
return $i
The result of the above expression is 1, 2,
 3.
In the same way, the expression [1, 2][1] is
 not equivalent to the expression [1, 2](1). The array
 selector (1) returns the first member of the
 sequence, which is 1. The positional predicate
 [1] returns the first item of the sequence. In XPath,
 an item is identical to a singleton sequence containing that item,
 so [1, 2][1] is equivalent to ([1,
 2])[1], which returns the first item in the sequence:
 [1, 2].
Some people would like most functions, operators, and
 expressions to treat arrays and sequences in the same
 way. However, the semantics of sequences is fundamental to the
 design of XQuery, XPath, and XSLT, and sequences have semantics
 that are quite different from arrays. For instance, in these
 languages a single item is indistinguishable from a sequence
 containing a single item, most languages clearly distinguish an
 array containing a single item from an item. Similarly, sequences
 do not nest, and are automatically flattened. Arrays nest, and are
 not flattened. Because sequences and arrays have significantly
 different semantics, it is not clear whether it is possible to
 make functions, operators, and expressions treat them the same way
 without introducing inconsistencies. The two Working Groups should
 explore this question.

Moving Forward
If support for JSON is added to both XSLT and XQuery,
 developers can query or transform XML, HTML, and JSON to produce
 XML, HTML, or JSON. The XSLT 3.0 Maps proposal and JSONiq are more
 similar than different, and should be combined, retaining the best
 features of each. The XSL and XML Query Working Groups have
 started this effort. This paper has attempted to sketch the
 differences between the two proposals, and suggest some ways that
 they can be combined. This will be helpful to XML developers who
 also need to process JSON, but also to XML developers who need
 simple, lightweight data structures that preserve identity, and to
 the Working Groups as we design extensions to our
 languages.
It is too early to say how interesting this work will become
 to the JSON community. As JSON moves beyond the browser into
 databases and enterprise data exchange, the lack of a mature
 application stack like the XML application stack becomes more
 painful, but the JSON community is extremely reluctant to embrace
 the complexity of XML Schema and other aspects of the XML
 application stack. At this point, the strongest interest seems to
 be in query languages. For the JSON-only community, JSONiq has a
 profile that removes support for XML, resulting in a much smaller,
 simpler language that supports only JSON. Standard support for a
 broader set of datatypes would also be extremely helpful for JSON
 developers, who routinely work with dates, URLs, and other
 datatypes that are not directly supported in JSON, as would a
 simple schema language. Because of the strong desire for
 simplicity in the JSON community, it is unlikely that they will
 simply adopt the XML application stack without modification, but
 the JSON community may benefit by learning from the work that has
 already been done by their XML cousins.

Bibliography
[JSON: The Fat-Free Alternative to XML]
 Douglas Crockford
 JSON: The Fat-Free Alternative to XML.
 [online]. http://www.json.org/xml.html, http://www.json.org/fatfree.html
[JSONT]
 Stefan Goessner.
 JSONT: Transforming JSON.
 [online]. http://goessner.net/articles/jsont/
[JSONiq]
 Jonathan Robie, Matthias Brantner, Daniela Florescu, Ghislain Fourny, Till Westman.
 JSONiq: XQuery for JSON, JSON for XQuery. (Language Specification).
 [online]. http://jsoniq.org/docs/spec/
[JSONiq Use Cases] Jonathan Robie, Matthias Brantner, Daniela Florescu, Ghislain Fourny, Till Westman.
 JSONiq: Use Cases. [online].
 http://jsoniq.org/docs/use-cases/
[XSLT 3.0 July 2012 Working Draft] Michael Kay.
 XSL Transformations (XSLT) Version 3.0.
 W3C Working Draft 10 July 2012 [online].
 http://www.w3.org/TR/2012/WD-xslt-30-20120710/.
[XQuery 3.0] Jonathan Robie, Don Chamberlin, Michael Dyck, John Snelson.
 XQuery 3.0: An XML Query Language.
 W3C Working Draft 13 December 2011. [online].
 http://www.w3.org/TR/xquery-30/.
[XPath 3.0] Jonathan Robie, Don Chamberlin, Michael Dyck, John Snelson.
 XML Path Language (XPath) 3.0.
 W3C Working Draft 13 December 2011. [online].
 http://www.w3.org/TR/xpath-30/.
[XDM 3.0] Norman Walsh, Anders Berglund, John Snelson.
 XQuery and XPath Data Model 3.0
 W3C Working Draft 13 December 2011. [online].
 http://www.w3.org/TR/xpath-datamodel-30/.
[Quilt] Don Chamberlin, Jonathan Robie, Daniela Florescu
 Quilt: An XML Query Language for Heterogeneous Data Sources
 http://www.almaden.ibm.com/cs/people/chamberlin/quilt.pdf.
[Bosak 1997] Jon Bosak. "XML, Java, and the future of the Web". [online].
 ftp://sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.html

[XML vs the Web] XML vs the Web, James Clark. [online] http://blog.jclark.com/2010/11/xml-vs-web_24.html
[Deprecating XML] Deprecating XML, Norman Walsh. [online] http://norman.walsh.name/2010/11/17/deprecatingXML
[JSON and XML] JSON and XML, Tim Bray. [online] http://www.tbray.org/ongoing/When/200x/2006/12/21/JSON
[Mongo Query Language] Mongo Query Language: Advanced Queries.
 [online] http://www.mongodb.org/display/DOCS/Advanced+Queries. Data Types and Conventions, http://www.mongodb.org/display/DOCS/Data+Types+and+Conventions. BSON, http://www.mongodb.org/display/DOCS/BSON.
[UnQL] UnQL: Unstructured Query Language.
 [online] http://www.unqlspec.org/display/UnQL/Home.
[HQL Tutorial] HQL Tutorial,
 [online] http://dev.wavemaker.com/wiki/bin/Dev/HqlTutorial
[Yahoo Query Language] Yahoo Query Language,
 [online] http://developer.yahoo.com/yql/
[Hive] Hive Language Manual.
 [online] https://cwiki.apache.org/confluence/display/Hive/LanguageManual
[Pig] Apache Hadoop: Pig Documentation.
 [online] http://pig.apache.org/docs/r0.7.0/index.html
[Jaql] Kevin S. Beyer, Mohamed Eltabakh, Vuk Ercegovac, Rainer Gemulla, Carl-Christian Kanne, Fatma Ozcan, Andrey Balmin, Eugene J. Shekita.Jaql: A Scripting Language for Large Scale Semistructured Data
 Analysis.
 [online]
 http://www.mpi-inf.mpg.de/~rgemulla/publications/beyer11jaql.pdf
[JSON Schema] K. Zyp, G. Court.A JSON Media Type for Describing the Structure and Meaning of JSON Documents.
 IETF Internet-Draft [online]
 http://tools.ietf.org/html/draft-zyp-json-schema-03
[JSON Path] JSON Path. Part of MarkLogic Corona. [online] https://github.com/marklogic/Corona/wiki/JSON-Path
[rbtree] John Snelson. rbtree. [online] https://github.com/jpcs/rbtree.xq/
[cosql] Erik Meijer, Gavin Bierman. A co-Relational Model of Data for Large Shared Data Banks. ACM Queue, March 2011, volume 9, number 3. http://queue.acm.org/detail.cfm?id=1961297

[1] A
 detailed comparison of these languages is beyond the scope of
 this paper.
[2] Example taken from Mongo Query Language.
[3] Example taken from UnQL.
[4] Example taken from Pig.
[5] Example taken from Hive.
[6] Example taken from Jaql.
[7] Because XPath 3.0 is jointly owned with the XML Query
 Working Group, the two Working Groups have committed to work
 together to create a joint proposal, but this is not yet
 reflected in any public document.
[8] Most
 examples in this section are taken from XSLT 3.0 July 2012 Working Draft.
[9] JSON
 calls maps objects, as does JavaScript. In this paper, the term
 object always refers to a map, rather than the objects used in
 the object oriented paradigm.

Balisage: The Markup Conference

XQuery, XSLT and JSON
Adapting the XML stack for a world of XML, HTML, JSON and JavaScript
Jonathan Robie
<jonathan.robie@emc.com>

Balisage: The Markup Conference

content/images/Robie01-001.png
A
xs:anyAtomicType ’

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

