[image: Balisage logo]Balisage: The Markup Conference

Using XProc, XSLT 2.0, and XSD 1.1 to validate RESTful services
Jorge Luis Williams
Rackspace Hosting

<jorge.williams@rackspace.com>

David Cramer
Rackspace Hosting

<david.cramer@rackspace.com>

Balisage: The Markup Conference 2012
August 7 - 10, 2012

Copyright © 2012 Rackspace US, Inc.

How to cite this paper
Williams, Jorge Luis, and David Cramer. "Using XProc, XSLT 2.0, and XSD 1.1 to validate RESTful services." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012.  In Proceedings of Balisage: The Markup Conference 2012. 
        Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Williams01.

Abstract

                Documentation of RESTful services must be accurate and
                detailed. As a REST service is being developed, the
                documentation must be kept up to date and its accuracy
                constantly validated. Once the REST service is
                released the documentation becomes a contract; clients
                may break if an implementation drifts from the
                documented rules. Also, third-party implementations
                must adhere to the rules in order for clients to
                interact with multiple implementations without
                issue. Ensuring conformance to the documentation is
                complicated, tedious, and error prone. We use our
                existing XML documentation pipeline to generate highly
                efficient validators which can check a RESTful service
                (and it's clients) for conformance to the
                documentation at runtime. We validate all aspects of
                the HTTP request including message content, URI
                templates, query parameters, headers, etc. We describe
                the transformation process and some of the
                optimizations that enable real time optimization and
                discuss challenges including testing the documentation
                pipeline and the validators themselves.
            



Balisage: The Markup Conference


      Using XProc, XSLT 2.0, and XSD 1.1 to validate RESTful services

      
         Table of Contents

         
            	Title Page

            	Introduction

            	Background
                  	About REST

                  	About Rackspace and OpenStack Developer
                        Documentation

                  	Why WADL?
                        	Flexibility

                        	Content Reuse

                        	Inline Documentation

                        	Grammar Agnostic Assertions

                        	Extensibility

                     

                  

                  	Documentation from WADL

                  	WADL Normalization

               

            

            	The Validation Problem

            	Validating REST with Automata

            	The Checker Format

            	Optimization

            	The Validation Pipeline

            	Other Use Cases
                  	Filtering and Error Reporting

                  	Authorization

                  	API Coverage

               

            

            	Conclusions
                  	Challenges
                        	XSD 1.1, early adoption

                        	Parsing XPaths in XSLT 2

                        	Testing The Validation Pipeline

                     

                  

                  	Future Work

               

            

            	About the Authors

         

      
   Using XProc, XSLT 2.0, and XSD 1.1 to validate RESTful services

Introduction
 REST is fast becoming the standard method by which
            different software systems interact with one another. As
            such, Rackspace produces a large number of RESTful
            services both for both internal and public consumption.
            Because these RESTful services act as integration points,
            they must be documented accurately and at a very high
            level of detail. As a REST service is being developed, the
            documentation must be kept up to date, and the accuracy of
            the documentation as it relates to the actual
            implementation of the service must be constantly
            validated. That said, once the REST service is released
            the documentation becomes a fixed contract. At this time,
            there exists the possibility that an implementation my
            inadvertently drift from what is described in the
            documentation and this may cause clients to break. Also,
            when dealing with open source services, other
            implementations of the same service may be developed by
            third parties, and it's important for these implementation
            to behave according to the rules specified by the
            documentation as well in order for clients to interact
            with multiple implementations without issue. The process
            of ensuring conformance to the documentation is
            complicated, tedious, and error prone. 
 To automate the process, we had the idea to use our
            existing XML documentation pipeline based on XProc, XSLT
            2.0, DocBook and WADL, which already produced HTML and PDF
            documentation artifacts, to generate highly efficient
            validators as well. These validators can be used to check
            a RESTful service (and its clients) for conformance to the
            documentation at runtime in a very efficient manner. The
            validators are capable of using an XSD 1.1 implementation
            (either Xerces or Saxon) to validate not just the content
            of a request, but also to perform checks on URI templates
            and query parameters. The process illustrates the power of
            single sourcing, in that the same source that is used to
            produce human readable artifacts is also used to produce
            machine readable validation instructions. As a result,
            from the same artifact, we are able to:	 document APIs consistently and efficiently.
                    

	 produce different documentation artifacts
                        such as user guides, specifications, and quick
                        reference web pages. 

	 validate the accuracy of our API
                        implementations and their clients. 

	 help describe the calls a particular user
                        is authorized to make in an API. 



 The purpose of this paper is to describe our REST
            documentation pipeline and discuss how it was adapted to
            produce REST validators. We give a detailed overview of
            the transformation process, including a description of
            some of the optimizations performed to achieve efficient
            real time validation. We also describe some of the
            challenges we've encountered -- including testing the
            documentation pipeline.
        

Background
About REST
 REST (REpresentational State Transfer) is an
                "architectural style" described by Roy Fielding in his
                PhD dissertation Fielding2000. REST
                seeks to adapt the architecture of the Web, along with
                its scalability, performance, and other advantages, as
                a platform for any kind of application. In REST, as on
                the Web, a resource is an item of
                interest. Each resource has an address (URI) and one
                or more representations (a file
                with a given media type). A client can interact with a
                resource through a URL and these interactions in turn
                act as the engine of application state because the
                representations provide hypermedia links offering
                alternative directions the client can take to proceed
                through the workflow. The RESTful ideal is that just
                as you interact with a Web site and choose which step
                to take next, without being frustrated that the layout
                of the page and links offered have changed since the
                last time you visited the site, so a client using a
                RESTful API can pick its way through a workflow
                without demanding a fixed, brittle contract. Likewise,
                the Web's mature and well-understood caching
                mechanisms can improve the performance and scalability
                of your application, protecting the server from spikes
                in traffic and the client from brief interruptions in
                the server's availability.  
While many APIs describe themselves as RESTful, some
                RESTful APIs are more RESTful than others. At the most
                rudimentary level, APIs may employ one or more URIs,
                but still use only one method (GET, POST) to tunnel
                their requests over HTTP and do not represent a
                radical break from WS-* services. APIs that embrace
                the RESTful architecture more fully offer a larger
                number of resources, each with a URI, and map a
                variety of HTTP verbs to the Create Read Update Delete
                (CRUD) operations found in most applications. In these
                services, parameters are passed in with requests
                either as elements of the URI or as query parameters
                appended to the URI. The Web's caching infrastructure
                also comes into play. Finally, in an ideal more often
                discussed than achieved, services that fully embrace
                the idea of hypermedia as the engine of application
                state (HATEOS), relying on the client to navigate
                through the workflow in the same way an end-user at an
                e-commerce site would, by inspecting the available
                links and picking the appropriate one. 

About Rackspace and OpenStack Developer
                Documentation
Rackspace is a hosting company that found
                itself well positioned to play a significant role in
                the sea change from traditional hosting to cloud
                computing started by Amazon Web Services. The
                Rackspace strategy involves creating an open source
                alternative to the closed, proprietary world of vendor
                lock-in that AWS represents. To that end, Rackspace
                partnered with NASA to create a collection of open
                source cloud software, called OpenStack. Since its launch in 2010,
                OpenStack has enjoyed rapid growth as an open source
                project with hundreds of companies and individuals
                participating. Since much of the code that we develop
                is contributed to OpenStack, we needed an approach to
                documentation that facilitated interchange and
                collaboration. DocBook and the XSLT stylesheets from
                the DocBook Open Repository provide the basis
                for our documentation tool chain. 
Our documentation pipeline contains the typical
                components: a schema, authoring environment, source
                control system, build system, and hosted artifacts. In
                particular, we use:	A variant of the DocBook 5.0 schema,
                            called RackBook. 

	A Java Web Start version of the oXygen XML editor with a
                            custom framework to support RackBook and
                            our specific needs. Contributors are free
                            to use any text editor, but the customized version of oXygen
                            provides many convenience features.
                        

	Customizations on top of the DocBook
                            XSLT stylesheets to produce pdf and HTML
                            output branded for Rackspace, OpenStack,
                            or other partners as necessary. 

	An extended version of the Docbkx
                            Maven plugin to manage
                            build-time dependencies and perform the
                            build logic to generate artifacts. We've
                            extended Docbkx to incorporate Calabash so that we can
                            preprocess our source code with XProc
                            pipelines. Because OpenStack also relies
                            on this tool, we have open sourced our
                            version of the Maven plugin (clouddocs-maven-plugin).

	We store our source code in a internal
                            git repositories and schedule builds using
                            Jenkins jobs.




Why WADL?
 We evaluated frameworks that provide test consoles
                and some level of documentation for RESTful APIs like
                    Apigee, Mashery,
                and Swagger, but found each lacking one or
                another important feature. We ultimately decided to
                leverage our DocBook-based tool chain to create human
                and machine readable descriptions of the APIs from the
                same source. The human readable artifacts are the
                documentation, and the machine readable WADL would
                facilitate the run-time validation of API calls in the
                via Open Repose, our open source RESTful proxy. There
                are a number of reasons why we chose WADL over using
                an existing alternative description languages or
                designing our DSL: 	The WADL vocabulary includes a number of
                            features that facilitate authoring and
                            content reuse. 

	Since WADL is XML, it fit easily into
                            our existing DocBook pipeline. 

	The format is extensible and thus it is
                            simple to add support for new features and
                            niche use-cases. 

	The format is grammar agnostic. This
                            means that a grammar can be specified in
                            XML Schema for XML media types and JSON
                            Schema for JSON media types. 

	Additionally, grammars can be used not
                            just to make assertions about the content
                            of HTTP payloads as a whole, but also to
                            make assertions about a particular subset
                            of it. 

	Grammars can also be used to make
                            assertions over all aspects of an HTTP
                            request or response: template parameters,
                            matrix parameters, query parameters and
                            headers. 

	WADL is specific to the HTTP protocol
                            and captures all of that protocol's
                            features. As such, it's a perfect markup
                            language for semantically describing
                            RESTful services. 


 We elaborate on some of the more
                important features in detail in the following
                sections. 
Flexibility
One of the nice features of WADL is that it has
                    a very flexible schema especially when associating
                    URI paths to resources. For example, suppose we
                    have a very sparse API that allows a
                        GET and DELETE
                    operation to occur only at the URI
                        https://test.api.openstack.com/path/to/my/resource.
                    This can be represented in a WADL in the following
                    manner: 
Example 1: WADL in Tree Form
<application xmlns="http://wadl.dev.java.net/2009/02">
    <grammars/>
    <resources base="https://test.api.openstack.com">
        <resource path="path">
            <resource path="to">
                <resource path="my">
                    <resource path="resource">
                        <method name="GET">
                            <response status="200 203"/>
                        </method>
                        <method name="DELETE">
                            <response status="200"/>
                        </method>
                    </resource>
                </resource>
            </resource>
        </resource>
    </resources>
</application>



Note that each individual path segment in the
                    URI is represented by a
                        <resource> element. While
                    the approach would work well in cases where the
                    API has a complex structure with many resources,
                    it's overkill for this example. Instead, we can
                    represent the API like this: 
Example 2: WADL in Flat Form
<application xmlns="http://wadl.dev.java.net/2009/02">
    <grammars/>
    <resources base="https://test.api.openstack.com">
        <resource path="path/to/my/resource">
            <method name="GET">
                <response status="200 203"/>
            </method>
            <method name="DELETE">
                <response status="200"/>
            </method>
        </resource>
    </resources>
</application>



 Here, a <resource> element
                    covers multiple segments in the path all at once,
                    in this case path/to/my/resource.
                    Given the sparse API, this is far more convenient.
                    The WADL need not be entirely written in the form
                    illustrated in Example 1 (tree
                    form) or in the form in Example 2
                    (flat form). A WADL can contain resources that are
                    simultaneously in both forms (mixed form) as
                    illustrated here: 
Example 3: WADL in Mix Form
<application xmlns="http://wadl.dev.java.net/2009/02">
    <grammars/>
    <resources base="https://test.api.openstack.com">
        <resource path="path/to/my">
            <resource path="resource">
                <method name="GET">
                    <response status="200 203"/>
                </method>
                <method name="DELETE">
                    <response status="200"/>
                </method>
            </resource>
        </resource>
    </resources>
</application>



 In Example 3 we have two
                        <resource> elements, one
                    for path/to/my and another for
                        resource. The ability to intermix
                    flat and tree forms, allows the WADL author the
                    flexibility to start with a simple API description
                    and expand on it as the API grows in complexity.
                

Content Reuse
WADL contains a number of features that
                    encourages content reuse. First,
                        <method>,
                        <representation>, and
                        <param> elements can be
                    specified separately from individual resources and
                    therefore can be shared between them. For example
                    suppose that you have two resources
                        widgets and gadgets
                    both of these resources contain a method to access
                    metadata. You can repeat the method definition in
                    both resources as illustrated in Example 4. 
Example 4: Two resources with a common method
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:wapi="http://widget/api/v1">
    <grammars>
        <include href="xsd/widget.xsd"/>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource path="widgets">
            <method name="GET">
                <response status="200 203">
                    <representation mediaType="application/xml" element="wapi:metadata"/>
                </response>
            </method>
        </resource>
        <resource path="gadgets">
            <method name="GET">
                <response status="200 203">
                    <representation mediaType="application/xml" element="wapi:metadata"/>
                </response>
            </method>
        </resource>
    </resources>
</application>



Repeating the method however can be error prone
                    and tedious. Instead, the method can be written
                    once and referenced from the individual resource
                    as illustrated in Example 5. 
Example 5: Two resources with a common shared
                        method
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:wapi="http://widget/api/v1">
    <grammars>
        <include href="xsd/widget.xsd"/>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource path="widgets">
            <method href="#getMetadata"/>
        </resource>
        <resource path="gadgets">
            <method href="#getMetadata"/>
        </resource>
    </resources>
    <method name="GET" id="getMetadata">
        <response status="200 203">
            <representation mediaType="application/xml" element="wapi:metadata"/>
        </response>
    </method>
</application>



Note that the method is referred to by its
                        id and the hash (#) is used to
                    denote the internal link. It's possible that
                    multiple related methods can be shared between
                    resources. One can express multiple methods
                    together, as in Example 6,
                    however this too can get tedious an error prone. 
Example 6: Two resources with a common shared
                        methods
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:wapi="http://widget/api/v1">
    <grammars>
        <include href="xsd/widget.xsd"/>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource path="widgets">
            <method href="#getMetadata"/>
            <method href="#setMetadata"/>
        </resource>
        <resource path="gadgets">
            <method href="#getMetadata"/>
            <method href="#setMetadata"/>
        </resource>
    </resources>
    <method name="GET" id="getMetadata">
        <response status="200 203">
            <representation mediaType="application/xml" element="wapi:metadata"/>
        </response>
    </method>
    <method name="POST" id="setMetadata">
        <request>
            <representation mediaType="application/xml" element="wapi:metadata"/>
        </request>
        <response status="200">
            <representation mediaType="application/xml" element="wapi:metadata"/>
        </response>
    </method>
</application>



To alleviate this issue, WADL defines the
                    concept of a resource_type. A
                        resource_type contains common
                    behavior that can be shared between multiple
                    resources. This is illustrated in Example 7. 
Example 7: Two resources with a common resource
                        type
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:wapi="http://widget/api/v1">
    <grammars>
        <include href="xsd/widget.xsd"/>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource path="widgets" type="#containsMetadata"/>
        <resource path="gadgets" type="#containsMetadata"/>
    </resources>
    <resource_type id="containsMetadata">
        <method name="GET" id="getMetadata">
            <response status="200 203">
                <representation mediaType="application/xml" element="wapi:metadata"/>
            </response>
        </method>
        <method name="POST" id="setMetadata">
            <request>
                <representation mediaType="application/xml" element="wapi:metadata"/>
            </request>
            <response status="200">
                <representation mediaType="application/xml" element="wapi:metadata"/>
            </response>
        </method>
    </resource_type>
</application>



 Realistically, resource_types may
                    capture many different methods. They may also
                    introduce common sub-resources as illustrated in
                        Example 8. 
Example 8: Two resources with a common complex
                        resource type
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:wapi="http://widget/api/v1">
    <grammars>
        <include href="xsd/widget.xsd"/>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource path="widgets" type="#containsMetadata"/>
        <resource path="gadgets" type="#containsMetadata"/>
    </resources>
    <resource_type id="containsMetadata">
        <method href="#getMetadata"/>
        <method href="#setMetadata"/>
        <resource id="MetadataKey" path="{key}">
            <param name="key" style="template" type="wapi:MetadataKey"/>
            <method href="#getMetadataItem"/>
            <method href="#setMetadataItem"/>
            <method href="#deleteMetadataItem"/>
        </resource>
    </resource_type>
</application>



Note that <method>,
                        <representation>,
                        <param>, and
                        <resource_type> elements
                    need not appear in the same WADL, they may be
                    linked in from an external WADL as illustrated
                    below. 
Example 9: Two resources with a common external
                        resource type
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:wapi="http://widget/api/v1">
    <grammars>
        <include href="xsd/widget.xsd"/>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource path="widgets" type="common.wadl#containsMetadata">
            <!-- widget specific subresources / methods -->
        </resource>
        <resource path="gadgets" type="common.wadl#containsMetadata">
            <!-- gadget specific subresources / methods -->
        </resource>
    </resources>
</application>



 Finally, note that multiple
                        resource_types may be associated
                    with a single resource. 
Example 10: Two resources inheriting from multiple
                        resource types
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:wapi="http://widget/api/v1">
    <grammars>
        <include href="xsd/widget.xsd"/>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource path="widgets" type="common.wadl#containsMetadata common.wadl#commonMethods">
            <!-- widget specific subresources / methods -->
        </resource>
        <resource path="gadgets" type="common.wadl#containsMetadata common.wadl#commonMethods">
            <!-- gadget specific subresources / methods -->
        </resource>
    </resources>
</application>




Inline Documentation
All elements defined by the WADL specification
                    can be associated with inline documentation via
                    the <doc> element. A simple
                    illustration of this is shown in the example
                    below. 
Example 11: Resource type with doc element
<resource_type id="BackupList">
    <doc xml:lang="EN" title="Backup List">
        <p xmlns="http://www.w3.org/1999/xhtml">
            A list of backups. Each backup contains IDs, names, and
            links -- other attributes are omitted.
        </p>
    </doc>
    <method href="#listBackups"/>
</resource_type>



Note that Example 11 uses the XHTML
                    grammar for narrative text. This is not a
                    requirement, different narrative text grammars can
                    be used. Also note the used of the
                        xml:lang attribute, multiple
                        <doc> elements can be used
                    each in a different language to aid in the
                    internationalization of the WADL. The
                        title element can be used to give
                    an overview of the documentation text. 

Grammar Agnostic Assertions
WADLs contain a <grammars>
                    element that allows the association of grammars
                    such as XML Schema with a REST API. Grammars may
                    be included by means of the
                        <include> element as
                    illustrated in Example 10 or they
                    may be written inline as shown in Example 12. 
The WADL specification does not encourage the
                    use of a specific schema grammar over another, but
                    allows the usage of multiple grammars within the
                    same WADL. This enables support for APIs where
                    resources are exposed via multiple mediatypes such
                    as XML and JSON.
                
Besides using grammars to make assertions about
                    a particular media types, they can also be used to
                    make assertions about other aspects of the HTTP
                    request and response. This is illustrated in Example 12. 
Example 12: WADL with inline grammar
<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:csapi="http://docs.openstack.org/compute/api/v1.1">
    <grammars>
        <schema elementFormDefault="qualified"
                attributeFormDefault="unqualified"
                xmlns="http://www.w3.org/2001/XMLSchema"
                xmlns:csapi="http://docs.openstack.org/compute/api/v1.1"
                xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                targetNamespace="http://docs.openstack.org/compute/api/v1.1">
            <simpleType name="Progress">
                <restriction base="xsd:int">
                    <minInclusive value="0"/>
                    <maxInclusive value="100" />
                </restriction>
            </simpleType>
            <simpleType name="UUID">
                <restriction base="xsd:string">
                    <length value="36" fixed="true"/>
                    <pattern value="[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}"/>
                </restriction>
            </simpleType>
        </schema>
    </grammars>
    <resources base="https://test.api.openstack.com">
        <resource id="uuid" path="path/to/my/resource/{uuid}">
            <param name="uuid" style="template" type="csapi:UUID"/>
            <method href="#getMethod" />
        </resource>
        <resource id="progress" path="path/to/{progress}">
            <param name="progress" style="template" type="csapi:Progress"/>
            <method href="#getMethod" />
        </resource>
    </resources>
    <method id="getMethod" name="GET">
        <response status="200 203"/>
    </method>
</application>



 Here, we define two simple types: 	Progress
	 An int with a value between 0
                                   and 100 inclusive. 

	UUID
	 A 36 character long string that
                                   represents five groups of
                                   hexadecimal digits separated by
                                   hyphens. 



We associate these simple types
                    with path elements in the URI by means of template
                    parameters. Thus, we are denoting that the URI
                    paths:
                        path/to/my/resource/3bba8e68-8af5-11e1-ac65-17a552dd2535
                    and path/to/98 are valid according to
                    the WADL, but URI paths such as
                        path/to/my/resource/xyz and
                        path/to/101 are not. 
Finally, we can use grammars to make assertions
                    about individual sections of the mediatype by
                    means of plain parameters. This is
                    illustrated in method in Example 13. 
Example 13: Method with a plain parameter and a
                        link
<method name="GET" id="versionDetails">
    <response status="200 203">
        <representation mediaType="application/xml" element="common:version">
            <param name="location" style="plain" type="xsd:anyURI"
                   required="true"
                   path="/common:version/atom:link[@rel='self']/@href">
                <link resource_type="#VersionDetails" rel="self"/>
            </param>
        </representation>
    </response>
</method>



Here we define that the response to the
                        versionDetails method should
                    contain an XML payload that validates against the
                    element defined by the QName
                        common:version. Additionally, we
                    make an assertion that at the XPath
                        /common:version/atom:link[@rel='self']/@href
                    there should be a value that validates against the
                    type xsd:anyURI. Furthermore, this
                    URI should provide a link to a resource with a
                        resource_type of
                        VersionDetails. 
Note that plain parameters can also be used by
                mediatypes that are not XML based. Launchpad
                uses JSONPath to make similar assertions on its JSON
                based API. This is illustrated in Example 14. 
Example 14: Excerpt from Launchpad WADL
<representation mediaType="application/json" id="wiki_name-page">
    <param style="plain" name="total_size" path="$['total_size']" required="true"/>
    <param style="plain" name="start" path="$['start']" required="true"/>
    <param style="plain" name="entries" path="$['entries']" required="true"/>
    <param style="plain" name="resource_type_link" path="$['resource_type_link']">
        <link/>
    </param>
    <param style="plain" name="next_collection_link" path="$['next_collection_link']">
        <link resource_type="#wiki_name-page-resource"/>
    </param>
    <param style="plain" name="prev_collection_link" path="$['prev_collection_link']">
        <link resource_type="#wiki_name-page-resource"/>
    </param>
    <param style="plain" name="entry_links" path="$['entries'][*]['self_link']">
        <link resource_type="https://api.staging.launchpad.net/1.0/#wiki_name"/>
    </param>
  </representation>



Here we state that there should exist JSON
                    attributes at the JSONPaths given by
                        $['total_size'],
                        $['start'], and
                        $['entries']. Additionally the
                    fields at $['resource_type_link'],
                        $['next_collection_link'],
                        $['prev_collection_link'], and
                        $['entries'][*]['self_link']
                    should contain links to other resources. 
Note that Launchpad uses plain parameters to
                    make assertions about various aspects of the JSON
                        representation without having to
                    rely directly on JSON schema. 
This ability to reference elements from external
                    WADLs allows for common behavior to be shared
                    between different APIs and has the potential to
                    significantly accelerate the definition of APIs
                    with common attributes and behaviors. 

Extensibility
The WADL specification defines a fairly standard
                    extensibility model of allowing elements and
                    attributes in foreign namespaces. The example
                    below illustrates a number of Apigee extensions,
                    including one which indicates that authentication
                    credentials are not required in this particular
                    method call. 
Example 15: Method with Apigee Extensions
<method id="statusespublic_timeline" name="GET" xmlns:apigee="http://api.apigee.com/wadl/2010/07/">
    <apigee:tags>
        <apigee:tag primary="true">Timeline</apigee:tag>
        <apigee:tag>Status</apigee:tag>
    </apigee:tags>
    <apigee:authentication required="false"/>
    <apigee:example url="/statuses/public_timeline.{format}"/>
    <doc title=""
         apigee:url="http://dev.twitter.com/doc/get/statuses/public_timeline">Returns
    the 20 most recent statuses, including retweets if they exist,
    from non-protected users.</doc>
</method>



 The ability to support extensions means that
                    niche capabilities can be inserted into the WADL
                    in a compatible manner. 


Documentation from WADL
A WADL describes a RESTful API in a machine readable
                format. There is often a need, however, for humans to
                study and understand the available methods,
                parameters, and representations the API offers. Rather
                than manually reproducing that information in a
                documentation format and trying to keep these
                synchronized, clearly a literate programming approach
                is called for. 
In pursuing our literate program approach, we
                considered extending DocBook with custom markup that
                we could then use to generate WADL. This approach was
                attractive in that it would allow us to make the
                contract author's experience like writing
                documentation. However, we worried that we would be
                reinventing the wheel and would spend too much time
                creating a content model that could be turned into
                WADL. We also felt that we would need to support
                round-tripping between our extended-DocBook and the
                generated WADL. Ultimately, we decided to allow
                authors to embed WADL markup directly in the DocBook.
                To allow for this we: 	Added support for certain elements from
                            the WADL namespace in our customization of
                            DocBook.

	Added steps to our processing pipeline
                            to turn the WADL elements into
                            DocBook.


In writing the narrative description of
                the API, you can include either pointers to an
                external WADL or literal WADL. The following example
                shows a fragment of our DocBook-variant with a pointer
                to resource/method combination in an external WADL: 
Example 16: DocBook With WADL Elements
<section>
    <title>Volume Lists</title>
    <para>
        These operations provide a list of volumes associated
        with a particular tenant. Volumes contain a status
        attribute that can be used as an indication of the
        current volume state.  Volumes with an
        <code>AVAILABLE</code> status are available for
        use.  A volume with an <code>ATTACHED</code> is
        currently attached to a server.  Other possible values
        for the status attribute include:
        <code>CREATING</code>,
        <code>ATTACHING</code>,
        <code>DETACHING</code>,
        <code>DELETING</code>,
        <code>DELETED</code>,
        <code>UNKNOWN</code>, and
        <code>ERROR</code>.
    </para>
    <para>
        The list of volumes may be filtered by type, backup,
        name, and status via the respective query parameters.
        When retrieving a list of volumes via the
        changes-since parameter, the list will contain volumes
        that have been deleted since the changes-since time
        (see Section 3.5, in the OpenStack Compute Dev Guide
        for a description of Changes-Since).
    </para>
    <resources xmlns="http://wadl.dev.java.net/2009/02">
        <resource href="os-block-storage-1.0.wadl#Volumes">
            <method href="listVolumes"/>
        </resource>
    </resources>
</section>





                	The wadl:resources element
                            wraps one or more resources, as it would
                            in a normal wadl. 

	The wadl:resource element
                            wraps one or more methods and defines the
                            location of the wadl and the
                                id of the resource for
                            the methods. 

	The wadl:method element
                            points to a method defined in the WADL.
                            Each method becomes a section
                            in the resulting DocBook. All of the
                            methods with a common DocBook
                                section ancestor become
                                sections within that
                                section. Alternatively,
                            you can omit the wadl:method
                            and the system will create sections for
                            all of the methods that are children of
                            the resource in the target wadl. 



            
To ease the burden on authors, we have created
                schematron rule in a custom framework for the oXygen
                    editor to validate that the references to
                the WADL point to ids in the WADL. 
In addition to pointing to resource and method
                combinations, it is also possible to point to a
                resource and have all the methods within that resource
                pulled into the document or to point to the WADL and
                have all of the resources and methods from the WADL
                pulled in. 
Finally, instead of pointing to an external WADL,
                the author can simply include the entire
                    wadl:resource and
                    wadl:method(s) in the DocBook
                document directly. 
 The following is an image of the section produced
                in PDF result after processing [Example 16]: 
Figure 17: Resulting WADL PDF Section
[image: ]


 The following is the WADL method that is being
                imported into the DocBook: 
Example 18: WADL Method
<?xml version="1.0" encoding="UTF-8"?>
<!-- Volume Methods -->
<method name="GET" id="listVolumes">
    <doc xml:lang="EN" title="List Volumes">
        <db:para role="shortdesc">
            List all volumes (IDs, names, links).
        </db:para>
        <db:para>
            A list of volumes. Each volume contains IDs, names, and
            links -- other attributes are omitted.
        </db:para>
    </doc>
    <request>
        <param name="changes-since" style="query" required="false" type="xsd:dateTime"/>
        <param name="type" style="query" required="false" type="osapi:UUID"/>
        <param name="backup" style="query" required="false" type="osapi:UUID"/>
        <param name="name"   style="query" required="false" type="xsd:string"/>
        <param name="marker" style="query" required="false" type="osapi:UUID"/>
        <param name="limit"  style="query" required="false" type="xsd:int"/>
    </request>
    <response status="200 203">
        <representation mediaType="application/xml" element="bs:volumes">
            <doc xml:lang="EN">
                <xsdxt:code href="samples/core/volumes-sparse.xml" />
            </doc>
        </representation>
        <representation mediaType="application/json">
            <doc xml:lang="EN">
                <xsdxt:code href="samples/core/volumes-sparse.json" />
            </doc>
        </representation>
    </response>
    <!-- Common Faults -->
    <response>
        <representation mediaType="application/xml" element="bs:blockstorageFault"/>
        <representation mediaType="application/json"/>
    </response>
    <response status="503">
        <representation mediaType="application/xml" element="bs:serviceUnavailable"/>
        <representation mediaType="application/json"/>
    </response>
    <response status="401">
        <representation mediaType="application/xml" element="bs:unauthorized"/>
        <representation mediaType="application/json"/>
    </response>
    <response status="403">
        <representation mediaType="application/xml" element="bs:forbidden"/>
        <representation mediaType="application/json"/>
    </response>
</method>


 Note that while many of the attributes and elements
                map directly from the WADL representation to the PDF
                rendering, there exist some subtleties: 
	Query parameters are rendered in two
                        different ways: Inline with the URI and in the
                        Request Parameters table 

	Section, Table, and Example titles are
                        automatically generated based on context. For
                        example, the example title "List Volumes
                        Response: XML" is generated because there is a
                        representation example of mediaType
                        application/xml that is contained within
                        method called "List Volumes". 

	Parameter descriptions are also generated
                        based on context. 

	Other parameters such as the
                            tenantId parameter are
                        implied simply because of the URI the method
                        is associated with. 

	Note the use of the xsdxt:code
                        extension to associate an example document
                        with the API response. 



WADL Normalization
As described in section “Content Reuse”, the
                WADL format includes a number of features that
                facilitate WADL authoring and content reuse. For
                example, when creating a WADL, it is typical to put
                all of the method
                elements at the end of the document and refer to them
                indirectly from the resources where they are used. You can
                link to methods in a separate WADL. Likewise, you can
                define resource_type
                elements containing various methods and parameters.
                Each resource can
                then be declared to be of one or more resource types
                to avoid repeated information. Finally, WADLs can
                refer to XSD files to define data types used in the
                WADL. The XSD files in turn often have a modular
                design. While these features facilitate information
                reuse and support "single point of truth" practices, a
                side effect of the indirection is that WADLs can be
                difficult to process. To address this issue, we
                created a WADL normalizer which uses XSLT to flatten
                out the WADL and associated XSDs. In the WADL, for
                example, all references to methods and
                    resource_types are resolved. Further
                processing is therefore greatly simplified. We have
                made this tool available as open source software. 
Use cases for the WADL normalizer include:	Preparing the WADL for use with tools
                            like SoapUI. Limitations and bugs
                            in SoapUI cause it to fail if certain
                            features of the WADL are used. For example
                            if you use resource_types or
                            refer to a method in an external WADL,
                            SoapUI cannot load the WADL and throws and
                            exception. 

	Preparing the WADL before using it to
                            generate human-readable documentation, as
                            described in section “Documentation from WADL”.

	Open
                        Repose uses the WADL normalizer as a
                        preprocessing step before using the WADL for
                        validation is discussed in section “The Validation Pipeline”.


The WADL normalizer is implemented as
                XSLT 2.0 stylesheets. In their current form, the
                stylesheets use modes to take several passes at the
                WADL, but they would benefit from being implemented as
                an XProc
                pipeline. 
The WADL normalizer offers a number of options to
                control the formatting of the normalized wadl file,
                summarized by the usage
                below:dcramer@anatine ~/rax/wadl-tools/src/test/scala (scalaCLI)
        $ normalizeWadl.sh -?

        Usage: normalizeWadl.sh [-?fvx] -w wadlFile

        OPTIONS:
        -w wadlFile: The wadl file to normalize.
        -f Wadl format. path or tree
        path: Format resources in path format, 
        e.g. <resource path='foo/bar'/>
        tree: Format resources in tree format, 
        e.g. <resource path='foo'><resource path='bar'>...
        If you omit the -f switch, the script makes no 
        changes to the structure of the resources.
        -v XSD Version (1.0 and 1.1 supported, 1.1 is the default)
        -x true or false. Flatten xsds (true by default).
        -r keep or omit. Omit resource_type elements (keep by default).

One of the most important options is the format of
                the resource paths. By default, the normalizer leaves
                the path attributes on the resource elements
                unchanged. So if the source wadl contains a mixture of
                hierarchical and flat path attribute values, these are
                left untouched. In the following code listing, notice
                that some of the resource elements are nested and
                others have multiple items in the path
                attribute:<application xmlns="http://wadl.dev.java.net/2009/02"
	     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <resources base="https://test.api.openstack.com">
    <resource path="a/b">
      <resource path="c">
        <method href="#foo"/>
      </resource>
    </resource>
    <resource path="d">
      <resource path="e/f"/>
    </resource>
    <resource path="g"/>
    <resource path="h/i/{j}/k">
      <param name="j" style="template" type="xsd:string" required="true"/>
      <method href="#foo"/>
    </resource>
    <resource path="h/i/{j}/k/l">
      <method href="#foo"/>		
    </resource>
  </resources>
  <method id="foo"/>
</application>
However,
                you can also flatten out these paths or expand them so
                that all the resources are nested. Here's the same
                wadl in the path
                format:<application xmlns="http://wadl.dev.java.net/2009/02"
	     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <resources base="https://test.api.openstack.com">
    <resource path="a/b/c" id="d12e4">
      <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
    </resource>
    <resource path="h/i/{j}/k" id="d12e9">
      <param xmlns:rax="http://docs.rackspace.com/api" name="j" style="template"
	     type="xsd:string"
	     required="true"
	     rax:id=""/>
      <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
    </resource>
    <resource path="h/i/{j}/k/l" id="d12e12">
      <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
    </resource>
  </resources>
  <method id="foo"/>
</application>
The
                    rax:id attributes have been added to
                preserve the original ids that could not be duplicated
                in the normalized wadl without making the wadl
                invalid. These are required for down-stream processing
                when we generate documentation from the normalized
                wadl. 
You can also expand the flat paths into a fully
                hierarchical tree format. The following example shows
                the same wadl expanded into the tree
                format:<application xmlns="http://wadl.dev.java.net/2009/02"
	     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <resources base="https://test.api.openstack.com">
    <resource path="a">
      <resource path="b">
        <resource path="c">
          <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
        </resource>
      </resource>
    </resource>
    <resource path="d">
      <resource path="e">
        <resource path="f"/>
      </resource>
    </resource>
    <resource path="g"/>
    <resource path="h">
      <resource path="i">
        <resource path="{j}">
          <param name="j" style="template" type="xsd:string" required="true"/>
          <resource path="k">
            <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
            <resource path="l">
              <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
            </resource>
          </resource>
        </resource>
      </resource>
    </resource>
  </resources>
  <method id="foo"/>
</application>

In addition, the normalizer can optionally flatten
                out XSDs by pulling in included XSDs and filtering
                based on the vc:minVersion and
                    vc:maxVersion attributes. 
Finally, you can optionally filter out
                    resource_type elements from the
                normalized wadls. In some cases, it is useful to
                preserve these element, but they can cause problems
                for certain tools. Therefore a parameter is provided
                filter out the resource_types. 


The Validation Problem

            As a REST service is being developed, the goal is to
            ensure that the documentation accurately matches the
            implementation. Once a REST service reaches a mature
            state, or is released publicly, the documentation becomes
            a contract; both clients and alternate implementations use
            this contract to guide their development. Iteroperability
            between all parties requires that both the documentation
            and the implementation remain stable, even in the face of
            bug fixes, upgrades, enhancements, and the introduction of
            new features via extensions.
        

            In the presence of these changes, there always exist the
            possibility that either the implementation or its docs may
            inadvertently drift from one another.  This drift often
            introduces incompatibilities that can cause clients to
            fail. Thus, it's important to constantly test that the
            implementation and its documentation conform to one
            another. Unfortunately, our quality engineering teams are
            often not focused on document conformance, or on the
            intricate details of the REST/HTTP aspects of the
            service. Instead, these teams are focused on the
            functionality of the service itself.  It's been our
            experience that a number of incompatibilities often slip
            through the cracks as a result. What's more, because this
            focus on functional testing has little to no regard to
            documentation of the service, we've found cases where both
            the implementation and its tests drift away from the docs
            simultaneously.  Adding to the complexity is the fact that
            service developers tend to allow their implementations to
            be flexible and loose when accepting messages from clients
            — this means that conformance and functional tests
            themselves may inadvertently drift from the service
            contract without notice.
        

            One of our main goals is to better incorporate the
            documentation in the testing process in an automated
            way. The idea is to use the documentation pipeline to
            generate validation rules that can be checked in a layer
            between the function tests and the service itself. This is
            illustrated in Figure 19.
        
Figure 19: A REST validator
[image: ]



            Here, the validator intercepts requests from the
            functional tests before they reach the service and check
            them for strict conformance to the documentation.
            Likewise, the validator intercepts the response for the REST
            service and also validates them. There are several
            advantages to taking this approach:
            	
                        Because the validation rules are generated
                        directly from the documentation, we can ensure
                        that the validator is strictly accurate with
                        conformance to the docs.
                    

	
                        Because the validator sits between the
                        functional tests and the service itself, it
                        can be used to check for drift by both parties
                        simultaneously.
                    

	
                        The technique can be easily incorporated into
                        existing services — it does not require
                        changes to existing functional tests.                  
                    



        

Validating REST with Automata

            Given any possible HTTP message, the validator in Figure 19 needs to be able to tell the difference
            between an HTTP message that meets all of the criteria
            defined in the documentation, from an HTTP message that
            does not.  In other words, the validator must accept the
            subset of all HTTP messages that are valid according to
            the description in the source document. The validator also
            needs to categorize those messages that are not valid
            according to the error code that should be generated by
            the underlying REST service, so that the error code that
            the REST service produces can also be verified.
        

            Accepting messages that meet some criteria is a common
            problem in computer science. One technique for solving the
            problem is to utilize an automaton. An automaton is a
            state machine that transitions from an initial
            start state to other states based on
            the current input. If after the message is read the
            machine is in an accept state, then
            the message is accepted, otherwise the message does not
            meet the required criteria.
        

            The idea behind our validators is to translate
            documentation in the form of a WADL (either stand-alone or
            extracted from the contents of a RackBook document), into a
            representation of an automaton that can be used to
            validate messages as they are intercepted between
            functional tests and the REST service.
        

            An example automata is illustrated in Figure 20.
        
Figure 20: A REST Automaton
[image: ]



           For simplicity, the automaton above is only checking for
           conformance to the URL path and the HTTP method.  In this
           particular API, the only allowed operation is a GET on the
           path /path/to/record/{date}, where {date} is an xs:date as
           defined by W3C XML Schema W3CSchema2010. The start state is S0. There are
           three accept states:
           	
                       SA: accepts HTTP messages that follow the
                       constraints defined by the API.
                   

	
                       d30U: accepts HTTP messages for which a 404
                       (Not Found) response should be expected from
                       the REST service.
                   

	
                       d30M: accepts HTTP messages for which a 405
                       (Method Not Allowed) should be expected.
                   



        

            Starting at state S0, the process examines the URL path,
            one path segment at a time. The HTTP method is not
            accessible until the path has been completely parsed. The
            transition from one state to another is based on input
            matches, except in the case of an ε transition,
            where a state is advanced without regard to the current
            input.  In the machine above, U(x) matches the current URL
            path segment to x, where x may be a regular expression or
            a QName representing an XML Schema simple type. U!(x),
            matches an URL segment that is not
            accepted by x. On a successful match the URL path is
            advanced to the next path element.  After the URL path is
            completely read, the machine proceeds to read the HTTP
            Method. Here, M(x) and M!(x), work the same as U(x) and
            U!(x), except they match against the HTTP method instead
            of the URL path segment. Because the automaton is only
            checking for URL paths and Methods the process ends after
            the HTTP method has been read.
        

            Table I illustrates the states that are
            transitioned based on an example set of inputs.
        
Table I
 Sample input to the automaton on Figure 20

	Input	States Traveled	Result
	GET /path/to/record/2001-01-02	S0, d18e4, d18e5, d18e6, d18e7, d18e9, SA	200 Okay
	GET /my/path/	S0, d30U, d30U, d30U	404 Not Found
	PUT /path/to/record/2001-01-02	S0, d18e4, d18e5, d18e6, d18e7, d30M	405 Bad Method


The Checker Format

            REST Automata are internally represented by an XML format,
            which we call the checker format. An
            instance document in this format is illustrated in Figure 21.
        
Figure 21: A representation of the automaton from Figure 20 in checker format.
<?xml version="1.0" encoding="UTF-8"?>
<checker xmlns="http://www.rackspace.com/repose/wadl/checker"
         xmlns:xs="http://www.w3.org/2001/XMLSchema">
   <step id="S0" type="START" next="d18e4 SE1 d21e2u"/>
   <step type="URL_FAIL" id="d21e2u" notMatch="path"/>
   <step type="URL" id="d18e4" match="path" next="d18e5 SE1 d21e3u"/>
   <step type="URL_FAIL" id="d21e3u" notMatch="to"/>
   <step type="URL" id="d18e5" match="to" next="d18e6 SE1 d21e4u"/>
   <step type="URL_FAIL" id="d21e4u" notMatch="record"/>
   <step type="URL" id="d18e6" match="record" next="d18e7 SE1 d21e5u"/>
   <step type="URL_FAIL" id="d21e5u" notTypes="xs:date"/>
   <step type="URLXSD"
         id="d18e7"
         match="xs:date"
         label="date"
         next="d18e9 d21e6m SE0"/>
   <step type="METHOD_FAIL" id="d21e6m" notMatch="GET"/>
   <step type="METHOD" id="d18e9" match="GET" next="SA"/>
   <step id="SE0" type="URL_FAIL"/>
   <step id="SE1" type="METHOD_FAIL"/>
   <step id="SA" type="ACCEPT"/>
</checker>




            This simple, terse, document type maps each state in the
            state machine, along with the edges that it connects to,
            into a single step element. All steps in the checker
            format contain an id attribute of type xs:ID which
            uniquely identifies the step in the machine and a type
            attribute which indicates the type of check the step
            performs. Note, that in Figure 21,
            there are two types of URL checks: the steps that check a
            path segment against a regular expression are of type URL,
            and those that check the segment against a simple XML
            Schema type are of type URLXSD.  Connections between steps
            are represented by a next attribute of type
            xs:IDREFs. Additionally, most steps also contain a match
            or notMatch attribute that provides the details of how the
            a match is interpreted.
        

            Currently there exist steps to match against all aspects
            of the HTTP request, including steps that match against
            request media types, that check the well formness of XML
            and JSON content, that validate XML via an W3C XML Schema
            (XSD) 1.1 validator and that check for the presence of
            required elements by means of XPath expressions. Note that
            this is particularly important because a REST service may
            define many different types of elements, the element
            attribute in a representation binds an element to a
            particular operation — and this is enforced via an
            XPath expression step in the machine.
        

            Another important checker step is the XSLT step, which
            performs a transformation of the request message before it
            is validated by the XSD step.  It may seem odd to that an
            XSLT transform may be required for validation, but the
            requirement comes into play in cases where the type of the
            request document needs to be restricted (or extended)
            based on the operation being performed.  Let's say, for
            example, that a REST API dealing with Widgets allows a
            Widget to have all attributes when performing a PUT
            operation, but restricts the POST operation to Widget
            documents containing only a subset of the available
            attributes — this is a common pattern in REST
            services.  The restriction on POST is specified in the
            WADL in Figure 22.
        
Figure 22: Widget WADL
<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://wadl.dev.java.net/2009/02"
    xmlns:widget="http://rackspace.com/sample/widget"
    xmlns:xs="http://www.w3.org/2001/XMLSchema">
    <grammars>
        <include href="widget.xsd"></include>
    </grammars>
    <resources base="http://localhost/">
        <resource path="widget">
            <param style="template" type="xs:date" name="date"/>
            <!-- The PUT operation allows all widgets as request
                 representation. -->
            <method name="PUT">
                <request>
                    <representation mediaType="application/xml" element="widget:widget"/>
                </request>
                <response>
                    <representation mediaType="applicaiton/xml" element="widget:widget"/>
                </response>
            </method>
            <!-- The POST operation allows only widgets of the restricted type WidgetForCreate -->
            <method name="POST">
                <request>
                    <representation mediaType="application/xml" element="widget:widget">
                        <param style="plain" path="/widget:widget" type="widget:WidgetForCreate"/>
                    </representation>
                </request>
                <response>
                    <representation mediaType="applicaiton/xml" element="widget:widget"/>
                </response>
            </method>
        </resource>
    </resources>
</application>




            Note that we use a WADL plain parameter (described in
            section “Grammar Agnostic Assertions”) to connect a restricted
            type (which prohibits a number of attributes) of the
            Widget to the POST operation, by specifying the
            WidgetForCreate type and an XPath of where the type should
            apply. In the automaton, this is translated into an XSLT
            step that modifies the request document by adding an
            xsi:type parameter, thus informing the validator to
            validate the contents of the Widget message as an instance
            of the restricted type. In this case, the restriction is
            made in the root document, but these types of restrictions
            can be placed on any element in an XML document.
        
Figure 23: Widget Request (before XSLT step)
<?xml version="1.0" encoding="UTF-8"?>

<widget xmlns="http://rackspace.com/sample/widget"
        name="MyWidget"/>



Figure 24: Widget Request (after XSLT step)
<?xml version="1.0" encoding="UTF-8"?>

<widget xmlns="http://rackspace.com/sample/widget"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    name="MyWidget"  xsi:type="WidgetForCreate"/>




Optimization

            The automata created to validate REST services may be
            quite complex, often involving many states and
            connections. As an example, Figure 25
            illustrates the automaton for validating the OpenStack
            Compute API (excluding extensions).
        
Figure 25: OpenStack compute API Automaton
[image: ]



            Optimization stages may be introduced into the
            transformation process to try to reduce the number of
            states in the automaton. Each optimization stage is simply
            an XSLT that takes a checker document as input and creates
            a checker document with less states as output.
            Optimization stages can therefore be chained together.
            With each stage, the checker document produced should
            perform the exact same function as the original
            unoptimized one.
        

            Currently, optimization stages work by compressing
            redundant (or nondistinguishable) states into a single
            state. Redundant states occur quite frequently because the
            translation code that converts a WADL to a checker
            document does so without regard to the number of states
            produce in order to keep the translation code simple. Figure 26 illustrates the effect of
            running these optimization stages on the compute API.
            Note that the number of states is reduced dramatically.
        
Figure 26: OpenStack compute API Automaton (Optimized)
[image: ]



            Other optimization techniques are possible.  For example
            an optimization stage may:
            	
                        Convert the simple type checks in URLXSD steps
                        into regular expression URL steps.
                    

	
                        Compress multiple regular extension checks
                        into a single check.
                    

	
                        Compress multiple boolean XPath expressions
                        into a single expression.
                    

	
                        Compress XPath expressions, XSLT
                        transformations, and XSD schema validation
                        into a single schema aware XSLT transform
                        step.
                    



        

The Validation Pipeline

            The validation pipeline is responsible for producing REST
            automata from WADLs. The pipeline is illustrated in
            Figure 27.
        
Figure 27: Validation Pipeline
[image: ]



            The first three parts of the pipeline are shared with our
            general documentation pipeline.  The stages utilize XProc,
            XSLT2, and XSD 1.1 to generate the final checker document.
            The final stage, creates an immutable data structure from
            this document that is used by the Repose WADL proxy
            component to process and validate API requests within the
            Repose HTTP proxy. This stage is implemented by means of a
            specialized SAX
            handler. The data structure the handler produces is
            essentially a model of the automaton that can be executed
            by the Repose component when validating request. The
            process for validating HTTP request with the data
            structure avoids the use of global state, meaning that
            most context is passed via the call stack. Because of
            this, and because the internal data structure is
            immutable, the entire process is thread safe, meaning that
            it can validate multiple HTTP request simultaneously in
            different threads of execution.
        

            It's important to note that the validation pipeline above
            is a prepossessing step.  Once the immutable data
            structure is create it can be used to handle many HTTP
            request simultaneously, at run-time, and in an efficient
            manner.
        

            Another note is that the stages in the validation pipeline
            are configurable. There are configuration options that
            dictate:
            	
                        The strictness of the validation — which
                        itself is determined by which validation steps
                        should be added to the final checker.
                    

	
                        Specialized options for each individual
                        steps. For example, should an XPath version 2
                        implementation be used in an XPath step?
                        Should Saxon EE or Xerces be used for XSD 1.1
                        validation in the XSD step?
                    

	
                        The optimization stages to use.
                    



        

Other Use Cases
 The initial goal for creating validators from REST
            documentation is described in section “The Validation Problem”, however, once an implementation of the validation
            pipeline was created, it became evident that the pipeline
            can be used to solve other problems. Some of these
            additional use cases are described below. 
Filtering and Error Reporting

                REST services receive many millions of HTTP requests a
                day. Many of these requests are malformed — the
                result of user errors. Because a validator can detect
                malformed requests, it can filter these from the
                underlying REST implementation. What's more, the
                validator has enough context to respond with an
                appropriate error message.  For example, rather than
                responding with simply a 404 (Not Found), the
                validator can respond with:
                404 /path/to/widget not found, expecting "server |
                image" instead of "widget".
            

                Our implementation has added support to this
                capability and it has proved useful.
            

Authorization

                Often different sets of users can access different
                parts of the API. For example, administrators may have
                the capability to reboot a server, but regular users
                may not.  The idea here is to build on the filtering
                capabilities in the previous section and assign
                different sets of users different validators, so that
                administrators have a validator that accepts the
                reboot operation, and regular users have a validator
                that does not.  The interesting thing about this
                use case is that the WADL becomes an authorization
                policy file.
            

API Coverage

                Validators are capable of logging what the stages in
                the automaton have been visited. This information can
                be used to compute test coverage. If there are states
                in the automaton that are not visited by functional
                tests, then the functional tests are obviously missing
                something. Also, in production, the information can be
                used to gain insight into what parts of an API are
                frequently accessed by users.
            


Conclusions

            In this paper, we described the process by which we used
            an existing documentation pipeline for documenting REST
            APIs and extend it to support the creation of validators
            that can help confirm that the documentation accurately
            reflects reality or that an implementation does not drift
            from what's stated in the docs.
        

            We took an intermediary approach for performing validation,
            where messages are intercepted between client and server
            applications and an automata-based programming approach
            that enabled the efficient validation of messages at
            run-time.  The technique opened up other use cases such as
            filtering, accurate error reporting, authorization, and
            API coverage. We feel that a main key to the success of
            the project was in choosing a tag set that semantically
            described all aspects of a RESTful service and contained
            author friendly features.
        

            In the next sections we describe some of the challenges we
            encountered while developing the validation pipeline and
            discuss some possible future extensions to the pipeline.
        
Challenges
XSD 1.1, early adoption

                    Because OpenStack APIs are extensible, describing the
                    XML media types with XSD 1.0 was not an option, we
                    need the new open content features that are now
                    offered by the XSD 1.1 standard. Since OpenStack is an
                    open and free platform, we have the goal of ensuring
                    that everything that we develop remains open and
                    accessible to the community, while still remaining
                    friendly to enterprise customers. To that end we
                    decided that our validators should support both the
                    Xerces (open source) and the Saxon EE (proprietary)
                    XSD 1.1 implementations.
                

                    We've had great success in ensuring that our
                    validators interoperate with both implementations
                    seamlessly, however, during the development of the
                    pipeline we have encountered a number of errors with
                    the Xerces implementation.  In fairness, the Xerces
                    implementation is still labeled BETA, and the Xerces
                    team has done a great job of resolving most of the
                    issues we've discovered thus far. The major challenge,
                    for us however, is we've come to rely on XSD 1.1
                    features when there is yet a full, production ready,
                    and free open source XSD 1.1 implementation.
                

Parsing XPaths in XSLT 2

                    WADL makes references to XPaths when describing plain
                    parameters. These XPaths need to be successfully
                    copied as they proceed along the validation
                    pipeline. Ensuring that the XPaths remain in tact
                    under all circumstances has proved difficult given
                    that there may be conflicts with namespace prefixes,
                    or worst, contention for the default namespace.
                

                    Our implementation makes a best effort to keep XPath
                    valid, but there are still some edge cases that trip
                    it up. We are debating whether to create an XSLT
                    extension that will enable us to leverage an XPath 2
                    parser, or to write our own XPath 2 parser in XSLT to
                    resolve the issue.
                

Testing The Validation Pipeline

                    An early challenge that we encountered was that we
                    needed to develop a method of testing the
                    validation pipeline. Because validation and our
                    documentation pipeline both rely on the WADL
                    normalizer, it is important to ensure that the
                    output of the normalizer accurately reflects the
                    intent of the original WADL author. To avoid
                    regressions as we add new features, we implemented
                    a functional testing framework that takes
                    advantage of the xml features of Scala to perform
                    transformations on simple WADLs and WADL+XSD
                    combinations and compare those with the expected
                    result. The following code sample shows one of
                    these tests.
                
Figure 28: A WADL normalizer test
scenario ("The original WADL is in mixed path/tree format"){
	given("a WADL with resources in mixed path/tree format")
	val inWADL =
<application xmlns="http://wadl.dev.java.net/2009/02"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <resources base="https://test.api.openstack.com">
    <resource path="a/b">
      <resource path="c">
	<method href="#foo"/>
      </resource>
    </resource>
    <resource path="d">
      <resource path="e/f"/>
    </resource>
    <resource path="g"/>
    <resource path="h/i/{j}/k">
      <param name="j" style="template" type="xsd:string" required="true"/>
      <method href="#foo"/>
    </resource>
    <resource path="h/i/{j}/k/l">
      <method href="#foo"/>		
    </resource>
  </resources>
  <method id="foo"/>
</application>
	val treeWADL = 
<application xmlns="http://wadl.dev.java.net/2009/02"
      xmlns:xsd="http://www.w3.org/2001/XMLSchema">
   <resources base="https://test.api.openstack.com">
      <resource queryType="application/x-www-form-urlencoded" path="a">
         <resource queryType="application/x-www-form-urlencoded" path="b">
            <resource queryType="application/x-www-form-urlencoded" path="c">
               <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
            </resource>
         </resource>
      </resource>
      <resource queryType="application/x-www-form-urlencoded" path="d">
         <resource queryType="application/x-www-form-urlencoded" path="e">
            <resource queryType="application/x-www-form-urlencoded" path="f"/>
         </resource>
      </resource>
      <resource queryType="application/x-www-form-urlencoded" path="g"/>
      <resource queryType="application/x-www-form-urlencoded" path="h">
         <resource queryType="application/x-www-form-urlencoded" path="i">
            <resource queryType="application/x-www-form-urlencoded" path="{j}">
               <param name="j" style="template" type="xsd:string" required="true" 
                     repeating="false"/>
               <resource queryType="application/x-www-form-urlencoded" path="k">
                  <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
                  <resource queryType="application/x-www-form-urlencoded" path="l">
                     <method xmlns:rax="http://docs.rackspace.com/api" rax:id="foo"/>
                  </resource>
               </resource>
            </resource>
         </resource>
      </resource>
   </resources>
   <method id="foo"/>
</application>
      when("the WADL is normalized")
      val normWADL = wadl.normalize(inWADL, TREE)
      then("the resources should now be in tree format")
      canon(treeWADL) should equal (canon(normWADL))
    }



                    Notice that the test infrastructure supports the
                    scenario/given/when/then format of behavioral driven
                    development.
                


Future Work

                The goal described in section “The Validation Problem” is
                not entirely complete because we are still missing
                considerable checks on the HTTP response generated by
                the REST service. We plan on extending the automata to
                account for this.  Additionally, we plan on adding
                JSONPath and JSON Schema stages as only JSON
                well formness is currently tested. We also plan on
                adding support for other validation languages in XML
                such as RelaxNG and Schematron.  Finally, we plan to
                pursue some of the extended use cases we discussed in
                section “Other Use Cases” such as authorization and
                API coverage.
            


Bibliography
[ApigeeWADL2012] 
        Apigee. The Apigee WADL Library
        https://github.com/apigee/wadl-library
    
[Fielding2000] 
        Fielding, Roy Thomas.  Architectural
        Styles and the Design of Network-based Software
        Architectures. 2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
    
[Steiner2007] 
        T. Steiner. Automatic Multi Language
        Program Library Generation for REST APIs Master
        Thesis, Institute for Algorithms and Cognitive Systems
        University of Karlsruhe. http://www.lsi.upc.edu/~tsteiner/papers/2007/automatic-multi-language-program-library-generation-for-rest-apis-masters-thesis-2007.pdf
    
[hREST2008] 
        Kopecky, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for Describing RESTful Web Services. In: The 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI2008), Sydney, Australia, IEEE CS Press
        (November 2008)
    
[JSONPath2008] 
        Goessner S. JSONPath - XPath for
        JSON http://goessner.net/articles/JsonPath/
    
[Jaxrs2009] 
        M. Hadley and P. Sandoz, JAX-RS:
        Java API for RESTful Web Services, Java
        Specification Request (JSR), vol. 311, 2009. http://jcp.org/en/jsr/detail?id=311.
    
[Launchpad2012] 
        Launchpad.  Hacking the Launchpad
        web service https://help.launchpad.net/API/Hacking
    
[Mashery2009] 
        Mashery.; Mashery: Untold Secrets
        Behind Managing an API http://www.readwriteweb.com/archives/mashery_secrets_behind_managing_an_api.php
    
[O2007] 
        L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., May 2007.
    
[O2010] 
        Allamaraju, S., and Amudsen, M. RESTful Web Services
        Cookbook. O’Reilly. 2010.
    
[O2011] 
        Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and
        Systems Architecture. O’Reilly & Associates, Sebastopol (2010).
    
[Maleshkova2009] 
        Maria Maleshkova, Jacek Kopecky, and Carlos Pedrinaci. Adapting SAWSDL for Semantic Annotations of RESTful Services. In Workshop: Beyond SAWSDL at OnTheMove Federated Conferences & Workshops, 2009.
    
[Swager2011] 
        Swagger.  Swagger Specification. http://swagger.wordnik.com/spec
    
[Takase2008] 
        T. Takase, S. Makino, S. Kawanaka, K. Ueno, C. Ferris, and A. Ryman, Definition Languages for RESTful Web Services: WADL vs. WSDL 2.0, IBM Reasearch, 2008
    
[WADL2Java2008] 
        WADL2Java.  wadl2java Tool Documentation. http://wadl.java.net/wadl2java.html
    
[WSDL2007] 
        Chinnici R., Moreau J., Ryan A., and  Weerawarana S. Web
        Services Description Language (WSDL) Version 2.0. June
        2007. http://www.w3.org/TR/wsdl20/
    
[W3CSchema2010] 
        Gao S., Sperberg-McQueen C. M, and Thompson H. W3C XML
        Schema Definition Language (XSD). http://www.w3.org/TR/xmlschema11-1/
    
[Hadley2009] 
        M. Hadley.; Web Application Description Language
        W3C Member Submission. August 2009
        http://www.w3.org/Submission/wadl/
    

Balisage: The Markup Conference

Using XProc, XSLT 2.0, and XSD 1.1 to validate RESTful services
Jorge Williams
Rackspace Hosting

<jorge.williams@rackspace.com>
Jorge Williams is a principal architect on the
                    Cloud Integration Team at Rackspace Hosting where
                    he develops tools and services to solve
                    integration problems. He has aided in the design
                    and development of the Repose HTTP proxy, the
                    Cloud Servers API, the OpenStack Compute and
                    Identity APIs, and the OpenStack extension
                    mechanism. He holds a PhD in computer science.
                


David Cramer
Rackspace Hosting

<david.cramer@rackspace.com>
David Cramer is a Documentation Build Developer
                    on the Cloud Doc Tools team at Rackspace Hosting
                    where he helps maintain the XML-based tool chain
                    used to produce Rackspace and OpenStack API
                    documentation. He has also been involved with the
                    DocBook project for several years.



Balisage: The Markup Conference

content/images/Williams01-002.png
Functional . REST
Tests Validator Service






content/images/Williams01-003.png
Ul(path)

U
Ul(to)

Ul(record)
Ul(xs:date)

M(*)

U (path) U (10) U (record) U (xs:date) M (GET)

S0 d18e9

MI(GET)

M(*)






content/images/Williams01-004.png





content/images/Williams01-005.png
A sﬂﬂ'\h\%”/«\\s,
e E.‘%«\__@gé
ez

W






content/images/Williams01-006.png
Parse the
WADL

>

Validate against
‘WADL schema

Normalize the
WADL

—

Convert the WADL
to Checker format

Run through
optimization stages

Validate against
checker schema

Convert to internal
immutable data structure






content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





content/images/Williams01-001.png
4.1.1.1. List Volumes

Verb URI Description

GET v1/{tenantId}/volumes?changes- List all volumes (IDs, names, links).
since=dateTimestype=UUIDs&
UID&name=strings

Normal Response Code(s): 200, 203

Error Response Code(s): blockstorageFault (400, 500, ...), serviceUnavailable (503),
unauthorized (401), forbidden (403)

A list of volumes. Each volume contains IDs, names, and links — other attributes are omitted.

Table 4.1. List Volumes Request Parameters

Name Style Type Description
changes-since query | DateTime |The changes-since parameter is optional.
type query UUID | The type parameter is optional.
backup query UUID | The backup parameter is optional.
name query String | The name parameter is optional.
marker query UUID | The marker parameter s optional.
limit query Int |The limit parameteris optional.
tenantId template | String | A unique identifier for the tenant who owns
the resource.

Example 4.1. List Volumes Response: XML

<?xml version="1.0" encoding="UTF-8"2>

<volumes xmlns="http://docs.openstack.org/block-storage/api/v1.0"
xmlns:atom="http://www.w3.o0rg/2005/Aton">
<volume id="15e59938-07d5-11lel-90e3-e3dffe0c5983"
name="Work">
<atom:link
rel="self"

href="http://servers.api.openstack.org/v1.1/1234/0S-BS/volumes/
15e59938-07d5-11e1-90e3-e3df£fe0c5983" />
<atom:1ink
rel="bookmark"
href="http://servers.api.openstack.org/1234/0S-BS/volumes/
15e59938-07d5-11e1-90e3-e3df£fe0c5983" />
</volume>
<volume id="4512308a-0808-1lel-bff3-83d5d70ad61£"
name="Home">
<atom:link
self"
href="http://servers.api.openstack.org/v1.1/1234/0S-BS/volumes/
4512308a-0808-11el-bf£3-83d5d70a461£"/>
<atom:link
rel="bookmark"
href="http://servers.api.openstack.org/1234/0S-BS/volumes/
4512308a-0808-11el-bf£3-83d5d70a461£"/>
</volume>






